| Home | Trees | Indices | Help | 
        
  | 
  
|---|
| 
       | 
  
This module is intended to store generic, reusable, sub-classable plot classes to minimize formulaic copying and pasting.
Author: Nickolas Fotopoulos <nvf@gravity.phys.uwm.edu>
    
  | 
|||
| 
        BasicPlot A very default meta-class to almost any plot you might want to make.  | 
  |||
| 
        SimplePlot Exactly what you get by calling pylab.plot(), but with the handy extras of the BasicPlot class.  | 
  |||
| 
        BarPlot A simple vertical bar plot.  | 
  |||
| 
        VerticalBarHistogram Histogram data sets with a common binning, then make a vertical bar plot.  | 
  |||
| 
        NumberVsBinBarPlot Make a bar plot in which the width and placement of the bars are set by the given bins.  | 
  |||
| 
        CumulativeHistogramPlot Cumulative histogram of foreground that also has a shaded region, determined by the mean and standard deviation of the background population coincidence statistics.  | 
  |||
| 
        ImagePlot The equivalent of pylab.imshow(), but with the BasicPlot niceties and some defaults that are more in tune with what a scientist wants -- origin="lower", requiring x and y bins so that we can label axes correctly, and a colorbar.  | 
  |||
| 
        FillPlot Given a list of vertices (passed by x-coords and y-coords), fill the regions (by default with successively darker gray shades).  | 
  |||
| 
        SixStripSeriesPlot Given a time- or frequency-series, plot it across six horizontal axes, stacked on top of one another.  | 
  |||
| 
        ROCPlot Plot the receiver operating characteristic (ROC) based on the foreground and background values from given techniques.  | 
  |||
| 
        QQPlot Plot the global rank versus the self rank, like a Q-Q plot, i.e.  | 
  |||
| 
        SimpleMapPlot Class to create a clickable map html page.  | 
  |||
| 
        Plot3D Exactly what you get by calling pylab.plot(), but with the handy extras of the BasicPlot class.  | 
  |||
| 
        ScatterPlot Exactly what you get from calling pylab.scatter(), but with the handy extras of the BasicPlot class.  | 
  |||
| 
        ColorbarScatterPlot Exactly what you get from calling pylab.scatter() when you want a colorbar, but with the handy extras of the BasicPlot class.  | 
  |||
| 
        PlotSegmentsPlot Horizontal bar segment plot.  | 
  |||
| 
        DQScatterPlot A DQ-formatted scatter plot, with those triggers below some threshold on the colour axis get plotted tiny wee.  | 
  |||
| 
        LineHistogram A simple line histogram plot.  | 
  |||
| 
        SkyPositionsPlot A spherical projection plot.  | 
  |||
| TestSimpleMapPlot | |||
    
  | 
|||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
    
  | 
|||
        _dq_params = {"text.usetex": True, "text.verticalalignment": "
     | 
  |||
        plot3D_head = 
     | 
  |||
        plot3D_body = 
     | 
  |||
    
  | 
|||
  
 Convert a floating point number to a latex representation. In particular, scientific notation is handled gracefully: e -> 10^  | 
  
 Given a some nested sequences (e.g. list of lists), determine the largest and smallest values over the data sets and determine a common binning.  | 
  
 
Format the string columnName (e.g. xml table column) into latex format for
an axis label. Formats known acronyms, greek letters, units, subscripts, and
some miscellaneous entries.
Examples:
>>> display_name('snr')
'SNR'
>>> display_name('bank_chisq_dof')
'Bank $\chi^2$ DOF'
>>> display_name('hoft')
'$h(t)$'
Arguments:
  columnName : str
    string to format
   | 
  
 
Adds a figure colorbar to the given Axes object ax, based on the values
found in the mappable object. If visible=True, returns the Colorbar object, 
otherwise, no return.
Arguments:
    ax : matplotlib.axes.AxesSubplot
        axes object beside which to draw colorbar
Keyword arguments:
    mappable : [ matplotlib.image.Image | matplotlib.contour.ContourSet... ]
        image object from which to map colorbar values
    visible : [ True | False]
        add colorbar to figure, or simply resposition ax as if to draw one
    log : [ True | False ]
        use logarithmic scale for colorbar
    clim : tuple
        (vmin, vmax) pair for limits of colorbar
    label : str
        label string for colorbar
All other keyword arguments will be passed to pylab.colorbar. Logarithmic
colorbars can be created by plotting log10 of the data and setting log=True.
   | 
  
 
Parser ConfigParser.ConfigParser section for plotting parameters. Returns
a dict that can be passed to any plotutils.plot_xxx function in **kwargs
form. Set ycolumn to 'hist' or 'rate' to generate those types of plots.
Arguments:
    cp : ConfigParser.ConfigParser
        INI file object from which to read
    section : str
        section name to read for options
Basic parseable options:
    xcolumn : str
        parameter to plot on x-axis    
    ycolumn : str
        parameter to plot on y-axis    
    zcolumn : str
        parameter to plot on z-axis    
    rank-by : str
        parameter by which to rank elements
    xlim : list
        [xmin, xmax] pair for x-axis limits
    ylim : list
        [ymin, ymax] pair for y-axis limits
    zlim : list
        [zmin, zmax] pair for z-axis limits
    clim : list
        [cmin, cmax] pair for colorbar limits
    logx : [ True | False ]
        plot x-axis in log scale
    logy : [ True | False ]
        plot y-axis in log scale
    logz : [ True | False ]
        plot z-axis in log scale
Trigger plot options:
    detchar-style : [ True | False ]
        use S6-style plotting: low snr triggers small with no edges
    detchar-style-theshold : float
        z-column threshold at below which to apply detchar-style
Trigger rate plot options:
    bins : str
        semi-colon-separated list of comma-separated bins for rate plot
Histogram options:
    cumulative : [ True | False ]
        plot cumulative counts in histogram
    rate : [ True | False ]
        plot histogram counts as rate
    num-bins : int
        number of bins for histogram
    fill : [ True | False ]
        plot solid colour underneath histogram curve
    color-bins : str
        semi-colon-separated list of comma-separated bins for colorbar
        histogram
Data plot options:
    zero-indicator : [ True | False ]
        draw vertical dashed red line at t=0
Other options:
    greyscale : [ True | False ]
        save plot in black-and-white
    bbox-inches : 'tight'
        save figure with tight bounding box around Axes
    calendar-time : [ True | False ]
        plot time axis with date and time instead of time from zero.
   | 
  
 
Work out renormalisation for the time axis, makes the label more
appropriate. Returns unit (in seconds) and string descriptor.
Example:
>>> time_axis_unit(100)
(1, 'seconds')
>>> time_axis_unit(604800)
(86400, 'days')
Arguments:
    duration : float
        plot duration to normalise
   | 
    
  | 
|||
  _dq_params
  | 
  plot3D_head
  | 
  plot3D_body
  | 
| Home | Trees | Indices | Help | 
        
  | 
  
|---|
| Generated by Epydoc 3.0.1 on Tue Dec 12 01:21:41 2017 | http://epydoc.sourceforge.net |