| 
       
     | 
      
        
          fit_exponential(vals,
        thresh) 
      Maximum likelihood fit for the coefficient alpha for a distribution 
      of discrete values p(x) = alpha exp(-alpha (x-x_t)) above a threshold
      x_t. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          fit_rayleigh(vals,
        thresh) 
      Maximum likelihood fit for the coefficient alpha for a distribution 
      of discrete values p(x) = alpha x exp(-alpha (x**2-x_t**2)/2) above a
      threshold x_t. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          fit_power(vals,
        thresh) 
      Maximum likelihood fit for the coefficient alpha for a distribution 
      of discrete values p(x) = ((alpha-1)/x_t) (x/x_t)**-alpha above a 
      threshold x_t. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          expfit(xvals,
        alpha,
        thresh) 
      The fitted exponential function normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          expfit_cum(xvals,
        alpha,
        thresh) 
      The integral of the exponential fit above a given value (reverse CDF)
      normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
      
     | 
  
    | 
       
     | 
      
        
          rayleighfit_cum(xvals,
        alpha,
        thresh) 
      The integral of the Rayleigh fit above the x-values given (reverse 
      CDF) normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          powerfit(xvals,
        alpha,
        thresh) 
      The fitted power-law function normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          powerfit_cum(xvals,
        alpha,
        thresh) 
      The integral of the power-law fit above the x-values given (reverse 
      CDF) normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          fit_above_thresh(distr,
        vals,
        thresh=None) 
      Maximum likelihood fit for the coefficient alpha for a distribution 
      of discrete values p(x) = alpha exp(-alpha*x) above a given 
      threshold. | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          tail_threshold(vals,
        N=1000) 
      Determine a threshold above which there are N louder values | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          fit_fn(distr,
        xvals,
        alpha,
        thresh) 
      The fitted function normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          cum_fit(distr,
        xvals,
        alpha,
        thresh) 
      The integral of the fitted function above a given value (reverse CDF)
      normalized to 1 above threshold | 
          
            source code
            
           | 
         
       
      
     | 
  
    | 
       
     | 
      
        
          KS_test(distr,
        vals,
        alpha,
        thresh=None) 
      Perform Kolmogorov-Smirnov test of the given set of discrete values 
      above a given threshold for the fitted distribution function ex.: 
      KS_test('exponential', vals, alpha, thresh) If no threshold is 
      specified, the minimum sample value will be used. | 
          
            source code
            
           | 
         
       
      
     |