
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type:
Specification

LIGO-T990030-08 E- 07.18.2000

LIGO Data Analysis System -
Numerical Algorithms Library
Specification and Style Guide

Bruce Allen, Kent Blackburn, Jolien Creighton, Sam Finn,
Albert Lazzarini and Alan Wiseman

Distribution of this draft:

LIGO and LSC

California Institute of Technology
LIGO P roject - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Pr oject - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note of the
LIGO Laboratory and the

LIGO Scientific Collaboration.

DRAFT

Table of Contents

Index

file /home/agw/LALSpec/NEW2/new.fm - printed July 20, 2000

LIGO-T990030-08

page 2 of 35

CHANGE RECORD

Revision Date Authority Pages Affected
Item(s)
Affected

Initial draft All All

Feb. 2000 most

July 2000 All

Organization Name Signature Date

LIGO Laboratory Directorate

LSC
Software Coordinator

spokesperson

LIGO-T990030-08

page 3 of 35

1 TABLE OF CONTENTS
1 Table of Contents.. 3
2 Introduction.. 5

2.1 The goal of the LAL software specification..5
2.2. The scope of the LAL specification..5
2.3. Applicability of LAL software..5
2.4 How does the LAL fit into the LDAS?..6

3 LAL coding style.. 7
3.1 LAL namespace conventions..7

3.1.1 The rationale behind the namespace rules...7
3.1.2 The namespace rules..7

3.2 Physical and numerical constants...8
3.3 Style for type declarations..8

4 LAL Data types.. 8
4.1 Defining data types...9
4.2 “Atomic” data types..9
4.3 Aggregate constructs of atomic data types...10

4.3.1 Vectors...11
4.3.2 Arrays...12
4.3.3 Sequences...12

4.3.3.1 The packing order for a VectorSequence or ArraySequence....................12
4.4 LAL structured data types...13

4.4.1 Time...13
4.4.1.1 Time stamps..13

4.4.2 Sequences in time..13
4.4.2.1 TimeSeries..13

4.4.2.1.1 The name[] field in structured data types..14
4.4.2.2 SequenceOfTimeSeries...14

4.4.2.2.1 The Packing order for a SequenceOfTimeSeries.................................14
4.4.2.3 TimeVectorSeries...15
4.4.2.4 TimeArraySeries...15

4.4.3 Sequences in frequency..16
4.4.3.1 FrequencySeries..16
4.4.3.2 SequenceOfFrequencySeries..17
4.4.3.3 FrequencyVectorSeries...18
4.4.3.4 FrequencyArraySeries...18

4.4.4 Series of n-tuples..19
4.4.5 Transfer functions..20

4.4.5.1 Frequency domain...20
4.4.5.2 Zeros, poles and gain representation...20

LIGO-T990030-08

page 4 of 35

4.5 LALStatus...21
4.5.1 The LAL statusCode and *statusDescription fields...21
4.5.2 The LAL CVS Id string...21

5 LAL functions... 22
5.1 The burning question..22
5.2 The rules for LAL functions...22

6 LAL code organization... 26
6.1 The big picture: the LAL directory tree..26

6.1.1 Making LAL code modular...26
6.2 The finer picture: the format of LAL code...27

6.2.1 Header Files...27
6.2.2 Source Files..27
6.2.3 Component level tests..28

7 LAL code documentation... 28
7.1 The requirements driving the documentation design...28
7.2 LAL documentation rules...29
7.3 The organization of LAL documentation...29

7.3.1 Header file documentation...30
7.3.2 Module documentation..30
7.3.3 Component-level test documentation..31

8 Maintaining the LAL.. 31
8.1 Version control for the LAL...31
8.2 Numbering the LAL releases..31
8.3 Validation of LAL code..32
8.4. Requesting changes in LAL..32

9 Development tools and software packages used with LAL... 32
9.1 Compiling the LAL...32
9.2 Development tools:...33
9.3 Documentation tools:..33
9.4 Software packages..33

Appendix A LAL Template Header File...34
Appendix B LAL Template Source File..35

LIST OF TABLES

Table 1 List of Applicable Documents..6
Table 2 LAL data types for algorithm software...9
Table 3 LAL data objects [relevant section numbers are shown in table headings]..............10
Table 4 Generic (ab)normal termination codes (statusCode)..24

TABLE OF CONTENTS -- continued

LIGO-T990030-08

page 5 of 35

2 INTRODUCTIO N

2.1 The goal of the LAL software specification

The LIGO Laboratory [LL] and the LIGO Scientific Collaboration [LSC] are developing the
LIGO/LSC Algorithm Library [LAL] for analyzing data from interferometric gravitational-wave
detectors.TheLL andLSCwish to sharethissoftwarewith otherprojectsandinvite other(inter-
national) groups to contribute to this library. The defining purpose of this document is to
establisha softwarespecificationthat fosterswidespread-useand collaborative-development
of a well-tested analysis library. The details in this specification flow naturally from this goal.

1. More programmers know C than C++; therefore, in order to maximize the number of users
and contributors, the LL Data Group decided to use ANSI standard C for the LAL. Simi-
larly, we don’t want contributors to have to climb multiple learning curves just to master the
toolsnecessaryto write LAL code;thereforewespecifyaminimal list of developmenttoolsin
Section 9.

2. Theoutputof oneprogrammer’sroutineis likely to betheinputof someoneelse’s routine.To
makethisexchangeeasy, wespecifysomereusabledatastructuresfor inputandoutput.(We
alsorequire developers to use them whenever possible.) These are given inSection 4.

3. Oneprogrammermustbeableto use,understand,testanddebuganotherprogrammer’scode;
therefore we establish some coding conventions (Section 3), a uniform layout for the source
code(Sections5 and 6), andthespecificationsfor thedocumentation(Section7). In particu-
lar, we define the namespace conventions inSection 3, and we explain the details of
reporting errors inSection 5.

4. It is essentialthatusersanddevelopersknow thepedigreeof theroutinesthey areusing;there-
fore we have defined a version control system (CVS) for the library inSection 8.

5. Using a standard design for the software will (hopefully) make it easier to test the routines
and compare data analysis results of different groups.

6. Thiscodeprojectwill grow andevolve.This makes it impossibleto foreseeall thenecessary
code requirements. Therefore, the LL and LSC will continue to jointly update and maintain
this specification. The rules for this procedure are given inSection 8.

7. In orderto facilitatecollaboration,theLSCSoftwareCoordinatorwill ensurethat thecodeis
publicly (and easily) available to users and developers.

2.2. The scope of the LAL specification

This documentformally definestheLIGO/LSC Algorithm Library [LAL]. This is not a compre-
hensivedocumentexplaininghow to write LAL functions,ratherit laysoutgeneralrulesfor code
writing. Eventually, we may write a C++ specificationfor LAL; however, until we have sucha
specification, code must be written in ANSI standard C.

2.3. Applicability of LAL softwar e

TheLIGO LaboratoryandtheLSCwill work to ensurethatall developedhardwareandsoftware
systems supportLAL. In turn, all participating groups will be required to analyze LIGO data
usingLAL-compliant software. TheLAL software shall beavailable in the public domain, sub-

LIGO-T990030-08

page 6 of 35

ject only torules in this document. LAL will be written assuming IEEE/ASCII compliant hard-
ware and software is used to analyze interferometer data.

2.4 How does the LAL fit into the LDAS?

The LDAS is the analysis environment being developed for LL and LSC. It consists of a layered
andhighly modulararchitectureemploying asteeringlanguageor scriptingcommands(e.g.Tcl).
The scripting language will execute compiled C++ code which will use MPI based parallel
computing to do the numerically intensive data analysis. [See http://www.ldas.ligo.caltech.edu
and Table 1 for detail information on LDAS.]

The current plan is to use procedural algorithms and functions (i.e., LAL routines written in C)
wrappedin C++codeto manipulatethedata.Thesefunctionswill beimportedinto theC++code
as a dynamically loaded (shared object) library. These dynamically loaded LAL functions will
actually perform the data analysis.

Table 1 List of Applicable Documents

Description Document ID

LIGO Documentation

LDAS White Paper LIGO-M970065

LDAS Design Requirements Document LIGO-T970159.

LDAS Conceptual Design Document LIGO-T970160.

LDAS Preliminary Design Document LIGO-T990001

LDAS System Software Specification for C, C++ and Java LIGO-T970211

Data Format Specifications

Specification of a Common Data Frame Format for Interferometric Gravita-
tional Wave Detectors

LIGO-T971030

LIGO Lightweight Data Format Specification LIGO-T980091.

LIGO Metadata, Event and Reduced Data Requirements LIGO-T980070.

LDAS Software Specificationsa:

FrameAPI Baseline Requirements LIGO-T980011.

FrameAPI.tcl source code map -- frameAPI.tcl on-line TclDoc

FrameAPI.tcl emergency procedures source code map --
frameEmProc.tcl

on-line TclDoc

FrameAPI.tcl operator procedures source code map -- frameOpProcs.tcl on-line TclDoc

MetadataAPI Baseline Requirements LIGO-T980119

LIGO-T990030-08

page 7 of 35

3 LAL CODING STYLE

3.1 LAL namespace conventions

3.1.1 The rationale behind the namespace rules

1. Thenamingconventionshouldmake it easierfor someone(besidestheauthor)to understand
the code.

2. The naming convention should help avoid internal (intra-LAL) name conflicts.
3. LAL will beusedin conjunctionwith otherlibraries;thereforethenamingconventionshould

help avoid conflicts with non-LAL software packages and system routines.

3.1.2 The namespace rules

1. Names combining multiple words must have subsequent wordscapitalized: theNewVari-

able , LALTheNewType. Thenamestendto belongenoughasit is; thereforewedonotusethe
underscore between words in a name. [Macros are an exception to this rule. See below.]

2. Variable names must begin with alowercase letter, e.g.myVariable .
3. Function namesmustbegin theprefix LAL. Theremainderof thenameshouldalsostartwith

a capital letter, e.g.LALMyFunction() . TheLAL prefix will help keep the LAL namespace
from conflicting with other library namespaces. As LAL grows, there is also a risk of step-
ping on our own namespace; therefore don’t use nondescript function names, such as “LAL-

Corrolate() ” or “LALFilter() ”. Usemorespecificnames,e.g. attachthepackagenameor
theheader-file name:LALInspiral Filter() . [Note:RequiringtheLAL prefixis asignificant
change from earlier versions (7 and earlier) of this document. This will require substantial
modifications of existing code, but it is necessary.]

4. Custom data structures (i.e. structures not specified in this document) must be given names
that try to avoid namespace conflicts. The name should start with anUppercase letter, e.g.
LALREAL8MyDataType . WesuggestusingtheprefixLAL to avoid collisionwith otherlibraries;
however this is not a requirement. Another way to avoid conflicts with other packages is to
build the name around the Atomic datatype, e.g.REAL8MyPackageVector . The discussion

DataConditioningAPI Baseline Requirements LIGO-T990002

Non LIGO Documentation

Enough Rope to Shoot Yourself in the Foot:
Rules for C and C++ Programming,

Allen I.Holub

McGraw-Hill
1995

a. Links accessible via httt://www.ldas.ligo.caltech.edu and http://www.ligo.caltech.edu/LIGO_web/
dcc/docs. Note that some of these documents are still evolving.

Table 1 List of Applicable Documents

Description Document ID

LIGO-T990030-08

page 8 of 35

aboutnon-descriptfunctionnamesapplieshereaswell. Also, nameswithout theLAL prefix,
can step on system names; therefore don’t use words like time , date , window , etc.

5. Source-codefile names(modules,headersandtestprograms)shouldalsobegin with acapital
letter, e.g.MyModule.c andMyHeader.h .

6. Acronyms in the name: When the convention calls for an acronym to start with lower case,
the entire acronym is written in lower case (e.g.INT4 gpsSeconds). When the convention
calls for the acronym to start with an upper case letter, the entire acronym is capitalized (e.g.
tagLIGOTimeGPS). We should never seegPS or Gps.

7. Macros(#define) must be allUPPERCASE. Compound macro names will use underscores
if clarity requires:THE_NEXT_MACRO. [This is only exception to the no-underscore rule.]

8. Err or codes (statusCode andstatusDescription) have a special name convention. See
Section 4.5.

9. Package names should be alllowercase.

3.2 Physical and numerical constants

Physical constantswill be storedin the headerfile LALConstants.h . This is being distributed
with the LAL library releases. All constants are declared according to the following style:

#define LAL_CONSTANTNAME_STANDARDvalue /* units or description */

Examples from LALConstants.h:

#define LAL_PI 3.141592653589793238462643382795029L /* pi */
#define LAL_RSUN_SI 6 .960e08 / * solar radius, m * /
#define LAL_SOLMASS_SI 1 .989 2e30 / * solar mass, kg */

All constantshave the reservedprefix LAL_. Theconstantshave a suffix to denotethesystemof
unitsin which they aredefined. If thereareconstantsthatshouldbethere,but arenot,contactthe
LSC Software Coordinator.

3.3 Style for type declarations

Onevariabledefinition per type declarationis prefered;however a few closelyrelatedvariables
canbedeclaredon thesameline. Thisallowseaseof readingandmaintenance.It allowseachline
to have a single comment that pertains to the declaration:

TYPE variableName; /* helpful or useful comment */

INT4 length; /* number of elements */
INT4 vectorLength; /* length of each vector in sequence */

 REAL4 *a,*b,*c; /* temporary pointer variables */
REAL4 *a,b; /* DO NOT COMBINE POINTERS AND VARIABLES! */

4 LAL DATA TYPES
In orderto facilitatesharingof databetweenLAL routinesandpassingdataform LAL to non-
LAL library functions(e.g.therestof LDAS) we definea numberof genericdatastructures.You
arerequiredto usethesestructureswhenever possiblein your code. We recognizethatwe can’t

LIGO-T990030-08

page 9 of 35

planfor everycontingency, so,if youfind thattherearestructuresthatarenot included,but would
have widespread use if they were available, please tell the LSC Software Coordinator.

4.1 Defining data types

Structures shall be defined according to the following template:

typedef struct
t ag<Name>
{

... ;
 ...;
}
<Name>;

Where<Name>is replacedby thestruct’sname.Thetagis optional. (Writing thetypedef andthe
tag-Namein columnzerois a GNU convention,andnot a LAL requirement;however, muchof
the code in the library adheres to this convention.)

4.2 “ Atomic” data types

To permit LAL code to be transportedto varioushardware platforms (e.g., 32, 64 or 128 bit
machines),we will adoptthe conventiondescribedin the LIGO-VIRGO framespecification.To
eachC/C++datatypetherewill beassignedaCAPITALIZEDLAL datatypename.Thesewill be
definedin LALAtomicDatatypes.h . See Table 2.[ThestructuresCOMPLEX8andCOMPLEX16are
also included in our list of atomic data types.]

typedef s truct
{
 R EAL4 re ;
 R EAL4 im ;
}
COMPLEX8;

typedef s truct
{
 R EAL8 re;
 R EAL8 im;
}
COMPLEX16;

Table 2 LAL d ata types for algorithm software

Data Class C/C++ Data Type Length (Bytes)
Comments

CHAR char 1 Character (signed or unsigned is machine dependent)
UCHAR unsigned char 1 Unsigned character

BOOLEAN unsigned char 1 Unsigned character
INT2 short

or int
2 Signed integer,

Range: (-215, 215-1)
UINT2 unsigned short

or unsigned int
2 Unsigned integer

INT4 int
or long

4 Signed integer,

Range: (-231, 231-1)

LIGO-T990030-08

page 10 of 35

Theimportantfeatureof thesedatatypesis thatthey areof specifiedlength,e.g.UINT4 shallbe4
bytes in length, period. This is enforced by the macros inLALAtomicDatatypes.h .

4.3 Aggregate constructs ofatomic data types

This list is of aggregateconstructsof atomicdatatypesmay be augmentedin the future.These
definitions will be included in LALDatatypes.h . Indexing convention for multi-dimensional
arrayswill follow theC conventionof row-majorordering.Table3 lists theobjectsdefinedbelow.

UINT4 unsigned int
or unsigned long

4 Unsigned Integer

INT8 long
or longlong

8 Signed integer,

Range: (-263, 263-1)
UINT8 unsigned long or

unsigned longlong
8 Unsigned integer

REAL4 float 4 IEEE-defined single precision floating point number
REAL8 double 8 IEEE-defined double precision floating point number

Composite Data Types (structures)
COMPLEX8 Pair of REAL4 8 Complex real number, two single precision floats,

stored as a pair: (real, imaginary)
COMPLEX16 Pair of REAL8 16 Complex real number, two double precision floats,

stored as a pair: (real, imaginary)

Table 3 LAL d ata objects [relevant section numbers are shown in table headings]

Data Class LAL Names Comments Comments

4.2Atomic -- See Table 2

4.3 Aggregates

Vectors <datatype>Vector Footnotea

Aggregates capture
only numerical
data useful for
computation
(e.g.,bytes)

no units or physical
information is

provided at this level

Array <datatype>Array Footnotea

Sequences

<datatype>Sequence Footnotea

<datatype>VectorSequence Footnotea

<datatype>ArraySequence Footnotea

4.4 Structures

Time LIGOTime
A struct

identifying GPS time.
Physical units
or dimensions

are encapsulated
in the structures.

Table 2 LAL d ata types for algorithm software

Data Class C/C++ Data Type Length (Bytes)
Comments

LIGO-T990030-08

page 11 of 35

4.3.1 Vectors

A Vectoris a one-dimensionalobjectthatcorrespondsto a collectionof length = M dataele-
ments of the same data type, taken fromTable 2 above.

typedef struct
t ag<datatype>Vecto r
{

 UI NT4 l ength; / * number of elements in the vector */
 < datatype> *d ata ; / * p ointer to data of type <datatype> from Table 3,

footnote a */

}
<datatype>Vector;

Hereandelsewhere <datatype>canbeany of thetypesin Table 3, footnotea.Structuresdefined
with a <...> prefix will beenumeratedin LALD atatypes.hfor eachcorrespondingdatatypethat
is needed.For example,the following vectordatatypeswill appear:CHARVector, INT2Vector,
COMPLEX8Vector, etc. The needfor explicit typing follows becauseC, unlike C++, doesnot
supporttemplatedatatypedefinitions.Alternative methodsusingenum statementsarepossible;
however, these,unlike the“hard-wired” typecastingdescribedabove provide extensibility at the
cost of case checking (if statements) that need to be embedded in the resultant code.

Series

<datatype>TimeSeries
<datatype>FrequencySeries

Examples: time series,
spectra, etc.

<datatype>SequenceOfTimeSeries
<datatype>SequenceOfFrequencySer-

ies

Example: two polarizations of a gravi-
tational wave signal.

<datatype>TimeVectorSeries
<datatype>FrequencyVectorSeries

Example: time series
of a vector quantity.

<datatype>TimeArraySeries
<datatype>FrequencyArraySeries

Example: time series
of a matrix quantity.

<datatype>TableSeries Example: time series for a group
of objects which are best

represented by a table

Transfer
Functions

<datatype>FTransferFunction List of {f,y,z} triplets for H[f];
{y,z} correspond to

{M, } or {Re,Im} of H[f]

<datatype>ZPGFilter Pole-zero-gain representation for
H[z]

a. Initially <datatype> will be taken by default to be ONLY from the following list: {CHAR,UCHAR,REAL4,
REAL8, COMPLEX8,COMPLEX16,INT2, I NT4,INT8,UINT2,UINT4,UINT8 } . Additional typesmaybe
added when shown to be needed.

Table 3 LAL d ata objects [relevant section numbers are shown in table headings]

Data Class LAL Names Comments Comments

ϕ

LIGO-T990030-08

page 12 of 35

4.3.2 Arrays

Array is a dim = ndim (>1) objectthatcorrespondsto acollectionof length = ldim1*
ldim2*...*ldimNdim dataelementsof thesamedatatype,takenfrom Table 3, footnotea,
above.

struct <datatype>Array
{
 UI NT4Vector *d imLength ; / * vector of < ndim> UINT4 scalars for the
 l engths for each o f the d imen sions */

<datatype> *data; / * pointer to data of type <datatype> from
Table 3, foot note a */

} ;

The discussion at the end ofSection 4.3.1 applies.

4.3.3 Sequences

A sequence(or aseries)is a list of le ngth = N compoundobjects. Thecompoundobjectsmay
beeithervectorsor arrays.Note thata sequenceof scalarsis representedby thevectorobjectin
Section 4.3.1above.All elementsof thesequencemusthave thesameidenticalstructure.All data
elements are of the same data type, taken fromTable 3, footnote a, above.

typedef struc t
t ag<datatype>VectorSequenc e
{

UINT4 l ength; / * number of vectors in the sequence * /
UINT4 v ectorLength ; / * length of each vector in sequence */

 <datatype> * data ; /* p ointer to data of type <datatype> fro m
Table 3, footnote a * /

}
<datatype>VectorSequence;

typedef struct
t ag<datatype>ArraySequenc e
{

UINT4 l ength; / * number of arrays in sequence * /
UINT4 a rrayDim ; / * dimension of each array in sequence */
UINT4 *d imLength ; / * length of each dimension of array */

 <datatype> *d ata ; / * pointer to data of type <datatype> from
Table 3, footnote a */

}
<datatype>ArraySequence;

The discussion at the end ofSection 4.3.1 applies.

4.3.3.1The packing order for a VectorSequence or ArraySequence

The indexing for a sequenceof compoundobjectswill run throughthe internal indicesof the
objects before going to the next object in the sequence. For example, here is a sequence of
data->l ength=M vectors, each ofdata->vectorLength =N.

LIGO-T990030-08

page 13 of 35

In Section 4.4.2.2.1we define a structure where the packing is in the other order.

4.4 LAL s tructur ed data types

This list of time structureswill be augmentedas the needarises.The definitionsare in LAL-
Datatypes.h.

4.4.1 Time

4.4.1.1 Time stamps

Thereis a specificdatastructureto storeGPStime. To indicatethis, the time structurewill have
“GPS” (or gps)in its name.

typedef struct
t agLIGOTimeGPS
{

I NT4 gpsSeconds;
I NT4 gps NanoSeconds;

}
LIGOTimeGPS;

Multiple time stamps(e.g.,for a vectorof strains,eachcomingfrom aninstrumentin a different
geographical location) can be accommodated as a C array of typeLIGO TimeGPS:

LIGOTimeGPS gpsTimeList[10]; / * a list of 10 LIGOTi meGPS structures * /

4.4.2 Sequences in time

4.4.2.1 TimeSeries

The structureTimeSeriesis usedto representa sequenceof samplestaken at uniformly spaced
intervals of time. ATimeSeries object has the following attributes:

• name of series
• epoch - time at which theearliest sample in the series was acquired
• deltaT - offset between samples (reciprocal of sample rate). (Time offset units will be

seconds.)
• units of values recorded in samples
• the data is stored in a<datatype>Vector structure. This structure contains:

• the number of elements in the sequencedata->length

•the data itself is indata->data[]

typedef struct

h1 t1[]

. . .

hN t1[]

h1 t2[]

. . .

hN t2[]

h1 t3[]

. . .

hN t3[]

...

h1 tM[]

. . .

hN tM[]

, , , ,

î 
 
 
 
 

⇒

h1 t1[] ... h, N t1[] h1 t2[] ... hN t2[] h1 t3[] ... hN t3[] h1 tM[] ... hN tM[], , , , , , , , ,{ , }

LIGO-T990030-08

page 14 of 35

t ag<datatype>TimeSerie s
{

CHAR name[LALNameLength]; / * user assigned name */
LIGOTimeGPS e poch; / * epoch of first series sample */
REAL8 d eltaT; / * sample spacing in time * /
REAL8 f0; / * base frequency, ! =0 if

 h eterodyned series * /
CHARVector *s ampleUnits ; / * units for sampled quantity */
<datatype>Vector *d ata; /* t he data * /

}
<datatype>TimeSeries ;

4.4.2.1.1 The name[] field in structured data types

Thenamefield will beanarrayatmostLALNameLength characterslong.LALNameLength will be
setin LALDatatypes .h . Currently, thevalueis setto 64, althoughwe couldmake changeit. In
previous version(7 andearlier)of this documentname wasa CHAR*, andit didn’t specifywhat
form the nameshouldtake. This madeit cumbersometo write genericroutinesthat freedthe
memory. [This method of handling the name is the same as much of the rest of LDAS.]

4.4.2.2 SequenceOfTimeSeries

The structureSequenceOfTimeSeriesis usedto representa sequenceof time series,eachof
which startsat thesametime,e.g.thetwo time-seriesrepresentingthetwo polarizationsof gravi-
tational wave. A SequenceOfTimeSeriesobject has the following attributes:

• name of series. SeeSection 4.4.2.1.1.
• time of epoch - time at which theearliest sample in the series was acquired
• deltaT offset between samples (reciprocal of sample rate).(time offset units will be sec-

onds). (Time offset units will be seconds.)
• units of values recorded in samples
• the data is stored in a<datatype>VectorSequence structure. This structure contains:

• the length of the sequence (i.e. the number of series) is indata->length

• the number of elements in each time seriesdata->vectorLength

• the data it self indata->data[]

Note: The structureSequenceOfTimeSeriesis similar to the TimeVectorSeriesstructure.The
distinction is in the order of the packing in*data . See Sections 4.4.2.2.1.

typedef struct
tag<datatype>SequenceOfTimeSeries
{

CHAR name[LALNameLength];/* user assigned name */
LIGOTimeGPS epoch; /* epoch of first series sample */
REAL8 deltaT; /* sample spacing in time */
REAL8 f0; /* base frequency,!=0 if

heterodyned series */
CHARVector *sampleUnits ; /* units for sampled quantity */
<datatype>VectorSequence *data; /* the data */

}
<datatype>SequenceOfTimeSeries

4.4.2.2.1 The Packing order for a SequenceOfTimeSeries

As an example of how the packing goes, consider two time series s0[t] and s1[t]:

data->length = 2 ; /* number of series */

LIGO-T990030-08

page 15 of 35

data->vectorLength = 1024 ; /* number of elements in each series */

data->data[0] = s0[0] ;
data->data[1] = s0[1] ;
 ...
data->data[1023] = s0[1023] ;

data->data[1024] = s1[0] ;
data->data[1025] = s1[1] ;
 ...
data->data[2047] = s1[1023] ;

4.4.2.3 TimeVectorSeries

The structureTimeVectorSeriesis usedto representa sequenceof vectorstaken at uniformly
spaced intervals of time. ATimeVectorSeries object has the following attributes:

• name of series. SeeSection 4.4.2.1.1.
• epoch - time at which theearliest sample in the series was acquired;
• deltaT offset between samples (reciprocal of sample rate). (Time offset units will be sec-

onds.)
• units of values recorded in samples
• the data is stored in a<datatype>VectorSequence structure. This structure contains:

• The number of times when data is taken is indata->length. This the
 total number of vectors. All the elements of each vector are evaluated at the
 same time in this structure.

• The number of elements measure at each time is indata->vectorLength

• The actual data values are stored indata->data[] .

Note: The packing of TimeVectorSeries is describedin Section 4.3.3.1 [CompareSection
4.4.2.2.1.]

typedef struct
t ag<datatype >Ti meVectorSerie s
{

CHAR name[LALNameLength]; / * user assigned name */
LIGOTimeGPS e poch ; / * time s o f first elements in

 v ector series */
REAL8 d eltaT ; / * sample spacing in time -- s ame

 for a ll elements */
REAL8 f 0; / * base frequency,!=0 if

 h eterodyne d s eries * /
CHARVector *s ampleUnits ; / * units o s ampled quantities */
<datatype>VectorSequence * data; / * the data * /

}
<datatype> Ti meVectorSeries;

4.4.2.4 TimeArraySeries

The structureTimeArraySeries is usedto representa sequenceof arraystaken at uniformly
spaced intervals of time. ATimeArraySeries object has the following attributes:

• name of series. SeeSection 4.4.2.1.1.
• epoch - time at which theearliest sample in the series was acquired;
• deltaT - offset between samples (reciprocal of sample rate). (Time offset units will be

LIGO-T990030-08

page 16 of 35

seconds.)
• units of values recorded in samples
• the data is stored in a<datatype>ArraySequence structure. This structure contains:

• The number of time samples is stored indata->length This is the number of
 arrays.

• The dimension of each array is stored indata->arrayDim

• The length of each dimension of the array indata->dimLeng th

 [Note: all the values of each array are taken at same time.]
• The data is stored indata->data[]

typedef struct
t ag<datatype>timeArraySerie s
{

CHAR name[LALNameLength]; / * user assigned name */
LIGOTimeGPS e poch ; / * times of first elements in array series */
REAL8 d eltaT ; / * sample spacing in time - same for

 a l l e lements */
REAL8 f 0 ; / * base frequency,!=0 if heterodyned series * /
CHARVector *s ampleUnit s; / * units for sampled quantities */
<datatype>ArraySequence * data ; / * the data * /

}
<datatype> Ti meArraySeries;

The discussion at the end of Section 4.3.1 applies with regard to typecasting
<datatype>Time<seriestype>Series [genericnamefor all threetypes]for eachof theLAL data
types. As a minimum, the following Time*Series types are needed initially:

• INT2Time<seriestype>Series (for 16 bit ADC data)
• REAL4Time<seriestype>Series
• REAL8Time<seriestype>Series

4.4.3 Sequences in frequency

4.4.3.1 FrequencySeries

The structureFrequencySeriesis used to representresult of a Fourier transformationon a
TimeSeriesobject.It mayhave bothnegative andpositive frequency components,dependingon
the value of the starting frequency parameter. A FrequencySeriesobject has the following
attributes:

• name of series. SeeSection 4.4.2.1.1.
• epoch - time at which theearliest sample in the [pre-transformed] data was acquired;
• deltaF offset between samples. (Frequency units will be in Hertz.)
• first frequency in series.
• The series spans the interval {f0,f0+deltaF,....,f0+(N-1)*deltaF}
• units of values recorded in samples
• frequency vector sequence of data
• the data is stored in a<datatype>Vector structure. This structure contains:

•The number elements in the series is stored indata->length

•The data itself is indata->data[]

LIGO-T990030-08

page 17 of 35

typedef struct
t ag<datatype>frequencySerie s
{

CHAR name[LALNameLength]; / * user assigned name */
LIGOTimeGPS e poch; / * time value of first array element */
REAL8 f0; / * first frequency in sample */
REAL8 d eltaF; / * sample spacing in time */
CHAR *s ampleUnit s; / * units for sampled quantity */
<datatype>Vector *d ata; / * the data */

}
<datatype>frequencySeries;

FrequencySeries can contain any of the following types of spectra:

• two-sided frequency series, real or complex (according to vector data type declaration)
• one-sided frequency series
• power-spectrum (one-sided real frequency series)

4.4.3.2 SequenceOfFrequencySeries

ThestructureSequenceOffrequencySeriesis usedto representresultof aFouriertransformation
on a SequenceOfTimeSeriesobject.It may have both negative andpositive frequency compo-
nents,dependingon thevalueof thestartingfrequency parameter. A SequenceOfFrequencySer-
iesobject has the following attributes:

• name of series. SeeSection 4.4.2.1.1.
• time of epoch - time at which theearliest sample in the [pre-transformed] data was

acquired;
• first frequency in series.
• deltaF offset between samples. (Frequency units will be in Hertz.)

The series spans the interval {f0,f0+deltaF,....,f0+(N-1)*deltaF}
• units of values recorded in samples
• the data is stored in a<datatype>VectorSequence structure. This structure contains:

• the length of the sequence (i.e. the number of series) is indata->length

• the number of elements in each time seriesdata->vectorLength

Note: The structureSequenceOfFrequencySeriesis similar to the FrequencyVectorSeries
structure. The distinction is in the order of the packing in*data . SeeSection 4.4.2.2.1.

typedef struct
tag<datatype>SequenceOfFrequencySeries
{

CHAR name[LALNameLength];/* user assigned name */
LIGOTimeGPS epoch; /* time values of first vector

 element */
REAL8 f0; /* first frequency in sample */
REAL8 deltaF; /* sample spacing in time */
CHARVector *sampleUnits /* units for sampled quantities */
<datatype>VectorSequence * data; /* the data */

}
<datatype>SequenceOfFrequencySeries;

LIGO-T990030-08

page 18 of 35

4.4.3.3 FrequencyVectorSeries

ThestructureFrequencyVectorSeriesis usedto representresultof a Fouriertransformationon a
timeVectorSeriesobject.It mayhave bothnegative andpositive frequency components,depend-
ing on the valueof the startingfrequency parameter. A FrequencyVectorSeriesobjecthasthe
following attributes:

• name of series. SeeSection 4.4.2.1.1.
• epoch - time at which theearliest sample in the [pre-transformed] data was acquired;
• first frequency in series.
• deltaF - offset between samples. (Frequency units will be in Hertz.)

The series spans the interval {f0,f0+deltaF,....,f0+(N-1)*deltaF}
• units of values recorded in samples
• the data is stored in a<datatype>VectorSequence structure. This structure contains:

• Thenumberof elementsmeasuredateachfrequency is in data->vectorLength .
• The number of frequencies where data is taken is indata->length.

• The actual data values are stored indata->data[]

Note: The structureSequenceOfFrequencySeriesis similar to the FrequencyVectorSeries
structure. The distinction is in the order of the packing in*data . SeeSection 4.4.2.2.1.

typedef struct
t ag<datatype>frequencyVectorSerie s
{

CHAR name[LALNameLength]; / * user assigned name */
LIGOTimeGPS e poch; / * time values of first vector

 e lement */
REAL8 f0 ; / * first frequency in sample */
REAL8 deltaF; / * sample spacing in time */
CHARVector *s ampleUnits / * units for sampled quantities */
<datatype>VectorSequence * data ; /* the data */

}
<datatype>frequencyVectorSeries;

4.4.3.4 FrequencyArraySeries

ThestructureFrequencyArraySeriesis usedto representresultof a Fourier transformationon a
TimeArraySeriesobject.It mayhave bothnegative andpositive frequency components,depend-
ing onthevalueof thestartingfrequency parameter. A FrequencyArraySeriesobjecthasthefol-
lowing attributes:

• name of series. SeeSection 4.4.2.1.1.
• epoch - time at which theearliest sample in the [pre-transformed] data was acquired;
• first frequency in series.
• deltaF offset between samples. (Frequency units will be in Hertz.)

The series spans the interval {f0,f0+deltaF,....,f0+(N-1)*deltaF}
• units of values recorded in samples
• the data is stored in a<datatype>ArraySequence structure. This structure contains:

• The number of frequency samples is stored indata->length

• The dimension of each array is stored indata->arrayDim

• The length of each dimension of the array indata->dimLength

 [Note all the values in each array are evaluated at a single frequency.]
• The data is stored indata->data[]

LIGO-T990030-08

page 19 of 35

typedef struct
t ag<datatype> Fr equencyArraySerie s
{

CHAR name[LALNameLength];/ * user assigned name */
LIGOTimeGPS *t 0; / * time values of first vector

 e lement */
REAL8 f 0; / * first frequency in sample */
REAL8 deltaF; / * sample spacing in time */
CHARVector *s ampleUnits ; / * units for sampled quantities */
<datatype> ArraySequence *d ata; / * the data * /

}
<datatype> Fr equencyArraySeries;

The discussion at the end ofSection 4.3.1 applies with regard to typecasting
<datatype>Frequency<seriestype>Series[genericnamefor all threetypes]for eachof theLAL
data types.As a minimum, the following <datatype>Frequency<seriestype>Series typesare
needed initially:

• REAL4Frequency<seriestype>Series;
• REAL 4Frequency<seriestype>Series;
• COMPLEX8 Frequency<seriestype>Series;
• COMPLEX16Frequency<seriestype>Series.

4.4.4 Series of n-tuples

ThestructureTableSeriesis usedto representorderedn-tupledatafor which, for example,sam-
pling rateis not a fixed value.TableSerieswould be usedto representcalibrationdatataken at
logarithmically spaced frequency intervals. ATableSeries object has the following attributes:

• name of series. SeeSection 4.4.2.1.1.
• time of epoch - time at which the original data which were transformed were acquired;
• number of samples in object, N (Hidden in Vector structure)
• number of elements per sample - length of each element (Hidden in Vector structure)
• units of values recorded in samples
• vector sequence table of data

typedef struct
t ag<datatype> TableSerie s
{

CHAR name[LALNameLength]; / * user assigned name */
LIGOTimeGPS epoch; / * time value of firs t

 a rray element */
CHARVector *s ampleUnits ; / * vector with units for

 s ampled quantities */
<datatype>VectorSequence *d ata; /* t he n-tuple data */

}
<datatype> TableSeries;

The discussionat the endof Section4.3.1applieswith regard to typecastingTableSeriesdata
typesfor eachof theLAL datatypes.As aminimum,thefollowing TableSeriestypesareneeded
initially:

LIGO-T990030-08

page 20 of 35

• REAL4TableSeries;
• REAL8TableSeries;
• COMPLEX8 TableSeriese
• COMPLEX16TableSeries.

4.4.5 Transfer functions

4.4.5.1 Frequency domain

The structureFTransferFunction is used to represent H[s]:

• name of transform. SeeSection 4.4.2.1.1.
• list of frequencies
• list of magnitude, phase,or
• list of real, imaginary

enum { Xf erMag, Xf erXY} Xf erType ; / * R*exp[i*phi] vs. x+i y
 r epresentation for Xf er */

typedef struct
t ag<datatype> FTransferFunctio n
{

Xf erType Xfe rRepresentation; /* Bode representation fo r
real-imaginary */

CHAR name[LALNameLength]; / * user assigned name */
CHARVector *HN ames; /* e.g., “f_Hz, H_mag, H_phi_radian\n” */
<datatype>VectorSeries *h Data ; / * the H[s] as 3-tuples */

}
<datatype> FTransferFunction;

Thediscussionat theendof Section4.3.1applieswith regardto typecastingFTransferFunction
for eachof the LAL data types.As a minimum, the following FTransferFunction typesare
needed initially:

• REAL4FTransferFunction;
• REAL8FTransferFunction.

4.4.5.2 Zeros, poles and gain representation

ThestructureZPGFilter is usedto representa transferfunctionsasa list of zeroes,poles,anda
gain. This is a factored version ofZTransferFunction.

• name of transform. SeeSection 4.4.2.1.1.
• gain, G (complex)
• poles, pk (complex)
• zeroes, zk (complex)

typedef struct
t ag<datatype>ZPGFilte r
{

CHAR name[LALNameLength];/ * user assigned name * /
<datatype>Vector *z eros; / * the zeros */
<datatype>Vector * poles; / * poles * /

LIGO-T990030-08

page 21 of 35

 <datatype> gain; /* filter gain */
}
<datatype>ZPGFilter;

Thediscussionat theendof Section4.3.1applieswith regardto typecastingZPGFilter for each
of the LAL data types. As a minimum, the following ZPGFilter types are needed initially

• COMPLEX8Z PGFilter ;
• COMPLEX16ZPGFilter .

4.5 LALStatus

LALStatus is the structure passed to a function to report success or failure.

typedef struct
tagLALStatus
{
 INT4 statusCode;
 const CHAR *statusDescription;
 volatile const CHAR *Id;
 const CHAR *function;
 const CHAR *file;
 INT4 line;
 struct tagLALStatus *statusPtr;
 INT4 level;
}
LALStatus;

4.5.1 The LAL statusCode and *statusDescription fields

The symbolicvaluesmustbe provided in the headerfile, andthey must be auto-extractedto
appear in the documentation. (statusCode = 0 for successful termination.)

/* the values and names of statusCode for header file MyHeader.h */
#define MYHEADERH_EOK 0 /* successful execution */
#define MYHEADERH_EDIVZERO 1 /* flag for dividing by zero */
#define MYHEADERH_EHIGHRANGE 2 /* value is unexpectedly large */

/* values and names of messages (statusDescription) for header MyHeader.h */

#define MYHEADERH_MSGEOK “Function terminated normally”
#define MYHEADERH_MSGEDIVZERO “Attempt to divide by zero”
#define MYHEADERH_MSGEHIGHRANGE“value to large in function”

Furthermore,usingthenamingconventionillustratedhereis required. The statusCode‘s (error
codes)mustbegin with theheaderfile name(convertedto uppercasewith a trailing H) andare
appendedwith _E<name of error> (e.g.MYHEADERH_EDIVZERO). ThecorrespondingstatusDe-
scripiton‘s (errormessages)arethesameexceptthey areappendedwith _MSGE<nameof error>

(e.g.MYHEADERH_MSGEDIVZERO). The text string in themessageshouldbea brief descriptionof
what went wrong.

4.5.2 The LAL CVS Id string

In eachsourcecodefile (.h and .c) theversioncontrol ‘‘Id’ ’ stringwill appeartwice. [See,e.g.,
theexampleheaderfile in AppendixA.] In theauthor-versionblockat thetopof thefile, thestring
$Id: MyFile.c$ will be converted by the CVS to something like:

LIGO-T990030-08

page 22 of 35

$Id: MyFile.c, v 1.7 2000/05/27 05:30:00 jolien $

Also in eachfile we assigntheId stringto stringconstant.This is donein all files with themacro
NRCSID() . When you first write MyFile.c, you must make the assignment

NRCSID(MYFILEC, “$Id: Myfile.c$”); /* of course MYFILEH for MyFile.h */

The CVS will convert this to something like

NRCSID(MYFILEC, “$Id: Myfile.c$, v 1.7 2000/05/27 05:30:00 jolien”);

The CVSId stringcontainsthe file name,revisionnumber, date,author, stateidentifier[release,
alpha,etc.]andlocker (if locked).LockercontainstheloginID of theuser(if any) whohadlocked
the codefor the purposeof makingrevisionsat the time the presentversionwasexported.[The
only differencebetweenrequiringthe CVS “Id” string andthe CVS “Header” string is that the
Header string also gives the absolute path to the file.]

5 LAL FUNCTIONS

5.1 The burning question

Do all the routinesthat I write really have to obeyall the rules for LAL functions? Answer:
If your function is visible in the library , it must obey all the rules given below. However,
many of the requirementsbelow pertainto the interfacebetweenLAL functionsandtheoutside
world. Insideagivenmoduleyoumayusestaticfunctions(i.e. functionsthatarenotvisible in the
library) thatdon’t jump throughall thesehoops.Allowing thisflexibility is notonly friendly, it is
computationallysound.Many of theLAL functionrequirementsaretimeconsuming,e.g.allocat-
ing thestatusstructureevery time you call a LAL function. If we requiredthis to bedoneevery
time a simplearithmeticfunction is calledin a loop, thecodewould take forever to execute.We
couldrequirethatthearithmeticcodebewritten in-line, andavoid thefunctioncall. However this
discourages programmers from writing modular code that is easy to maintain.

Don’t abusethis flexibility . This is not a licenseto write codethatdoesn’t conformto thespecifi-
cation,andthendressit up in awrapperthatpresentsthecorrectappearance.TheSoftwareCoor-
dinator is watching!

5.2 The rules for LAL functions

The following are guidelinesfor writing analysisfunctions for LIGO data.The generalstyle
should be consistentwith the style specificationLIGO-T970211. In caseswhere what is
described below differs from T970211, the present document takes precedence.

Functionswritten accordingto theseguidelineswill besimplerto verify, maintainand incorpo-
rateinto generalanalysissystems.In the following guidelines,theprototypicalanalysisfunction
is referred to as LALFunction() .

1. LALFunction() is of type void andshall have a maximum offour arguments:
void
LALFunction(LALStatus * stat us ,

LIGO-T990030-08

page 23 of 35

 LALF unctionOutStruct *output ,
 LALF unctionInStruct * input ,
 LALF unctionParamStruct *param s
);

Thefirst argumentis a pointerto astatusstructur e (SeeSection4.5.). Thisargumentis required
for all LAL functions, period. The remaining three arguments are optional.

The secondand third argumentsare pointersto an output structur e and an input structur e
respectively. Use the LAL datatypes whenever possible for these structures!

The fourth argumentis a parameter structur e which canbe usedto passother typesof data,
including re-entrantbehavior information, to the function. Codedevelopersare requiredto use
LAL data types (described above) where possible within the parameter structure.

Explanation: This makes it easierto extend or to add extra functionality to procedures.When
additionalargumentsareneededthey canbeaddedasmembersof theinput, outputor parameter
structures without modifying any existing code that callsLALFunction() .

Admonition:Thereis acertainamountof ambiguityaboutwhatis aninput,anoutput,or aparam-
eterfor a function.Whenyoumodify a function,don’t cheatandtry to slip somethinginto param-
eter block that is clearly an input or output. [The software coordinator is watching!]

2. LALFunction() shallreturncontrolto theroutinethatcalledit.Thestatusstructur e [Section
4.5] is used to report the completion status of the function when it returns.

If LALFunction() completessuccessfully, statusCode shouldbe set to zero. Upon abnormal
terminationof LALFunction () , statusCode mustbeassigneda non-zerovalue. Valuesfor sta-

tusCode must be documentedand assignedsymbolic namesin LALFunction.h . statusDe-

scription is a pointerto a staticcharacterstringalsodefinedin LALFunction.h . This string
shouldprovideabrief summaryof theproblem. A specificsyntaxandnamingconventionfor the
statusCode andthestatusDescription is givenin Section4.5. *Id isastaticcharacterstring
assignedin LALFunction() anddefinedin LALFunction .h thatcontainsCVS information. The
field function containsthenameof the function wheretheerroroccurred.line containsthe
line numberin module wheretheerroroccurred.Thefield file containsthenameof themodule
where the error occurred.

Thestatusstructuredefinitionis recursiveto permitthestatusto bereturnedfrom variouslevelsof
nestedfunctioncalls(i.e., functionscalledwithin functions,whicharecalledwithin functions,...).
level keeps track of how many levels deep the problem actually occurred.

Table 4 shows thenegative valuesfor thestatusCode thathave beenreserved for somegeneric
failures:

Explanation:If functionsalwaysreturn,theprogrameflow iscontrollableat thehighestlevel. The
status code and description allows the top level to identify and resolve possible problems.

3. Direct calls tomalloc(), fr ee(), calloc() andrealloc() are not allowed.

They are replacedby functionsLALMalloc() , LALFree() , LALCalloc() , LALRealloc() . (See
file LALMalloc.h in the LAL distribution.)

LIGO-T990030-08

page 24 of 35

Explanation: These simplify tracking memory usage and memory leak identification.

4. LALFunction() shouldfreeall memorythatit allocates,exceptfor storagefor variablelength
output parameters.

Explanation:This avoids memoryleaks.Persistentintermediatestorageandfixed lengthoutput
parameters should be allocated by the calling function.

5. Functions and procedures must refer to: extern INT4 lalDebugLevel ;

whendecidingwhetherto print debugging information.The lalDebugLevel featurehasbeen
considerablyenhancedfrom previous versionsof this document. It allows very discriminating
choicesin whatinformationwill beprinted.For example,lalD ebug Level =0 meansno informa-
tion will beprinted.lalDebugLevel = 1 will print only print seriouserror information,lalDe-

bugLevel = 3 will print errorsandwarnings,lalDebugLevel = 16 will print only memory
allocationdebugginginformation.Seethecodein theLAL releasefor thefull functionalityof this
feature.

Explanation:allowscallingprogramto makediscriminatingchoicesaboutdiagnosticinformation
to understandunusualbehavior. Allowing theprogrammerto selectthedebugginginformationto
printed is essential: if everything is printed, you can’t find what you are looking for.

Warning:do not test the valueof lalDebugLevel within critical floating point loops.The pres-
enceof an integercompare/branchinstructionofteninterfereswith efficient floating-pointexecu-
tion

6. The function should be in a. c file and come with a.h header file.
Small sets ofrelated functions may be grouped together into a single (File.c , File.h) pair.
SeeSections 6.2.1 and 6.2.2 for the content and layout of the header and source files.

Explanation: this will make it easier to exchange useful functions.

7. File input/output usingfopen(), fclose(), fprintf(), etc. is not allowed.

Table 4 Generic (ab)normal termination codes (statusCode)

statusPtr
value

description

0 normal termination

-1 recursiveerror:functionfaileddueto error
in deeper subroutine

-2 statuspointer passedto function had a
nonnullstatusPtr field

-4 function unable to allocatestatusPtr

-8 statusPtr could not be dealloacted

LIGO-T990030-08

page 25 of 35

Customfile I/O functionswill beprovided.A functionshouldcloseall files that it opens,except
for files that are explicitly passed to the calling function by a FILE pointer in the output structure.

Explanation:file accessmay not be available (permissions,space)or appropriateon given
machines. The custom file I/O routines will deal with this.

8. Each function must come with a stand-alone test program, which can be linked toLALFunc-

tion() . SeeSection 6.2.3.

9. Allocationof significantamountsof memoryshouldusethecustomLAL malloc() ratherthan
automatic stack variables.

Explanation:many machinesandshellsdonotsupportlargestacks.Typicalstacksizesare8 to 64
Mbytes. It is easyto blow the stackand this canbe hard to identify with debuggersandother
tools.

10.Debugging/information/warning messages should be printed with acustom replacement for
printf() andfprintf(stderr,...) .

This function will be provided andwill take the sameargumentsasprintf() andpossiblyother
arguments.

Explanation:this allows debugging/information/warning messagesto be handledin different
ways, dependingon the operatingenvironment and conditions.For example, they might be
logged, sent immediately to the user, ignored, etc.

11.Developers shoulduseLAL standard data structures whenever possible.SeeSection 4.
Explanation:It is easier to pass information between functions.

12.LALFunction() should be re-entrant.

In otherwords,it shouldnot containvariablesthatsave internalstateinformationbetweenfunc-
tion invocations.If suchstatevariablesareneeded,thenthey mustbeincludedin oneof theargu-
ment structures.

Explanation:Functionsthat are not re-entrantcannotbe invoked by different routineswithout
special precautions.

13.Aliasing (i.e., allowing two structuresto point to or share the same memory address) is
expressly prohibited. An exception to this is the case where (mutually exclusive) memory
sharing is effectively supported by ANSI C (e.g.,unions).

Explanation:It becomesdifficult to keeptrackof whethermemoryis beingpointedto and,conse-
quently, difficult to avoid memoryleaksor “amnesia’’ (freeingmemorybeingused).Codemain-
tenance becomes more difficult when aliasing is permitted.

LIGO-T990030-08

page 26 of 35

14.LALFunction() should not raise or trap signals.

6 LAL CODE ORGANIZA TION
This chapterexplainsthe layoutof thecodewithin theLAL. First we give the large-scalestruc-
ture: thedirectorytree. Thenwe describethefiner structure:the requiredformatandcontentof
the individual source files.

In Chapter 7, youwill noticethatthecodeandthe documentationareinextricablyentwined:the
hierarchy of the codeelements(packages,headers,modules) determinesthe hierarchy of the
documentation(chapters,sections,subsections).Evenat finer resolutionthis holds: thecontents
of the individual source files also matches the content of the individual documentation pieces.

6.1 The big picture: the LAL dir ectory tree

All LAL components(i.e. code,headerfiles, Makefiles,configurescripts,documentationetc.),
will residein a singledirectory(calledlal/ in this discussion)andits subdirectories.TheLSC
SoftwareCoordinatorandSoftwareLibrarianwill maintainanofficial ‘‘mastercopy’’ of theLAL
sourcein theCVS repository. Looselyspeaking,a ‘‘release’’ of theLAL consistsof a tar-ball of
themastercopy of thisdirectory. Usercandownloadandinstall a releaseon their own machines.

Within this top level directory, their will be a subdirectory(lal/packages/) wherethe analysis
codewill reside.Within this subdirectory, every LAL software componentwill have a named
directorythat containall files associatedwith the package(e.g. lal/packages/inspiral). The
development of ‘‘packages’’ will be the primary way collaborators will contribute to the LAL.

A packagesubdirectory (e.g. lal/packages/mypackage) shouldhave the sourcefiles, docu-
mentation and Makefiles in the following subdirectories:

• lal/packages/mypackage/ include : all theheaderfilesassociatedwith thiscomponent.
Header files must conform to the format and style described in Section 6.2.1.

• lal/packages/mypackage /src : all thesourcefilesassociatedwith thecomponent.They
must conform to the format and style described inSection 6.2.2.

• lal/packages/mypackage /test : test scripts and all supporting files associated with
component-level tests.The tests must conform to the format and style described inSec-
tion 6.2.3.

• lal/packages/mypackage/doc: There will be a LaTeX file in this directory capable of
assembling a ‘‘stand-alone’’ documentation for this package. There will also be LaTeX
file that forms a chapter in comprehensive manual for the entire LAL. Before auto-extrac-
tion with laldoc, much of the text source for the documentation may reside in the code
files. SeeSection 7.

6.1.1 Making LAL code modular

In orderto make LAL codeeasyto use,it shouldbemodular;therefore,asa generalrule, pack-
agesshouldhave (at most)a few headersin the /include directory, (at most)a few relatedmod-
ulesshouldincludeeachheaderfile, andonly a few -- closelyrelated -- functionsshouldbe in
each module.

LIGO-T990030-08

page 27 of 35

6.2 The finer picture: the format of LAL code

6.2.1 Header Files

Headerfiles will conformto theformatin Appendix A andcontainthefollowing information,in
the order presented.

1. An author andId block. Note, the CVS will supply the file name and version number in the
Id string. This information must be auto-extracted for inclusion in the documentation.

2. Brief (one sentence) description of the functionality of the header file.
3. A comment block with a Synopsis and description of the functionality supported by this

header.
4. Protection against double inclusion.
5. Includes. This header may include other headers; if so, they go immediately afterthe double-

include protection. Includes should appear in the following order:
- Standard library includes;
- LDAS includes;
- LAL i ncludes;

6. Assignment ofId string usingNRCSID() . See Section 4.5.
7. Error codes and messages. These must be auto extracted for inclusion in the documentation.
8. Macros. But, noteuse of macros is discouraged.
9. Extern Constant Declarations. Theseare strongly discouraged.
10.Structures, enums, unions, typedefs, etc.
11.Extern Global Variables. Theseare strongly discouraged. Inform the Software Coordinator.
12.Functions Declarations (i.e., prototypes).

Note: no executable code appears in a header file.

6.2.2 Source Files

Sourcefiles will conformto thestylepresentedin Appendix B andcontainthefollowing infor-
mation in the order presented.

1. An author andId block. Note, the CVS will supply the file name and version number in the
Id string. This information must be auto-extracted for inclusion in the documentation.

2. Extendedcommentblockthatformsthenucleusof the documentationfor this module. (See
Section7 for thespecificoutline.)If thetext getstoo longandthe“codegetslost in thedocu-
mentation”, you must move the text elsewhere.

3. Includes. These should be guarded and appear in the following order:
•Standard library includes;
•LDAS includes;
•LAL i ncludes.

4. Assignment ofId string usingNRCSID() . SeeSection 4.5 for instructions.
5. The code. [The following order is prefered, but there may be exceptional

 circumstances.]
(a) Constants, structures (used only internally in this module)
(b) Type declarations (used only internally)

LIGO-T990030-08

page 28 of 35

(c) Macros (discouraged, used only internally)
(d) Extern global variable declarations (Strongly discouraged)
(e) Global variables (Strongly discouraged)
(f) Static function declarations.
(g) The functions that make up the guts of this module. (Remember, to auto-extract the
 prototypes for inclusion in the documentation.)

6.2.3 Component level tests

Along with eachheaderfile thereshouldbeanexecutablethat testsevery functionprototypedin
theheaderfile. Theseexecutablesshouldextensively (if notexhaustively) testtheerrorcondition
thatcanbethrown by afunction.Theprogramshouldreportsuccessor failurefor all thetestsand
exit cleanly.

As theseexecutableswill not form partof thedynamicallyloaded library of functions,thereis a
bit moreflexibility in how they arewritten. For exampleunix shellscriptsthatrun anexecutable
multiple timeswith differentcommandline optionsareallowed.Also keepin mind, theseexecut-
ables should serve as example code on how to use the functions.

As a general rule, a test suite should involve tests from at least three categories:

• Mainline tests, which demonstrate that the routine correctly acts on commonly encoun-
tered input data;

• Inside-edge tests, which demonstrate that the routine correctly acts on input data that are
barely legitimate;

• Outside-edgetests,whichdemonstratethattheroutinecorrectlyactson inputdatathatare
barely illegitimate.

In thecaseof illegitimatedata,‘‘success’’ of the testinvolvescorrectlyreportingthe failureand
returning the appropriate error conditions.

7 LAL CODE DOCUMENT ATION
Along with any codesubmissionto theLAL library, developers will needto supplydocumenta-
tion. Keepin mind, thedocumentation,like thecode,is a deliverable, andthesoftwarecoordina-
tor will carefully review the documentation to ensure that it adheres to these specifications.

Why don’t weusetheLDAS documentationtemplatefor LAL code?Mostof theLDAS software
is written in C++, andthereforethedocumentationis naturallybuilt around“classes’’. LAL code
is written in C, thusthe LDAS modeldoesn’t apply. Nonethe less,our systemdoesmimic the
LDAS modelascloselyaspossibleby building theLAL documentationaroundheaderfiles and
the modules and functions that include them.

7.1 The requirements driving the documentation design

The defininggoalsof the LAL specification(widespread-useandcollaborative-developmentof
the code) lead to a clear requirementfor the documentation:The documentation should not
only help the author maintain his or her code,but it should be clear enoughthat any devel-

LIGO-T990030-08

page 29 of 35

oper can read it and figure out how the codeworks. If you find yourselfsaying,‘‘The easiest
way forme to maintainmy code is ...’’, you have missed the point.

The fact that otherswill needto find their way throughthe documentationleadsnaturally to a
sensiblerequirement:The documentation must have a uniform presentation. This might be
cumbersome in the case of simple functions and restrictive in other cases, but it is still necessary.

The documentation must be accurate. Thereforewe have a custom-built documentationtool
(laldoc) that allows authorsto extract codefragments,commentsandextendedLaTeX source
from the code files and import them directly into the documentation.

7.2 LAL documentation rules

The following rules follow naturally from the requirements above:

1. Documentation will be written in LaTeX. Reason: (1) The equation-writing capability of
LaTeX. (2) It is easy to translate LaTeX to pdf, so the document can be read on the web. (3)
Mostof theLAL programmersknow LaTeX, thusthey won’t needto learnanothertypesetting
language.

2. The author and CVS Id block in the code must be auto-extracted from the code and
automatically included in the documentation. Reason: Obvious. It should be clear what
version of the code the documentation pertains to.

3. Err or codes and error descriptions must be auto-extracted from the header files and
automatically included in the documentation. Reason:Obvious.Thereshouldbenodoubt
the error information in the documentation is exactly what is in the code. There is a simple
tool within laldoc for doing the extraction.

4. Function prototypes must be auto-extracted and included in the documentation.
5. All functions must be entered into the LaTeX document index with an/index{} com-

mand. Reason:If somebodyrunsacrossafunctionin thecode,they shouldbeableto find the
documentation by looking it up in the index. TheLAL prefix on function names should be
omitted when putting them in the index.

6. All non-LAL data structur es must be entered into the LaTeX document index with an
/index{} command. Reason: Same as functions.

7. Do not let the code get lost in the documentation.Using laldoc allows one to put the
source of the documentation in the source code files; however the text of the documentation
can easily grow to be longer than the code itself. If the comment block containing the docu-
mentationstartsto swampthecode,movesomedocumentation,e.g.put thedocumentationat
the end of the file and use the LaTeX command/input{} to build the document.

7.3 The organization of LAL documentation

The organization of the documentation follows the organization of the code.Thehierarchy
of thecodeelementsdeterminesthehierarchy of thedocumentationelements.Thedocumentation
for eachpackagewill form achapter. Thedocumentationfor each headerfile within thepackage
will form a sectionof thepackagechapter. Thedocumentationfor eachmodulethatincludesthat
headerfile will form a subsectionof the headersection.Similarly, the testmodulesassociated
with eachheaderfile will alsoform a subsectionof theheadersection. The documentationof

LIGO-T990030-08

page 30 of 35

the individual codepiecesalsocloselyfollows from thecodearchitecture.This designmakesit
easyto build thedocumentationwith laldoc . TheReferenceswill comeat theendof eachpack-
agechapter. [This methodof organizingdocumentationaroundheadersandfunctionsis similar to
the way books on C organize the documentation of the standard libraries.]

The fact that packagesform chaptersalsomeansthat they independentlyform reasonablyself-
containeddocuments.This is convenientsincepackagesarethe“unit-size” of mostof thedevel-
opment efforts.

[Note: Previous versionsdid not distinguishbetweendocumentationfor, headers,modules,and
testexecutables.Thecurrentpresentationhasbeenconsiderablyrearranged;however all material
required in previous versions is still required in this version.]

7.3.1 Header file documentation

Thedocumentationfor eachheaderfile within a packageinclude/ -directorywill form a LaTeX
sectionwithin the packagechapter. All header documentationwill have a uniform format and
include the following information in this order.

1. Short description: Each header section will begin with a short (one sentence) description of
the header.

2. Synopsis: A somewhat more extensive explanation of the purpose of the header file. Keep in
mind, some detailed information may be better left to the documentation of the individual
modules and functions that use this header.

3. Err or codes and messages: The error codes and messages must be auto-extracted and
included in the documentation in a LaTeX table. [laldoc has a simple way of doing this.]
Additional explanation of the errors can go after the table. In particular, explain what mea-
sures are taken to handle errors.

4. Structur es: If you must define a new structures for the input, output, or parameter block for
your routine, you must document them here. Note: these structures must be entered in the
LaTeX index with an/index{} command.TheLAL prefixondata-structurenamesshouldbe
omitted when putting them in the index.

5. Author-Id block: This should appear as a footnote at the bottom of the last page.

7.3.2 Module documentation

Thedocumentationfor eachmodulethat includesa givenheaderfile will form a LaTeX subsec-
tion within theheader-file section.The documentationfor a modulewill have a uniform format
and include the following information in this order.

1. Short description: Eachmodulesubsectionwill begin with ashort(onesentence)description
of the module.

2. Prototypes: Theprototypesfor all thefunctionsin thismodulemustappearhere.Note:these
functions must be entered in the LaTeX index with an/index{} command. TheLAL prefix
should be omitted when putting them in the index.

3. Description: Explain how to use the functions. Give detailed information about the argu-
ments.Explainany run-timeoptionsthatmaybeinvoked.Rememberthatany non-LAL struc-
tures used as arguments should be documented in the header-file section.

4. Algorithm : Explanation of the algorithm.

LIGO-T990030-08

page 31 of 35

5. Uses: A list of all the routines that this module uses.
6. Notes: Additional discussion can go here.
7. Validation Inf ormation: Thissectionis aplaceholderfor formal resultsof validationtesting.

In the mean-time please put information about timing and accuracy here.
8. Author-Id block: This should appear as a footnote at the bottom of the last page.

7.3.3 Component-level test documentation

The documentationof the test programswill form a subsectionof the headerfile section.The
documentationfor theprogramswill haveauniformformatandincludethefollowing information
in this order.

1. Short description: Each test program subsection will begin with a short (one sentence)
descriptionof themodule,e.g.‘‘SampleTest.c is anexecutablethattestsall functionsspeci-
fied in the headerSampleHeader.h .’’

2. Usage: Show and explain the command line syntax.
3. Description: Explain in detail what tests are done and how they work.
4. Exit Codes: A LaTeX table containing the exit codes. We strongly suggest that you extract

these from the source in the same way error codes are extracted.
5. Uses: A list of all the routines that this module uses.
6. Notes:
7. Author-Id block: This should appear as a footnote at the bottom of the last page.

8 MAINT AINING THE LAL

8.1 Version control for the LAL

The LL and LSC will jointly maintain both theLAL softwareand the LAL specification. The
sourcecodeanddocumentation-- andthisdocument-- will bekeptin aCVSrepository. Whena
package is submitted to the library its directory tree will be entered in the CVS repository. The
revisionhistoryof thefileswill beavailableon theweb. TheLSCSoftwareCoordinatorandSoft-
ware Librarian will over see the day-to-operations of the repository. They will also see that the
most up-to-date versions of all code files are publicly --and easily -- available on the web.

8.2 Numbering the LAL r eleases

In addition to making the individual codepiecesavailable, the LSC Software Coordinatorand
SoftwareLibrarianwill periodicallyissuea“release”of theentirelibrary. Thenumberingscheme
for releasesof LAL codewill be two numbers separatedby a decimalpoint (.), e.g. LAL Release
“X.Y” .Individual softwarecomponentsin the library shall alsobe identifiedby versionnumber.
The versionspecificationfor the softwarelibrariesshall alsobe in the form “X.Y”. Thesenum-
berswill be suppliedautomaticallyby the CVS. HereX = versionnumber. This is incremented
whenever major changesareintroduced.If X is incremented,Y is resetto 0. HereY = revision
number. This is incrementedwhenever oneor moreof the following changesaremade:(i) soft-
wareerrorfixes;(ii) enhancementsin existing functionality;(iii) modificationsfor which X is not
incremented.

LIGO-T990030-08

page 32 of 35

8.3 Validation of LAL code

Verifying that the individual components(functions)work will primarily be theresponsibilityof
the code developers. This is the purpose of the test routines described inSection 6.2.3.

TheLSC SoftwareCoordinator, theLSC dataanalysissubgroupchairsandtheLL personnelwill
organize integratedtestsof the analysispipeline through“mock datachallenges”.Thesetests
will be conducted to “validate” the code.

8.4. Requesting changes in LAL

LL and LSC will maintain a web page for submittingbug reports and releasing thecode. At
present this is partially functional:http://www.lsc-group.phys.uwm.ed u/l al/ .

While in the development phase, updating the code and documentation will be largely be the
responsibilityof theindividualcodewriters.However, aswetransitionto ‘‘productionmode’’, the
procedurefor updatingcodewill needto bemoreformal. [During theearlystagesa-cwill apply.
In the more formal stage a-e apply.]

a. All modified code will be verified (and validated in a pipeline test if necessary). All affected
documentation will be revised to show changes.

b. Once available, a new release will be distributed.

c. A history of revisions shall be maintained and made available to users.

d. Change requests will be reviewed jointly by LL and LSC on a regular basis.

e. Those changes which are selected for incorporation shall be assigned for implementation to
respective groups.

9 DEVELOPMENT T OOLS AND SOFTWARE PACK-
AGES USED WITH LAL

To keeplife simplefor theusersanddevelopers,we limit therequiredpackagesto a few well cho-
senitems.This minimizesthenumberof learningcurvesthatdevelopersneedto beclimb before
they canstartcoding,andit limits the numberof packagesthat usersneedto install beforethey
can use the LAL functions.

9.1 Compiling the LAL

In keepingwith thegoalof ‘‘broaduse”wewill try to maintainportabilityof theLAL, e.g.it cur-
rently installsseveralplatformswith severaldifferentcompilers. This portability maybehardto
maintainin thefurture,but, asminimum,wewill work to insuretheLAL compilesandinstallson

• linux [Redhat 6.0 or later] on Intel hardware with a gcc compiler;
• Solaris 7 on SUN hardware with a gcc compiler.

LIGO-T990030-08

page 33 of 35

9.2 Development tools:

• GNU CVS: version 1.10 or greater. [Primarily, this will be used by the LSC Software
Librarian and Coordinator; other developers shouldn’t need this.]

• GNU Autoconf[Primarily, thiswill beusedby theLSCSoftwareLibrarianandCoordina-
tor; other developers shouldn’t need this.]

• GNU m4:version1.4or greater. [Primarily’ thiswill beusedby theLSCSoftwareLibrar-
ian and Coordinator; other developers shouldn’t need this.]

• GNU make: version 3.72 or greater.

LAL softwarewill bedeliveredwith makefileswhich,asa minimum,enableinstallation,compi-
lationandexecutionof codeelementswith thehardwareandcompilersspecifiedabove.Eachsub-
directoryin adistribution thatcontainssomethingto becompiledor installedwill comewith afile
Makefile.amfile, from whichautomakewill createMakefile.in, from whichconfigurewill create
aMakefile in that directory.

9.3 Documentation tools:

• LaTeX
• Custom made automatic documentation tool:laldoc .
• PDF (generated by any means).

9.4 Software packages

Currently, FFTW is the only software packagerequiredfor LAL installation. All othersare
optional. Let’s keep it that way.

• FFTW (Required) [FFTW is thecurrentchoicefor anfft engine;howeverwehavenot
burned any bridges that would preclude changing to a different package if something bet-
ter comes along.]

• MPI (Optional)
• Frames (Optional)
• (C)LAPACK (Optional, not implemented yet.)
• Not Numerical Recipes.

LIGO-T990030-08

page 34 of 35

APPENDIX A LAL T EMPLATE HEADER FILE
/* [Author-Id block must be auto extracted] <lalVerbatim file=”LALTemplateHV”>
 * Author: Hacker, A. Good
 * $Id : LALTemplate.h$
*** [Note: CVS will always supply file name in the Id.] </lalVerbatim> ****/

/* A brief (one sentence) description of what this header is for. */

/* Synopsis and (longer) Description goes here */

#ifndef _LALTEMPLATE_H /* Protect against double-inclusion */
#define _LALTEMPLATE_H /* Note the naming convention */

#include “LALStdlib.h” /* Include any other headers */

#ifdef __cplusplus /* Protect against C++ name mangling */
extern “C” {
#endif

/* You must use the NRCSID macro to define the RCS ID string */
NRCSID(LALTEMPLATEH,”$Id: LALTemplate.h$”)

/* Define error codes and messages. These must be auto-extracted
 * for inclusion in the documentation
 ********************************** <lalErrTable file=”LALTemplateHError”> */

#define LALTEMPLATEH_EONE 1
#define LALTEMPLATEH_ETWO 2

#define LALTEMPLATEH_MSGEONE “An error condition”
#define LALTEMPLATEH_MSGETWO “Another error condition”

/********************************** </lalErrTable> */

/* Define other global constants or macros (discouraged) */

/* Define new structures and types. (Use LAL types when possible) */

/* Include external global variables */

/* Declare global function prototypes */

void
LALTemplate(LALStatus *stat);

#ifdef __cplusplus
} /* Close C++ protection */
#endif
#endif /* Close double-include protection */

LIGO-T990030-08

page 35 of 35

APPENDIX B LAL T EMPLATE SOURCE FILE
/* [Author-Id block must be auto extracted] <lalVerbatim file=”LALTemplateCV”>
 * Author: Hacker, A. Good
 * $Id: LALTemplate.c$
*** [Note: CVS will always supply file name in the Id.] </lalVerbatim> ****/

/*
 * The following comments can (should) form the nucleus of the
 * documentation. However, if the discussion becomes too long
 * and the “code gets lost in the documentation”, you MUST move the text
 * elsewhere. The easiest thing to do is to put it at the end of
 * this module file and /input{} into the documentation here where it is
 * needed.
 *
*/

/* --- */

/* A brief description of what the functions in this module do. */

/* /input{} the file with the extracted function prototypes. */

/* Description (Describe how to use the functions in this module) */

/* Algorithm */

/* Uses (what other functions does this module call) */

/* Notes (other comments about the code) */

/* --- */

#include “LALStdlib.h” /* include headers.order: std, LDAS, LAL */
#include “LALTemplate.h” /* include LAL header for this module */

/* You must use the NRCSID macro to define the CVS ID string */
NRCSID(LALTEMPLATEH,”$Id: LALTemplate.h$”)

/ *
 Now comes the code:
 [The following order is prefered, but there may be exceptional
 circumstances.]

 1. Constants, enumerated types, structure s (u sed only internally)

 2. Type declarations (used onl y i nternally)

 3. Macros.(discouraged)

 4. Extern global variable declaration s. (Strongly discouraged!)

 5. Static global variables . (Strongly discouraged!)

 6. Static function declarations :

 7. The functions that make up the guts of this module.
 (Remember to auto-extract the prototypes for inclusion in the
 documentation.)

*/

	Table of Contents
	2 Introduction
	2.1 The goal of the LAL software specification
	2.2. The scope of the LAL specification
	2.3. Applicability of LAL software
	2.4 How does the LAL fit into the LDAS?
	Table 1 List of Applicable Documents

	3 LAL coding style
	3.1 LAL namespace conventions
	3.1.1 The rationale behind the namespace rules
	3.1.2 The namespace rules

	3.2 Physical and numerical constants
	3.3 Style for type declarations

	4 LAL Data types
	4.1 Defining data types
	4.2 “Atomic” data types
	Table 2 LAL data types for algorithm software

	4.3 Aggregate constructs of atomic data types
	Table 3 LAL data objects [relevant section numbers are shown in table headings]
	4.3.1 Vectors
	4.3.2 Arrays
	4.3.3 Sequences
	4.3.3.1 The packing order for a VectorSequence or ArraySequence

	4.4 LAL structured data types
	4.4.1 Time
	4.4.1.1 Time stamps

	4.4.2 Sequences in time
	4.4.2.1 TimeSeries
	4.4.2.2 SequenceOfTimeSeries
	4.4.2.3 TimeVectorSeries
	4.4.2.4 TimeArraySeries

	4.4.3 Sequences in frequency
	4.4.3.1 FrequencySeries
	4.4.3.2 SequenceOfFrequencySeries
	4.4.3.3 FrequencyVectorSeries
	4.4.3.4 FrequencyArraySeries

	4.4.4 Series of n-tuples
	4.4.5 Transfer functions
	4.4.5.1 Frequency domain
	4.4.5.2 Zeros, poles and gain representation

	4.5 LALStatus
	4.5.1 The LAL statusCode and *statusDescription fields
	4.5.2 The LAL CVS Id string

	5 LAL functions
	5.1 The burning question
	5.2 The rules for LAL functions
	Table 4 Generic (ab)normal termination codes (statusCode)

	6 LAL code organization
	6.1 The big picture: the LAL directory tree
	6.1.1 Making LAL code modular

	6.2 The finer picture: the format of LAL code
	6.2.1 Header Files
	6.2.2 Source Files
	6.2.3 Component level tests

	7 LAL code documentation
	7.1 The requirements driving the documentation design
	7.2 LAL documentation rules
	7.3 The organization of LAL documentation
	7.3.1 Header file documentation
	7.3.2 Module documentation
	7.3.3 Component-level test documentation

	8 Maintaining the LAL
	8.1 Version control for the LAL
	8.2 Numbering the LAL releases
	8.3 Validation of LAL code
	8.4. Requesting changes in LAL

	9 Development tools and software packages used with LAL
	9.1 Compiling the LAL
	9.2 Development tools:
	9.3 Documentation tools:
	9.4 Software packages

	Appendix A LAL Template Header File
	Appendix B LAL Template Source File

