| 
       
     | 
      
        
          margLikelihoodMonteCarlo(VTs,
        lambs,
        mu,
        mcerrs=None) 
      This function marginalizes the loudest event likelihood over unknown 
      Monte Carlo errors, assumed to be independent between each 
      experiment. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          margLikelihood(VTs,
        lambs,
        mu,
        calerr=0,
        mcerrs=None) 
      This function marginalizes the loudest event likelihood over unknown 
      Monte Carlo and calibration errors. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          integral_element(mu,
        pdf) 
      Returns an array of elements of the integrand dP = p(mu) dmu for a 
      density p(mu) defined at sample values mu ; samples need not be 
      equally spaced. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          normalize_pdf(mu,
        pofmu) 
      Takes a function pofmu defined at rate sample values mu and 
      normalizes it to be a suitable pdf. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          compute_upper_limit(mu_in,
        post,
        alpha=0.9) 
      Returns the upper limit mu_high of confidence level alpha for a 
      posterior distribution post on the given parameter mu. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          compute_lower_limit(mu_in,
        post,
        alpha=0.9) 
      Returns the lower limit mu_low of confidence level alpha for a 
      posterior distribution post on the given parameter mu. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          confidence_interval_min_width(mu,
        post,
        alpha=0.9) 
      Returns the minimal-width confidence interval [mu_low, mu_high] of 
      confidence level alpha for a posterior distribution post on the 
      parameter mu. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          hpd_coverage(mu,
        pdf,
        thresh) 
      Integrates a pdf over mu taking only bins where the mean over the bin
      is above a given threshold This gives the coverage of the HPD 
      interval for the given threshold. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          hpd_threshold(mu_in,
        post,
        alpha,
        tol) 
      For a PDF post over samples mu_in, find a density threshold such that
      the region having higher density has coverage of at least alpha, and 
      less than alpha plus a given tolerance. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          hpd_credible_interval(mu_in,
        post,
        alpha=0.9,
        tolerance=1e-3) 
      Returns the minimum and maximum rate values of the HPD (Highest 
      Posterior Density) credible interval for a posterior post defined at 
      the sample values mu_in. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          | integrate_efficiency(dbins,
        eff,
        err=0,
        logbins=False) | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          compute_efficiency(f_dist,
        m_dist,
        dbins) 
      Compute the efficiency as a function of distance for the given sets 
      of found and missed injection distances. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          | mean_efficiency_volume(found,
        missed,
        dbins) | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          volume_montecarlo(found,
        missed,
        distribution_param,
        distribution,
        limits_param,
        max_param=None,
        min_param=None) 
      Compute the sensitive volume and standard error using a direct Monte Carlo integral | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          filter_injections_by_mass(injs,
        mbins,
        bin_num,
        bin_type,
        bin_num2=None) 
      For a given set of injections (sim_inspiral rows), return the subset 
      of injections that fall within the given mass range. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          compute_volume_vs_mass(found,
        missed,
        mass_bins,
        bin_type,
        dbins=None,
        distribution_param=None,
        distribution=None,
        limits_param=None,
        max_param=None,
        min_param=None) 
      Compute the average luminosity an experiment was sensitive to given 
      the sets of found and missed injections and assuming luminosity is 
      uniformly distributed in space. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          log_volume_derivative_fit(x,
        vols) 
      Performs a linear least squares to log(vols) as a function of x. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          | get_loudest_event(connection,
        coinc_table="coinc_inspiral",
        datatype="exclude_play") | 
          
            source code
            
           | 
         
       
      
     |