| Home | Trees | Indices | Help | 
        
  | 
  
|---|
| 
       | 
  
object --+    
         |    
      list --+
             |
            NoiseBudget
Object representing a list of NoiseTerms comprising a noise budget estimation.
    
  | 
|||
| new empty list | 
      
  | 
  ||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
      
  | 
  |||
| 
     Inherited from  Inherited from   | 
  |||
    
  | 
|||
        typemap = {'name': str, 'numTerms': int, 'target': NoiseTerm, 
     | 
  |||
        name = Nonehash(x)  | 
  |||
        numTerms = 0
     | 
  |||
        target = Nonehash(x)  | 
  |||
        noise_sum = Nonehash(x)  | 
  |||
| 
     Inherited from   | 
  |||
    
  | 
|||
| 
     Inherited from   | 
  |||
    
  | 
|||
  
 
Initialise this NoiseBudget. Arguments should be NoiseTerms to add to the
NoiseBudget.
Keyword arguments:
    name : str
        name for this NoiseBudget
    
  
  | 
  
 append object to end 
  | 
  
 stable sort *IN PLACE*; cmp(x, y) -> -1, 0, 1 
  | 
  
 Set the target of this NoiseBudget to be the noiseterm. Argument should be a NoiseTerm object.  | 
  
 Returns the target of this NoiseBudget. Returns NoneType if no target has been set.  | 
  
 Calculate the quadrature sum of terms in the NoiseBudget. All terms whose sum attribute evaluates to True will be included.  | 
  
 
Calculate the deficit of thise NoiseBudget as the normalised quadrature
difference ratio the sum of the NoiseTerms and the target. Defaults to:
deficit = $\sqrt{1 - \left(rac{target}{sum of terms}
ight)^2}
Keyword arguments:
    func : callable
        any callable function that accepts noise sum and target arrays
    
   | 
  
 Calculate the deficit of thise NoiseBudget as the ratio of the sum of the NoiseTerms and the target. ratio_deficit = $rac{target}{sum of terms}  | 
    
  | 
|||
  typemap
  | 
| Home | Trees | Indices | Help | 
        
  | 
  
|---|
| Generated by Epydoc 3.0.1 on Tue Dec 12 01:21:42 2017 | http://epydoc.sourceforge.net |