LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note LIGO-T990013-C -D 6/28/99

Diagnostics Test Software

Daniel Sigg and Peter Fritschel

Distribution of this draft:
GDS

This is an internal working note
of the LIGO Project.

LIGO Hanford Observatory LIGO Livingston Observatory
P.O. Box 1970 S9-02 19100 LIGO Lane
Richland, WA 99352 Livingston, LA 70754
Phone (509) 372-8106 Phone (504) 686-3100
FAX (509) 372-8137 FAX (504) 686-7189

E-mail: info@ligo.caltech.edu E-mail: info@ligo.caltech.edu

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS NW17-161
Pasadena CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file /home/sigg/gds/DTT/man/DiagTestTitle.fm - printed December 6, 2005

LIGO-T990013-C

Table of Contents

L OVERVIEW ettt ettt ettt e e e e it et e e e s e e e e e e eans 5
2 USER INTERFACE ...ttt e e e et e e e et e a e eaeaeaaeae 8
2.0 INSTALLATION .ttt ittt e e e e e et e e e e e e e e 8
2.2 GETTING STARTED .« i ittt et e et e e e e e e e e e 8
2.3 COMMAND LINE INTERFACE . . ittt ittt et e e e et e e e e e 9
2.3.1 DIagnostiCs TeSIS it 10
2.3.2 Arbitrary Waveform Generator 12
2.3.3 Testpoint Control 14
2.4 GRAPHICAL USER INTERFACE. . . . ¢ it ittt e e et et et et e e e 14
2.4.1 Common Properties of Diagnostics Tests. 16
2.4.2 DiagnostiCsS TeSIS it 16
2.4.3 CoNntrol SCreeNnsS oo 16
3 ANALYSIS ALGORITHMS .otiuiiniiiiiiiiieeeeteeeieaeeeee e e ae e enens 17
3.1 FFT MEASUREMENT S . & ottt ettt et et et e e e et et e e et e e 17
3.1.1 Sampling rate reduction: multistage decimation. 17
3.1.2 Z0o0mM ANalYSIS . .o 20
3.1.3 Data WIiNdoWINg oottt 22
3.1.4 Power spectrum estimationusingthe FFT 22
3.1.5 Cross-spectral density 23
3.1.6 Transfer function estimates 24
3.1.7 Coherence estimates 24
3.2 SWEPT SINE MEASUREMENTS. & . o ittt e ettt et et e e et e e e 24
3.2.1 Digital demodulation & frequency response calculation................. 24
3.2.2 Numerical integration algorithm 25
3.2.3 Integration timeo 27
3.24 Settling time e 27
3.2.5 Coherence calculation 27
3.3 SINE RESPONSE MEASUREMENTS . & . vt ittt it et et e et e e 27
3.3.1 Harmonic Analysis e 27
3.3.2 Two-Tone Intermodulation 28
3.3.3 Transfer Matrix Measurements.ttt e 28
34 IR FILTERS . . ot e e e e e e e e e e e e 28
3.4.1 Second Order Stage.o vt 29
3.4.2 Poles and Zeros of Commonly Used Filters 30
3.5 POLE-ZERO CURVE FITTINGo i e e e e e e e e 30
3.6 CORRELATION MEASUREMENTS . .\ttt et ettt et e e et e e e 30
3.7 TIME MEASUREMENTS . ottt ittt et e e e e et e e e e e e 31
3.8 OCTAVE BAND ANALY SIS . . it ittt e e e et e e et e e e e e e 31

page 1 of 90

LIGO-T990013-C

4 TEST ORGANIZATION 1. euititietiietiet e eietiet e aaeaeensaeaaeneeneaeaaenns 32
4.] INTERFACES . . o i it ittt et e e e e e e e e e e e e e e 32
4.1.1 Storage APl ... 32
4.1.2 Real-Time Data Distribution APIL. e 33
4.1.3 Excitation APl 34
4.1.4 TestPoint APL. 34
4.2 TEST SUPERVISORY . o ittt it e et e e e e e e e e e 34
4.2.1 Standard Supervisory Task 34
4.3 TESTITERATORS . o ittt et e et e e e e e e e 36
4.3.1 REpeaAl 36
4.3.2 Parameter SCan 36
4.3.3 OptimIization 36
A4 TESTS ottt e e e e e e e 36
4.4.1 SINe RESPONSE it 36
442 SWEPL SINE . .. 37
44,3 FFT TeS S . oo e e 38
4.4.4 Time Series Measurementsottt e e e 40
5 EXCITATION ENGINEui ittt ettt e e aneneenens 41
5.1 OUTPUT WAVEFORMS . ..ttt it et et e e e e e e e e e 41
B.LL OVEIVIEW. . .ot e e e e e e 41
5.1.2 Periodic Waveformso 41
5.1.3 Non-Periodic Waveforms e 43
APPENDIX A NETWORK INTERFACES .. .ottt ieeeeee e teieaneneneanns 44
A.1 SERVICES INFORMATION . & . i it e e e e e e e e e e e e e e e e e e 44
A.2 MESSAGE PASSING INTERFACE . . . ittt it et et e e e e e e e 45
A.2.1 Using Remote Procedure Calls 45
A.2.2 USINg SOCKELS.o 46
APPENDIX B DATA REPRESENTATION ...uiutieie i eeaeaeeeneanns 48
B.1 COMMON e e e e e e e e e 50
B.1.1 Globals 50
B.1.2 Data lnput Selection 51
B.1.3 Synchronization TOOIS e 51
B.1.4 ENVIONMENT . . . oottt e e e e e 52
B.1.5 Parameter Scan 53
B.1.6 Parameter Optimization i 54

page 2 of 90

LIGO-T990013-C

B.2 RESULTS . .ot e e e e 54
B.2. L INdeX. ... 55
B. 2.2 Plot 55
B.2.3 TimMe SeresS. 61
B.2.4 FFT and (Cross) Power Spectrum e 62
B.2.5 Transfer Function and Coherence oo, 63
B.2.6 Listof Coefficients 64
B.2.7 MeasurementValues e 65
B.3 DIAGNOSTICS TESTS . . ottt ittt e e e e e e e e e 66
B.3.1 Sine Response, Harmonic Distortion and Two-Tone Intermodulation Tests .66
B.3.2 SWept Sine TeStS 67
B.3.3 FOUMer TeSES. 69
B.3.4 Time Series Measurements and Trigger Response Tests 71
B.3.5 Random Stimulus Response TestS 73
B.4 XML CONVENTIONS . . o oottt et e e e e e 73
APPENDIX C SOFTWARE MODULEScovuiiiiiiiiieiieeeseeieeeeeeans 74
C.1 OVERALL STRUCTURE . . vt ottt e et et et e e e e et e e e 74
G 2 UTILITIES ottt e e e e e e e e e e e e e 76
G2 L gOSEIT . ottt 76
C.2.2 gdsheartbeat. 76
C.2.3 QOSMULEX . ..ttt 76
G2 4 gOSPIM . 76
C.2.5 gaSSHNg . . . v vttt 77
C.2.6 gaStasSK 77
C.2.7 IPCINC . .ottt 77
C.2.8 ICONV . . .o e 78
C.3 ALGORITHMS . o\ ittt e e e e e e e 78
C.3.1 deCimatet 78
C.3.2 gasrand. 78
C.3.3 gASSIgPIOC . .ottt e 78
C.3.4 sineanalyze. 78
C.4 ARBITRARY WAVEFORM GENERATOR .« & vt ot e e et e e e e e e e e e e e 79
O = o 79
C.4.2 AWOAPI . .ottt 79
C.A43 awgfunC 80
C.A.4 AWO_SEIVEI . o ottt e 80
C.A5 excltation. 80
C.5 COMMAND LINE INTERFACE . .\ttt et e et e et et e et 80
C.5.1 cmdiine 80
C.5.2 gasCmMd 81
C.5.3 gASMSg . . . vttt 81
C.5.4 gUSMSQ _SBIVEI . .\ ettt e 81
C.5.5 gadsmMSQ_SOCKetS.ot 81

page 3 of 90

LIGO-T990013-C

C.6 DATA ACQUISITION INTERFACE . . . o i ot e e e e e e et e e e 81
C.6.1 gdschannel 81
C.6.2 gasrtdd 82
C.7 DIAGNOSTICS TESTUTILITIES . . .« ot it e e e e e e e e 82
C.7.1 diagnamesottt 82
C.7.2 diagorg . ..o oo 82
C.7.3 eSS BNV . . . e 82
C.7.4 1eSISYNC. . . . oottt 82
C.8 DIAGNOSTICS TEST SUPERVISORY .t vttt it et e et i et e e 82
C.8.1 SUPEIVISOIY . . o vttt ettt et e e e e e e e 82
C.8.2 StASUPEI ... i 82
C.9 DIAGNOSTICS TEST ITERATORS it e et e e e e 82
C.0.1 tesStiter. . .o 82
C.0.2 repeat 82
C.0.3 SCANtEI . .. it 82
C.9.4 fiNditer. e 82
C.10 DIAGNOSTICS TESTS. . o it it it et e e e e e e e e e e e 82
C.l0. L diagtest.o 82
C.10.2 SINEIESPONSE . . o v ettt e e e e e 84
C.10.3 SWEPESINE . . o ot ettt e e e 84
C.10. 4 fOUNIBI .« . et 84
C.10. 5 tIMESEIIES. . o o ittt 84
C.10.6 PSEUOIAN . . .o ittt 84
C.11 HARDWARE DRIVERS i e e e e e e e 84
C.Ad. L CODOX . vttt 84
C.11.2dS340 . . .o 84
C.11.3gdsdac oo 85
CLld A gpSCIK . o 85
G S rMaAPi oottt 85
C.12 REFLECTIVE MEMORY ORGANIZATIONttt e et e e e e e e e e 86
C.l2. L testpOiNt 86
C.12.2teStPOINt_SEIVENttt e e e 86
C. A3 SCHEDULER . . . it ittt e e e e e et e e e e e e e e e e 86
C.13.1gdssched 86
C.13.2 gdssched_client 87
C.13.3gdssChed _Server 87
C.14 STORAGE OBJIECTS . ittt it ittt et e e e e e e e e e e e e e 87
C.la. L gdsdatum 87
C.lAa.2 diagdatum.o 89
C.lA.3rtddinputo 89
C.15 PROGRAMS. . . i e 90
C.A5. 1 chndUumMp. . ..o 90
C.15.2diag. . .o oot 90
C.15.3 gasd . . .o 90
C.A5.41IDQOS.SO . . . oottt 90

page 4 of 90

LIGO-T990013-C

1 OVERVIEW

The LIGO global diagnostics system (GDS) provides diagnostics test capability for performing
stimulus-response tests. Diagnostics tests are divided into five gr@)gsne response tests
which include multiple stimulus and multiple response, harmonic distortion and two-tone
intermodulation(ii) swept sine response which determines transfer funct@nsFFT tools
which perform power spectrum estimates and cross-correlation measure(mgritsje series
measurements which measure the response to a trigger signdl))gsgudo-random stimulus
response tests which utilize wide-bandwidth excitation signals.

The diagnostics test tools provided by GDS are not meant to replace more traditional means to
diagnose the instrument—such as stand-alone network and spectrum analyzers—but rather to
complement these tools for cases where test points are not readily available or where measuring
points are at far distant locations. In particular, digital servo controllers are implementing digital
test points which can be used to inject excitation signals and to extract intermediate feedback
signals. The diagnostics test system uses the LIGO data acquisition system to collect signals
simultaneously from different subsystems. It implements an excitation engine for generating test
signals which are synchronized with GPS time and which are provided to both digital and analog
subsystems at all major locations.

Diagnostics tests are run from the control room or from any machine which is connected to the
control and monitor network. Data from the instrument are obtained thought the network data
server which in turn gets the data through a reflective memory network which connects to the data
collection units (see Fig. 1 and T980026-00). Data collection units can acquire data from analog
signals (ADCU), from digital subsystems (DDCU), or from EPICS channels (NDCU).

Test signals are generated by an excitation engine which is connected to the same reflective
memory network which provides both read-back and interface to the digital servo systems. The
excitation engine also implements digital-to-analog converters which provide test signals to
analog subsystems. Excitation engines are available in every building. Additionally, remote-
controlled stand-alone signal generators can be used in temporary setups. Digital servo systems
implement a test point interface which allows the user to select a finite set of test inputs and test
outputs which are then read or written to and from reflective memory, respectively (see also
T980020-A).

Two separate user interfaces to the diagnostics test system are proff)dedommand line
interface which allows the user to manually adjust test parameters, start a test and save the results;
and(ii) a graphical user interface with identical capabilities. The results of a diagnostics test can
be stored in the LIGO lightweight data format which follows the extensible markup language
(XML) specifications.

A schematic overview of the diagnostics test software is shown in Fig. 2. It consists of the
following components:

1. a test organizer which runs tests by dividing them into individual measurement steps and
schedules them with the excitation engine, the network data server and the analysis process,
2. acommand line interface to the test organizer,

page 5 of 90

LIGO-T990013-C

DETECTOR / PHYSICAL ENVIRONMENT MONITOR

Y Y v b o

ADCU DDCU NDCU EXCITATION
ANALOG DIGITAL EPICS
REFLECTIVE MEMORY
6MB/s/IFo *
FRAME BUILDER / NETWORK DATA SERVER -
ATM OC12 ATM OC3
* 3MB/s/IFo <1MB/s/IFO
LDAS DATA SERVER CONTROL ROOM
WORKSTATION
(9p]
S I VIEWER / DATA SUBSET
—> T R
= WORK- ST DIAGNOSTICS TESTS
< — STATIONS
v 6MB/s/IFO * ALARMS / STATUS

—» DATA COND.

RAw FRAMES
TREND FRAMES

DATA MONITORING TOOL

Y

I EVENTS FLAG CHANNELS

COMPUTE

SERVER -

Y —>\ ’4—
—»| DATABASE |- O

FRAME ARCHIVE

ATM OC3

Figure 1: Overview of the data acquisition system (green boxes), the diagnostics system (red) and
the data analysis system (blue). The physical environment monitor and the detector are show on
top.

page 6 of 90

o0k w

7.
8. an algorithm library which is used to analyze the measured data and produce the diagnostics

LIGO-T990013-C

a graphical user interface for the most commonly used tests,
a graphical user interface to the excitation engine for manual operation,

a graphical user interface to the testpoint manager,
an excitation engine which controls stand-alone function generators (DS340s) and which can
generate arbitrary waveforms and write them to a digital-to-analog converter or to digital test

points residing in reflective memory,
an interface to the network data server to collect data,

test results,

9. a data wrapper which manages data and parameters associated with a test, and

10. an XML interface which saves and restores diagnostics parameters, data and results to and

from disk in the LIGO lightweight data format, respectively.

GUI

Diagnostics

Z\

Excitation

'

command line

' test point

manager

Testpoints

¢

Z\
N

test points

data wrapper

test organizer:

repeater
microstepper
scheduler

Z\

N
AN
§

N/

> >' excitation

Z\

N/

save / restore
ligo-lw (xml)

analysis algorithms

-4— control flow

4: data flow

. diskinterface

N network interface

(

engine

DAC
test points
DS340

network data
server

P VME host

V part of the DAQ system

Figure 2: Overview of the diagnostics test software organization.

page 7 of 90

LIGO-T990013-C

2 USER INTERFACE

2.1 INSTALLATION
TBD.

2.2 GETTING STARTED

The diagnostics program is started by typing ‘diag —opt’, where ‘—opt’ is a list of options
specifying initial start-up parameters. The available options are:

Option Description
—help shows a help text.
OBSOLTE. Use diaggui instead.
-g starts the graphical user interface allowing the user to select a

diagnostics test.

OBSOLETE. Use diaggui instead.

starts the graphical user interface and preloads the specified test or

interface. Possible values for ‘test’ are:

awg: arbitrary waveform generator

fft: Fourier tests, includes power spectrum and cross-correlation

randomresponse: pseudorandom response test,

—g ‘test’ pseudorandom cross spectrum test

sineresponse: (multiple) sine response test, harmonic distortion test,
two-tone intermodulation test

sweptsine: swept sine test

timeseries: time series measurement

testpoint; testpoint control

triggerresponse: single and multiple trigger response test

OBSOLETE.

- starts the command line interface of a diagnostics test.

—i shows information about the configuration and services available.

- runs the diagnostics kernel on a the local machine (default).

_s ‘server runs the diagnostics kernel on the specified remote machine. Requires

that the diagnostics kernel daemon is installed on the remote machine.

reads the specified file for initialization. The file can either be a
command line script or a file previously saved in the LIGO lightweight
format. All commands which are available through the command line
—f filename’ interface can be used in a script file. Lines starting with a ‘#’ are
comments. This script is executed after all other options are parsed,
but before the first user input. The LIGO lightweight format is XML
based.

page 8 of 90

LIGO-T990013-C

Option Description
—t filename’ uses the specified file as a template for a new diagnostics test.
specifies the machine name of NDS (network data server). Default is to
—n server)
connect to the framebuilder.
-m port specifies the port number of the NDS; default is 8088.

The diagnostics kernel can either run on a local machine or on a remote machine. In the first case
it is loaded dynamically and requires the shared object library ‘libgds.so.1’ to be available either
in the local directory or the default system library directory.

2.3 COMMAND LINE INTERFACE

The command line interface presents a common way to control diagnostics tests, the arbitrary
waveform generator and the test point interface. All these functions are provided by connecting
the user interface to a diagnostics kernel, and by passing messages forth and back. The following
commands are implemented as part of the user interface:

Command Description

help shows help text.

loads a diagnostics kernel on the local machine and established a
connection. It returns a list of the supported capabilities.

Return: supported capabilities: testing testpoints awg

Possible error messages:

— diagnostics kernel already connected

— unable to connect to local diagnostics kernel

open

opens a new connection to a diagnostics kernel on the specified
remote machine.

Return:

Possible error messages:

— diagnostics kernel already connected

— unable to connect to remote diagnostics kernel

open ‘server’

closes the connection to the diagnostics kernel
Return: none

Possible error messages:

— not connected to a diagnostics kernel

close

opens the specified file and interprets each line of the file a command.
Lines which start with ‘# are ignored.

read ‘filename’ Return: echo of commands found in file

Possible error messages:

— file not found

if on, notification messages are displayed immediately when received;
otherwise they will be display after the next command reply.

Possible error messages:

— illegale argument

messages ‘on/off’

exit/quit quits the command line interface after closing any open connections.

page 9 of 90

LIGO-T990013-C

Any command which is not recognized by the command line interface will be send to the
diagnostics kernel. In case of an error the message “unable to send command to diagnostics
kernel” is returned, otherwise the reply string of the command is displayed.

2.3.1 Diagnostics Tests

Diagnostics tests are controlled through named variables. A named variable can contain almost
anything, for instance, it can contain a test parameter, a time series of the raw data, or a result
array. Thus, only a small set of commands is necessary to setup and run a diagnostics test; they
can be separated into the following categories:

i) commands to set and read parameters,

i) commands to start and stop a diagnostics test,

iil) commands to save or restore settings, data and results of a diagnostics test, and

iv) notification messages which are passed back from the diagnostics kernel to inform the caller
that a test has finished, or that a new result is available.

When running the diagnostics kernel on a remote machine the save and restore functions could in
principle access either the local or the remote file system. The command line interface supports
both possibilities, but defaults to the local machine.

The following list of commands is used to control diagnostics tests:

Command Description

shows help text for specified test. Use “help *” for a list of available

help ‘test tests.

starts a diagnostics test.

Arguments:

— w: wait for test to finish before returning to the command line

— g: quit program immediately when measurement fails

— t ‘timeout’: specifiy a timeout for the measurement

Return: running, completed (w option), program exit code 1 (with quit
option)

Possible error messages:

— still running (timeout of wait option)

— aborted (measurement couldn’t be started)

run [-wqt ‘timeout’]

aborts a diagnostics test.
Return: aborted

abort . .
Possible error messages:
—test is not running
Pauses a diagnostics test.

pause Return: test paused

Possible error messages:
—test is not running

Resumes a paused diagnostics test.
resume Return: test resumed
—test is not running

page 10 of 90

LIGO-T990013-C

Command

Description

set ‘variable name’ = ‘value’

Sets the specified variable to the given value(s).
Return: none

Possible error messages:

— illegal argument

get ‘variable name’

Gets the value(s) of the specified variable(s). The variable name can
contain the wildcard character *".

Return: variable(s) and value(s)

Possible error messages:

— illegal argument

get ‘data object’.xml

Gets the parameters of a data object in XML format.

get channels

Returns a list of space separated channel names.

get rawdatanames

Returns a list of all raw data object names.

get referencenames

Returns a list of all reference trace names.

get auxdatanames

Returns a list of all auxiliary data object names.

del ‘object name’

Erases a data objects belonging to lidax, scans, environment, plot,
channel data and result.

Return: ‘object’ erased

Possible error messages:

— illegal argument

del rawdata

Erases all raw data objects.

del plotsettings

Erases all plot settings.

del calibration

Erases all calibration records.

del results

Erases all result objects.

del references

Erases all reference traces.

defined ‘variable name’

Tests if a variable of the given name is defined. Use “defined *” to print
a list of all defined variables.

Return: yes/no, or list of names

Possible error messages: none

brief

if on (default), the value returned by get is truncated if it is very long.
Return: brief is on/off.
Possible error messages: none

save —‘flags’ ‘filename’

saves the data of a diagnostics test. The flag specifies the data to be
saved: all (all data associated with a diagnostics test), ext (extended
data, all but images), std (standard data: parameters, settings and
result), or prm (parameter data only). If the flag is omitted the default
behavior is standard. If the filename starts with a *:" and if the command
line interface is connected to a remote machine, the test is saved on
the remote machine.

Return: ‘filename’ saved

Possible error messages:

— illegal filename

page 11 of 90

LIGO-T990013-C

Command Description

restores the data of a diagnostics test. The flag specifies the data to be
restored: all (all data associated with a diagnostics test), ext (extended
data, all but images), std (standard data: parameters, settings and
result), or prm (parameter data only). If the flag is omitted the default
behavior is standard. If the filename starts with a " and if the command
line interface is connected to a remote machine, the test is restored
from the remote machine.

Return: ‘filename’ restored

Possible error messages:

— file not found

restore —‘flags’ ‘filename’

Each diagnostics test defines a set of valid named variables—including their data type—which are
necessary to run the test, or which are returned as a result. Variable names should not contain
spaces, tabs, nor any other special character. Variable names are case-insensitive.

2.3.2 Arbitrary Waveform Generator

Arbitrary waveform generators are implemented separately for every interferometer node. An
interferometer node can have multiple excitation engines (CPUs or stand-alone signal generators),
each of them consisting of multiple slots which can be used independently to send waveforms to
different channels. Commands to the arbitrary waveform generator are of all the form ‘awg
command arguments’. The following commands are supported:

Command Description

help shows help text.

channels displays all excitation channel names

shows the configuration of an arbitrary waveform generator.
Return: AWG information

show ‘node’’awg’ Possible error messages:

— arguments for show are 'node'.'awg’'

— node%i/awg %i not available

reserves a slot in an arbitrary waveform generator for the specified
channel. Requires the full channel name and returns a non-negative
slot number if successful. (The returned slot number also encodes
new ‘channel’ ‘node’ and ‘awg’ number and is unique for each system.)

Return: slot %i

Possible error messages:

— no slot available or invalid channel name

frees a previously reserved slot of an arbitrary waveform generator
Return: slot %i freed

free ‘slot’ Possible error messages:

— invalid slot number

— slot not available or invalid

page 12 of 90

LIGO-T990013-C

Command Description

selects a new waveform in the given slot of an arbitrary waveform
generator. If the waveform argument is omitted the slot is cleared and
the output reset to zero.

Return: slot %i enabled

Possible error messages:

— invalid slot number

—invalid arguments

— not enough memory

— unable to download waveform

— unrecognized waveform

— slot not available or invalid

More than one waveform can be specified by using a comma
separated list of waveforms.

set ‘slot’ ‘waveform’
{, ‘waveform’}

clears all waveforms from a given arbitrary waveform generator and
frees all slots.

Return: reset succeeded

Possible error messages:

— reset failed

— node %i/awg %i not available

clear ‘node’’awg’

shows statistical performance data of a given arbitrary waveform
generator.

Return: statistics information

Possible error messages:

— arguments for stat are 'node'.'awg’

— node %i/awg %i not available

— no statistics available

The statistical record can be reset by specifying an additional ‘r'.

stat ‘node’’awg’

The ‘%’ arguments in the return message are replaced by the corresponding value and follow the
C printf convention. Error message are preceded by the word “error:”. If the command is none of
the above, the message “unrecognized command” will be returned.

The command arguments are explained below:

Argument Description

‘node’ interferometer node, e.g. 0 for H1 and L1, and 1 for H2.

identification number of excitation engine, or stand-alone signal

awg generator: starts with 0, and the stand-alone units generally use 5.
«channel full channel name of an excitation or read-back channel,

e.g. “H1:.LSC-TEST_1".
‘slot’ slot number as returned by new.

specifies a periodic waveform of format:

‘func’ ‘frequency’ ‘amplitude’ ‘offset’ ‘phase’ ‘ratio’
‘waveforml’ where the frequency is given in Hz, the amplitude and phase in V, and
the phase in rad. The ratio parameter can be used to specify the ratio
between high and the full period of a square wave (default is 0.5).

page 13 of 90

LIGO-T990013-C

Argument

Description

‘waveform?2’

specifies an impulse:
impulse ‘frequency’ ‘amplitude’ ‘duration’, ‘delay’
A frequency value of 0 indicates a single pulse.

‘waveform3’

specifies a constant offset:
const ‘amplitude’
where the amplitude is specified in V.

‘waveform4’

specifies a band-limited noise source of format:
‘noise’ ‘start frequency’ ‘stop frequency’ ‘amplitude’ ‘offset’

‘waveform5’

specifies a sweeping sine wave of format:
sweep ‘start frequency’ ‘stop frequency’ ‘start amplitude’
‘stop amplitude’ ‘sweep time’ ‘sweeptype’ ‘updn’

where the sweep time is given in sec.

‘waveform6’

specifies an arbitrary waveform of format:
arb ‘sample frequency’ ‘scaling’ ‘trigger type’ ‘rate’ ‘value 1’
‘value?'... ‘value n’
where the values are given in V. The output voltage is calculated by
multiplying the specified values with the scaling factor. The trigger can
either be continuous which repeats the waveform indefinitely, wait
which waits for a trigger, or trigger which outputs the (previously
stored) waveform exactly once. If a continuous trigger is specified, the
rate indicates trigger rate. If a random trigger is specified, the arbitrary
waveform will be applied at random time times with an average rate
compatible with the specified one.

‘waveform?7’

specifies a stream waveform of format:
stream ‘scaling’

‘func’

one of the following: sine, square, ramp, or triangle.

‘noise’

one of the following: normal (normal distributed noise), or uniform
(uniformly distributed noise).

‘sweeptype’

one of the following: linear, or log.

‘updn’

one of the following: + (up), — (down), or ‘blank’ (bidirectional)

‘trigger type’

one of the following: ¢ (continuous), r (random), w (wait), or t (trigger)

2.3.3 Testpoint Control

Each interferometer node has its own testpoint control interface. Commands to the testpoint
interface are of all the form ‘tp command arguments’. The following commands are supported:

Error message are preceded by the word “error:”. If the command is not recognized, the error

message “unrecognized command” will be returned.

2.4 GRAPHICAL USER INTERFACE

The graphical user interface is using the same message passing interface to communicate with the
diagnostics kernel. Thus, all functions of the diagnostics kernel which are accessible through the

page 14 of 90

LIGO-T990013-C

Command Description

help shows help text.

shows the configuration of a test point interface.

Return: testpoint information

Possible error messages:

— invalid node number

supported wildcard: “show *” to show test point information of all
nodes.

show ‘node’

sets testpoints of the specified node.
Return: test point set

Possible error messages:

— invalid node number

— unable to set test point

set ‘node’ ‘numberl’...
‘number n’

Clears testpoints from the specified node.

Return: test point cleared

Possible error messages:

— invalid node number

— unable to clear test point

supported wildcards: “clear *" to clear all testpoints from all nodes, and
“clear ‘node’ *" to clear all testpoints from the specified node.

clear ‘node’ ‘numberl’...
‘number n’

command line interface can also be used by the graphical user interface. A description of the
message passing mechanism can be found in Appendix A.2.

page 15 of 90

LIGO-T990013-C

2.4.1 Common Properties of Diagnostics Tests

2411
24.1.2
2413
2414
2415

24.1.6

2.4.2

2421
2422
2423
2424
2425

24.2.6

File Handling
Synchronization Tools
Channel Selection
Exporting Data
Parameter Sweep

Parameter Optimization

Diagnostics Tests

Sine Response, Harmonic Distortion and Two-Tone Intermodulation Tests
Swept Sine Tests

Fourier Tests

Time Series Measurements

Trigger Response Tests

Random Stimulus Response Tests

2.4.3 Control Screens

2431

2.4.3.2

Arbitrary Waveform Generator

Testpoint Control

page 16 of 90

LIGO-T990013-C

3 ANALYSIS ALGORITHMS

3.1 FFT MEASUREMENTS

An FFT program (such as the FFTW, Fastest Fourier Transform in the West) will be used to
compute theN-point DFT (discrete-time fourier transform) of a data str&am

N-1
X(k) — Z x(n) Eé—Znikn/N (1)
n=0

3.1.1 Sampling rate reduction: multistage decimation

Performing arN-point FFT analysis of a data channel at the sampled rate gives a full span
analysis, with spectral information in the band 2. For baseband measurements (frequency
spans which start at DC) with increased resolution, the duration of the time record must be
increased. This is done by decimating the data appropriately, while keeping the FFT length fixed
atN. To avoid aliasing in the decimation process, the data must be low-pass filtered with a digital
filter. For large decimation factors, it is more efficient to implement multiple stages of decimation,
as shown in Fig. 3.

To simplify (though not necessarily optimize) the computation we fix the single stage decimation
at a factor ofD; = 2. Thus decimation factors of'Zn an integer) are possible by computing

r---"--—------=--=- A
| Digital anti-aliasing Sampling rate |
| filter compressor |
x(n) | w(n) I y(m)
" hkk b——>» ! D I '
| |
L e e o e e - J
r—-—----=-=- A r—-—----=-=- A r—-—----=-=- A
x(n)! I I I'y(m)
—»] hik) p» | Dy H—»{ hyk) p»| | D, H—»| hyk) p»| | D3 H—
| I I {1 |
S d S d S d
Fs FJ4Dq F4D1D> FJ/D

Figure 3: Top: Block diagram of a decimator. The digital low-pass filter is an FIR filter:

) N—lh)
w(n) = kZO (Kx(n-K,

where N is the number of filter coefficients. The sampling rate compressor simply selects every
Dth output sample. Bottom: Multistage decimation process.

page 17 of 90

LIGO-T990013-C

stages of decimation, leading to FFT spans of DE42" *! (whereF is the channel sampling
rate). This simplification means that the coefficients of the digital low-pass filters in each stage are
identicaln; = h, = ... = h,.

Sampling rate converters generally implement FIR digital filters because of their linear phase
response, a necessary feature in our application as well. The diagrams in Fig. 3 imply a direct-
form realization of the FIR filter. This is an inefficient method of calculation, since the filter is
operating at the full input sample rate, but only ev&th output sample is kept. It is more
efficient to embed the downsampling operation within the filter, as shown by the realization of
Fig. 5. This structure also takes advantage of the symmetry of the filter coefficients for a linear-
phase FIR filter —i.e., thdi(n) = h(N—1-n) ; this allows halving the number of multiplications

to compute the filter.

Another technique to reduce the computation time in a decimate-by-2 stage is thaiédand

filter. A half-band filter is one which satisfies two constraints: the ripple in the pass- and stop-
bands are equal; the pass- and stop-band cutoff frequencies are related to the Nyquist frequency
as: f + fg = fy . These symmetries result in about 50% of the filter coefficients being zero,
cutting down the number of multiplies by roughly a factor of 2. Care must be taken in the design
of the digital filter so that when multiple stages are used (up to ~10 stages may be used in
practice), the passband ripple from each stage does not accumulate into a much larger ripple at the
output. Two types of filter design methods have been used to generate specific filters:

1. An FIR filter designed using a least squares technique trades off increased error at the band
edge for better response over most of the passband; thus a cascade of these filters retains small
passband error, since the band edge error of one filter is cut off by the next filter.

2. The McClellan-Parks filter design algorithm gives a constant error over the pass- and stop-
bands. Compared to the least squares design, this filter has better performance (lower ripple)
near the band edge; however, multiple stages build up more error in the lower part of the pass-
band.

Frequency responses for both types of filter, each of order 42, are shown in Fig. 4; each is

computed with 12 multiplications per output point. Several FIR filters are available to choose

from (more can always be added) to trade-off between execution speed and error. Current
selections are:

Passband Passband Ripple (dB) Stopband
Id Type Order cutoff attenuation
frequency 1 Midband Edge (dB)
3 Least-squares 22 0.45 0.1 0.8 30-40
1 Least-squares 42 0.45 0.02 0.1 40 - 56
4 Least-squares 82 0.45 0.0006 0.01 60 - 90
o | McClellan-Parks 42 0.45 0.05 43
(equiripple)

Table 1: Decimation filters.
1. as a fraction of the Nyquist frequency

page 18 of 90

LIGO-T990013-C

10 : ‘ ‘ ‘ 0.1
AY
0 0.08F v r B
10 \] \ I|
- r L N . N B
0.06 R, R A [
-20F \ ’ \ \ \
2 8 0.04r A2 \ PEN ,’ [} : 1 T
;5 =30 5 \ A \ 1
] & o.02f v o) vl E
S -40f s - s vl
o o or vl g
8 -50 g o
E] =-0.02 \ E
E -6or s !
[+ T — = 4
£ ol g 0.04 :
1 stage
80t —0.061 --- 8 stages ' 7
1
-90 -0.08 . 4
|
~100 i i i 0.1 i i i i
0 0.2 0.4 0.6 0.8 1 [¢] 0.1 0.2 0.3 0.4 0.5
Normalized Frequency (Nyquist == 1) Normalized Frequency (Nyquist == 1)
(a)
10 T T T T 0.5 T
M 1 stage
) 4 \ - 8 stages
0.4} \‘]
-10r B '
o o \
© -20F b S 03F B
@ o \ -
2 i i 2 NPae ‘\ V2RRN ’ \\
g-30 g N r
@ 2 02 N U \ ! \ 1
2 -40 108 v 1 o
2 2 R4 \ L /) \
S-s0f 15 01 TR roon 1
< < vy, - = [
= = - .
-60r B .
0 R b
=701 b 1
1
-80 i i i i —01 i i i i '
o] 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency (Nyquist == 1) Normalized Frequency (Nyquist == 1)

(b)
Figure 4: Magnitude response of two half-band, order 42 FIR filters. On the left is the resplonse o
a single filter stage, and the right shows the passband response for a single stage (solid line) and
for 7 cascaded decimation stages (dashed line). (a): filter designed using a least-squares method;

(b) filter designed using the McClellan-Parks method. The normalized pass- and stop-barid cut-of
frequencies are 0.45 and 0.55, respectively.

page 19 of 90

LIGO-T990013-C

X »{ | D | D |-
¢ h(0) y(m)
Z—l
-1
z
A
+—»| | D | D =
Y h()
Z—l
-1
Z
+—» | D | D |=—
h(N/2 — 1)
= K

Figure 5: Efficient structure for computation of a decimator that exploits the symmetry of the FIR
filter coefficients. For a half-band filter, half of the coefficiehtsvould be zero, and thus not
computed.

3.1.2 Zoom Analysis

In order to start an FFT span above DC, the data must first be down-converted so that the center
frequency of the span is shifted to DC. This is accomplished with the heterodyne procedure
shown in Fig. 6. The heterodyne multiplication produces a complex seqyédrora the real data
sequence:

—j2nf.n

y(n =e [x(n) 2)

page 20 of 90

LIGO-T990013-C

The DFT of this sequence,

N-1 —2ni£(k+ fo)
Y(K = Z x(n) Le 3)

n=0

shows that the frequenci&f the original sequencehave been shifted to the frequencies f.

of the sequenceg After heterodyning, we need to low-pass filter and decimate the data to select
the frequency span of interest. The data are now complex, so a complex FFT is required; the
negative frequencies &fin this case are independent of the positive frequencies, and in fact they
contain the lower half of the span, as shown in Fig. 6.

s Decimator .
YR ¢ o
R 3| Digital » D
- LPF
X(n) , P * %] Complex
| FFT
Digital
—> > ' D
—j2nf.n yl(n) LPF
e
Zoom frequency
X(K) Y(K) band
L
I I 0
fo fN
FFT coefficients o, and Yg. Y1, Yo, oee.n. Yy YN YN e YN_1
relation to frequencies of 27t 2 2t
original datax: L I L I
fo<f<ftAf/2 f—Of 12 <f <f,

Figure 6: Block diagram of heterodyning for zoom analysis. The center frequépag
downconverted to DC, and the lower half of the frequency span is mapped to negative frequencies.

The full span of the zoon\f, is again restricted to (172 multiples p an integer) of the original
channel sampling frequency. The decimator consistsFQf24\f) stages of the single stage

page 21 of 90

LIGO-T990013-C

3.1.3 Data Windowing

All FFTs are performed on windowed data. The following windowing functions are offered:

) Time-domain sequence M?X'
Window Type 0<i<N-1 Amplitude Comments
-7 error
Uniform no window 4dB useful for looking at
transients
. 1 (270] general purpose;
Hanning W = 2[1 COSEN 1D} 1.5d8 lowest noise floor
1.93c0s D 2t D
Wi 2%“
4 - very wide pass band,
Flat-top +1.29cos i U g 3880521 L 0.02 dB but most accurate
[N — 10 [N —1L amplitude meas.
8mi
+0.028cosH—
[N — 100
1 2n|
= =Al-1.3610%0
2% SEN large dynamic range
4 (good for separating
BMH [4am i] 0.8dB two close frequencies,
+
0.3938Xco N —10 with widely different
amplitudes)

0. 03255z:osm6"' 1%

Table 2: Windowing functions that can be applied to the data prior to Fourier transforming.
Amplitude error in the transformed data occurs for frequencies not exactly at a bin frequency.

3.1.4 Power spectrum estimation using the FFT

Welch’s method of power spectrum estimation is implemented according to the following
algorithm:

1. the datais broken up inf®, possibly overlapping segments (50% overlap typicalN pbints
each; each segment may then optionally be ‘de-trended’ (i.e., the mean, or best linear fit may
be removed) before being windowed

page 22 of 90

LIGO-T990013-C

2. each (windowed) segment is transformed wittNgpoint FFT, givingX;(k) (i = 1 —D).
3. the magnitude squared of each segment is properly scaled, forming the periodRgkeaon
each segment:

P.(0) = \%/|xi(0)|2

P.(K) = V—lv[|xi(k)|2+|xi(|\|—k)|2] k=12 .. %—1% 4)

P.(N/2) = v_lv|xi(N/2)|2

whereW accounts for the power in the window:
N-1 ,
W=N w(n) (5)
nZO

This normalization is chosen so that the value at each point in the periodogram gives the energy
density in units of mean-squared-amplitude.

4. the average of the periodograms is computed to form the power spectruxn of
1D
[P, (0= = Y Pik) (6)
i=1

5. scaling factors may be applied to convert from mean-squared-amplitude (msa) to msa/Hz,
(root-mean-square)/H}/Z, peak, engineering units, etc.

If the data has been mixed down for zoom analysis, the periodogram is formed somewhat

differently, as indicated in Fig. 6.

3.1.5 Cross-spectral density

The cross-spectral density between two data stredmsandy(n) (the sampling rates of the two
channels, if not already equal, must be equalized by the sample rate conversion described above)
is computed as follows:

1. each data stream is segmented and de-trended & windowed as above
2. each segment of each channel is transformed with@wint FFT
3. the FFT segment pairs are multiplied as:

Pk = \Tlvx(k) V(WD , k=0,1,.., N-1 (7)

where * denotes complex conjugate.

4. the average over the segments is taken, as above, td]%;{);tk)D

page 23 of 90

LIGO-T990013-C

The cross-power spectrum is then defined as

[Py (0)0= [P, (0)0

Po0= P (O P (N-KTF k=12, .., % -~ ®)

[(Py(N/2)0= [P, (N/2)0

3.1.6 Transfer function estimates

The transfer function estimate given an input chamxaahd an output channglis the quotient of
the cross-spectrum afandy and the power spectrum xf

P, (T

To0= 2350

=01...,

N Z

(9)

where the factor oR accounts for the fact thia®, (k) is already summed over positive and
negative frequencies whereﬁ@xy(k)D isn't.

3.1.7 Coherence estimates

The coherence between two signal veckoaady is computed as:

__B,0f
Gy O0= P, (O)éDEPyy (0)O

| PRy (0T + | TRy (N = W]
Gy (0= y[pxx (k)DDEI%/,y(k)D

(10)

_ MmN .0
=1, 2""’D§_1D

(G, (N/2)0= | R, (N/2)TF
3.2 SWEPT SINE MEASUREMENTS

3.2.1 Digital demodulation & frequency response calculation

Consider a signad(t) which contains a sine wave of frequenoyof which we wish to know the
amplitude; expressed as a Fourier series:

[oe]

s(t) = n_z_ c, [éi(.ont (11)

The desired coefficient is calculated using the integral

1T —iwt
c, = _I_Ios(t)e dt (12)

page 24 of 90

LIGO-T990013-C

whereT = 2w (i.e., an integral number of cycles). We only have a sampled versis(t)pbf
course, which complicates the integration over an integral number of cycles; this is addressed in
the next section. The steps in making a sine detection and frequency response calculation are:

1. For the desired channel, obtain the number of data points required by the integration routine
(see below). _

2. Multiply the data set bg '

3. Integrate the real and imaginary parts of (2) over an integral number of sine wave cycles, using
the numerical integration algorithm (see below), to compute the complex ampglitude

4. Repeat steps 1-3 for the desired number of averages (user-specified).

5. The values ofc; are averaged to formecs>; this can be used to compute the (complex)
frequency response with other channels. The individual coefficienfsom each of the
average measurements are also stored; these are needed to compute the coherence with other
channels (see below).

t

3.2.2 Numerical integration algorithm

The numerical integration of equation (12) is done with a modified Newton-Cotes method, as
follows. We find the fifth-order polynomial that passes through six adjacent points of the
demodulated data series (real and imaginary treated separately), and integrate this polynomial
over the middle two points. We then move forward one sample, and find and integrate the new
polynomial; this process is repeated until the end of the data set, the sum of all the steps giving us
the desired integral.

The last integration step must be modified to end the integration at an exact integral number of
sine wave cycles. This is done by again finding the fifth-order polynomial that passes through the
last six points, but only integrating over a portion of the span covered by the middle two points,
stopping where a total span of an integral number of cycles has been reached.

Such an integration step can be reduced to 6 coefficients which multiply the 6 adjacent data points
to give the integral over the middle two points; the sum of these 6 coefficients is unity (try
integrating a constant functiol(x) = 1 using this method). Thus, when the whole data set is
convolved with these 6 coefficients, nearly all data points are simply multiplied by unity; only 5
points at the beginning and 6 points at the end are multiplied by non-unity coefficients. Note that
for each different detection frequency or integration time, the trailing coefficients must be
recomputed (the lead coefficients are always the same).

This integration algorithm is similar to Simpson'’s rule, but uses a higher order approximation for
increased accuracy. The accuracy is tested by integrating

1.7 —inot
_—I_J'Oe dt (13)

which should integrate to zero. This is shown in Fig. 7, as a function of the number of data points
in a cycle. As this shows, the method loses accuracy as the frequency increases (fewer points per
cycle). To further improve the accuracy, we also pass the demodulated data through an FIR low-
pass filter, prior to integration. We use a 20-tap FIR filter, with a cut-off frequency of
0.1x(Nyquist frequency). In fact, the convolution of this filter with the data can be combined with
the integration operation, giving a long coefficient vector that is simply dotted (dot-product) with

page 25 of 90

LIGO-T990013-C

0,
° o
® o
oooo..........
-2
©
S
o)) °
(O]
+— -4 []
£ .
© ®e
o °
— -
o 6 “eo
o L
- ..
o 8 %,
= *oe,
L ®e
o....
-10 LX 2 .
...
...

0 10 20 30 40
Number of points per cycle (half integer)

10 T T

10 “k

10 : 1 : . :

Error (|1 - sine amplitude|)
'—\
o
w

107 b bbb

-6

10 Il Il Il Il Il Il Il
1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Figure 7: Accuracy of numerical integration algorithriop: plotted is the integral of equation

(13) as a function of the number of points in a cycle, using Simpson’s rule (modified to work over

a fraction of the last span) (top/red), and the modified 5th-order polynomial method (bottom
black). The points are all computed using a half-integral number of points in a cycle, since this is
where the error is the large&ottom: Error in the integration of a unit amplitude sine wave, plus:

a DC offset of 100; uniformly distributed random values in the range 0-0.1. The sine wave is
sampled at 16384 Hz, and each frequency is detected with 2 averages of 100 cycles. The error
increase above ~7.7 kHz because there are very few data points per cycle for the integration
algorithm; below 7.7 kHz the error is due to the random values (noise) added to the data.

the data. Most of the coefficients in this vector are unity, with 24 non-unity lead coefficients and
25 non-unity trailing coefficients (the latter must be computed for each detection frequency).

page 26 of 90

LIGO-T990013-C

The number of data points used by the integration algorithm, per average, is given by
Not = Nigag+ 1 + floor(t;., Of o) (14)

whereNgaq= 24 is the number of leading coefficientg, is the integration time (corresponding
to an integral number of cycles of the sine wavgjs the sampling frequency, and ‘flog){gives
the largest integer not greater than

3.2.3 Integration time

The integration time may be specified either as a time duration, or in the number of sine wave
cycles. If specified as a time interval, it is checked that it equals an integral number of cycles of
the sine detection frequency; and if not, it is set equal to the nearest cycle number. For detection
frequencies near a channel’'s Nyquist frequency, we want to ensure that a sufficient number of
cycles are integrated over, and so we set a minimum integration time that is equal to 10 cycles at
the Nyquist frequency (1.2 msec for a 16384/sec sample rate).

3.2.4 Settling time

At each new frequency in a swept sine test (or a sine response test), the test channels are allowed
to ‘settle’ before a sine detection is performed on the data. The settling time is nominally 10% of
the integration time. See also section 4.4.

3.2.5 Coherence calculation

Given a pair of channels on which multiple-average sine detection has been performed, the
coherence between these two channels can be calculated as follows:

2
1o, o, (15)

2 2

Hea| "ty 0
where {c,} and {d,} are the sets of complex amplitudes resulting frarsine detections on each
of the two channels, and the averaging is performed over thedees.

3.3 SINE RESPONSE MEASUREMENTS

A sine response test is using the same integration algorithm as a swept sine test to determine
transfer coefficients, but can use multiple sine wave excitations simultaneously. This allows to
determine non-linearities and transfer matrices of multi-dimensional input-output problems. Since
response tests with a single excitation signal will automatically compute a harmonic analysis,
tests with exactly two excitations will perform a two-tone intermodulation analysis and tests with
two or more excitations and with the same number of excitation readback channels will
automatically compute the transfer matrix.

3.3.1 Harmonic Analysis

Assuming an excitation signal is applied at frequericy , and the complex amplitude/phase
coefficient,a; , is measured on a chantel , then the complex amplitude/phase coefficients at

page 27 of 90

LIGO-T990013-C

integer multiples of the fundamental frequencies represent the harmonic coefficients,
lot, 8gg, ... 8. 1he total harmonic distortioT,HD , can be written as

N

2
EN
THD = '<=|§—f| (16)
3.3.2 Two-Tone Intermodulation

A two-tone intermodulation test uses two different frequencies to excite the system and
determines non-linearities by calculating the complex amplitude/phase coefficients at the sum and
the difference of these frequencies.

3.3.3 Transfer Matrix Measurements

.) . >
Assume there is a linear relation between a set of chainels b and

b= M2 17)

with M the trgnsfer matrix. Ideally, one would excite each channel individually and measure
the responsé,, , thus, determining each rowbf separately. In reality, the excitation might not
be orthogonal ifd and one will end up with measurements of lbath 2and . Chobsing
different sine wave frequencies—one for each excitation—one can make all measurement
simultaneously by determining the corresponding transfer coefficients. If we form matrices from
the measure vectods, abg |

A =a, and B, ,=b, (18)

where the indicek andl are denotingthe #&nd channel numbers, respectively. Assuming that
there are as margy channels as there are excitations, one can dekdrmine by

MT = A™'B (19)

where ' denotes the transposed matrix. To be able to invert the n#atrix none of the excitation
signals (as measured by the channels) can be co-linear with the others.

3.4 lIR FILTERS

lIR filters are used to generate band-limited noise from a white noise source. They are generally
useful and we give a brief derivation how they are implemented in the digital domain.

page 28 of 90

LIGO-T990013-C

3.4.1 Second Order Stage

Starting with a set of poles and zeros with angular frequeno’ngs, wgnd Qand -fa(@[,ors,
andQ, , respectively, we can write the filter function as a cascade of second order stages:

H(s) = GH Hi(s) = GH@ (20)
i i Pi(s)
where each functiod;(s) arfd(s) contain up to two zeros and poles, respectively.
One can writeP(s) as
E 1 Oth order
P(s) = §s+ W, 1st order (21)
0.2

0s +sw,/Qu+ oop2 2nd order
Similarly, one can obtai@(s) by replacipg with . In the digital domain one can write

_Z(2) _byt+bz +b,z”

Hi(2) = Pi(2) 2

— — (22)
l+a,z " +ayz

for each 2nd order filter stage. Using a bilinear transformation with optional pre-warping, one can
map the pole-zero representation into the digital domain by using

ay =1 a,' =2 a, =1 Oth order
ay = w,+W a;' = 2wy, ay = w,-W 1st order (23)
ay = ooé +w,W/ Q, + W a,' = 2(w§—W2) a, = wi—oopW/ Q,+ W? 2nd order

and the following rules

a
a -5 & aﬁ Poles
0
(24)
b b b by b 3
0o — b <= b, == Zeros
2h) dg 0

page 29 of 90

LIGO-T990013-C

whereb,' ,b," andb,’ are obtained from Eqn. (23) by replaainp @gd with Q@nd
and the constanv is related to the sampling rate through

no pre-warping

(25)
W

tanwy/ 2

with warping at angular frequency,

=

1
o o o o
A~ —IN

If we now denote the filter input bg(k) , the filter output iyk) and the internal filter state by a
three dimensional vect&(k) , the filter equation becomes (using the control canonical form):

X(k+1) = AX(K) + Be(K

(26)
u(k) = CX(K) + De(K)
with
O_a —a, O 0,0
A=Q a7%p B=010
01 00O 0o0 (27)
_O 0 n-0. O
C=pgbi—aby by—a; g D=pgbyg

The filter is stable if all of its poles in the digital domain lie within the unit circle. This can be
checked numerically applying Juri’s test on each second order filter stage. If the condition

(-l<a,<1)O(a,+1>a,) O(a,+1>-a) (28)

is fulfilled, the second order stage is stable (see for exanfplgital Control of Dynamic
Systems,by G.F. Franklin, J.D. Powell, and M.L. Workman).

3.4.2 Poles and Zeros of Commonly Used Filters

The poles of an n-th order butterworth filter are given by

il(-n
2n

Wy = 2Mf e With k = +1,£3, ..+ (n-1) (29)

3.5 POLE-ZERO CURVE FITTING
TBD

3.6 CORRELATION MEASUREMENTS
TBD

page 30 of 90

LIGO-T990013-C

3.7 TIME MEASUREMENTS
TBD

3.8 OCTAVE BAND ANALYSIS
TBD

page 31 of 90

LIGO-T990013-C

4 TEST ORGANIZATION

Fig. 8 shows the interactions between a diagnostics test and the application program interfaces
(API1s) which communicate with the user (storage API), the network data server (Real-Time Data
Distribution API) for obtaining channel data, the excitation engine (excitation API) and the test
point manager (test point API).

4.1 INTERFACES

4.1.1 Storage API

All data—including test parameters, raw channel data, result arrays and plot settings—are
managed by the diagnostics storage object. Any data object can be accessed by its name.
Typically, the user will set test parameters prior of starting a test. The diagnostics test program
will retrieve these parameters and setup the test. While the measurement is under way channel
data is received by the real-time data distribution interface and automatically saved in the storage
object. After a measurement cycle has finished the analysis task will read the channel data,
analyze it and write the results back.

start
\ test supervisory task

test synch.

¢ ‘ > test iterator

test

stop

set meas.
channels

storage APl [<€—— RTDD API excitation API

N e

test point API

USER NETWORK DATA SERVER * EXCITATION ENGINE
TEST POINT MANAGER

Figure 8: Interaction between a diagnostics test supervisory task and the interfaces to the real
world.

page 32 of 90

LIGO-T990013-C

4.1.2 Real-Time Data Distribution API

The real-time data distribution interface obtains data from the network data server on a continuous
basis. It will subscribe the channels which are needed for the test analysis at the beginning of a
test. While the test is running the data comes at a fixed rate of 16 Hz. The real-time data
distribution interface has the capability to preprocess the data before sending it to the analysis
algorithms (see Fig. 9). The first stage of the preprocessing is a data collection stage which makes
sure that the data segments which are fed into the decimation filters are long enough to yield at
least one output data point. The next stage is a time delay filter which can delay the data by an
integer number of samples. This stage is followed by the first filter-decimation stage, the down-
conversion stage and the second filter-decimation stage. If the down-conversion stage is included
the data streams becomes complex. Before the data is partitioned into segments, the time series
can be shifted forward in time to compensate for the delay accumulated in the decimation filters
and to correct for the calibration. The time shift has to be a multiple of the sampling period after
decimation. Since the filter-decimation stages are based on FIR filters, the time delays
accumulated within are a multiple of the input sampling period, but no necessarily a multiple of
the output sampling rate. To compensate for fractional sample time delays at the output stages, the
delay filter at the input can be used for compenstation. By default all filter delays are removed
automatically and the partitioned data has no remaining time deviation. The output samples are
aligned as follows(i) data rates equal to 1Hz are aligned with the one second GPS (ilpckata

rates of2" withn=1 are aligned so that eveﬂ"y -th sample is synchronized with the one second
GPS clock, andiii) data rates op" witm<0 are aligned so that the GPS time divided by the
rate yields an integer. GPS time is counted in seconds starting at Sunday, January 6, 1980,
00:00 UTC.

NETWORK DATA SERVER

\ delay 1st decimation

i ot
e

collection down-conversion
partitioning
A%] time shift 2nd decimation

DATA PARTITIONS

Figure 9: Data preprocessing in the real-time data distribution interface.

page 33 of 90

LIGO-T990013-C

4.1.3 Excitation API

The excitation APl communicates with the excitation engine for applying excitation signals to the
instrument. For a description of the excitation engine see Section 5.

4.1.4 Test Point API

The test point APl communicates with the test point manager which is able to activate digital test
points in the data acquisition system. Digital test points are used to read auxiliary channels from
the ISC digital servo systems and to inject digital waveforms. Test points are automatically

selected by the RTDD API or the excitation API if the requested channel is accessible through a
test point.

The test point API also enables and disables analog excitation inputs. (Most analog inputs have an
enable/disable switch which is controlled through an EPICS channel.)

4.2 TEST SUPERVISORY

When a user starts a diagnostics test, the diagnostics kernel spawns a new test supervisory task.
The supervisory task is selected by setting the variable “Supervisory” to the name of the
supervisory task (see Appendix B.1.1). Currently, only one supervisory task with name
“standard” is supported.

4.2.1 Standard Supervisory Task

In principle every test could be implemented as its own supervisory task. This has the
disadvantage that parameter scans and optimizations would need an additional supervisory task
for each test they can be combined with. Also, every test would have to implement its own
synchronization means. The standard supervisory task provides a solution for this problem by
separating the supervisory task into a synchronization task which is common to all tests, a test
iterator and the test itself. Both the test iterator and the actual test are selectable by the user. This
approach has the advantage that if any new test iterator is developed, it is immediately applicable
to all tests; and if a new test is developed it can use all common test iterators. Fig. 10 presents the
flow chart of the standard supervisory task.

The standard supervisory task implements a few basic synchronization tools:

i) the start time can be set using the variable “Sync.Start” (GPS nsec); default is immediate.

i) a wait time can be specified with “Sync.Wait” (sec).

iii) the execution of a test or a test step can be triggered by an EPICS channels with
“Sync.WaitForStart” and “Sync.WaitAtEachStep”, respectively.

iv)a test can send a trigger signal on an EPICS channels after it or one if its steps has finished;
“Sync.SignalEnd” and “Sync.SignalEndOfStep”, respectively.

At initialization the supervisory task will setup the measurement environment as specified by the
“Env[N]" variable sets (see also Appendix B.1.4).

A test can be aborted at any of the synchronization steps shown in Fig. 10. Currently, a the test can
only be paused after an iterator evaluation has been completed.

page 34 of 90

TEST ITERATOR

start test

\

LIGO-T990013-C

TEST SYNCHRONIZATION

SYNCHRONIZATION 1
start time / wait for trigger
select test and iterator
send notification

v

GLOBAL ENVIRONM. SETUP

TEST

set environment channels [~
PRIVATE ENVIRONM. SETUP
- set environment channels
ITERATOR INITIALIZATION
subscribe scan channels —
TEST INITIALIZATION
subscribe meas. channels
- subscribe excitation channels
ITERATOR SETUP
set scan channels
A SYNCHRONIZATION 2
wait for channels to be ready
calculate start time [
TEST SETUP
set excitation
set meas. time intervals
| setintermediate sync. points
SYNCHRONIZATION 3
wait for intermed. sync. points [~—j.
“Y—]| TEST INTERMED. ANALYSIS
analyze meas. data
send notification
SYNCHRONIZATION 4
() .
2 wait for end of test i
‘g TEST FINAL ANALYSIS
& analyze meas. data
- send notification

ITERATOR EVALUATION
calculate next step
send notification

S[O o

CLEANUP
turn off excitation
unsubscribe channels
send notification

MERIT FUNCTION ANALYSIS
analyze meas. data

TS

stop test

Figure 10: Flow chart of the standard diagnostics test supervisory task.

page 35 of 90

LIGO-T990013-C

4.3 TEST ITERATORS

The purpose of test iterators are to repeat a standard test. In the simplest case the test is repeated
with identical parameters. When performing a parameter scan the test is repeated while changing
the value of a parameter. A parameter scan can be combined with an optimization to find the “best
value” of a parameter set. The test iterator is selected by the variable “Testlterator” (see
Appendix B.1.1).

4.3.1 Repeat

The default test iterator is the trivial one with a repetition value of one. The number of repeats can

be set with the variable “Sync.Repeat”, whereas the repeat rate is determined by

“Sync.RepeatRate”. This repeat rate is interpreted as a minimum time between tests. In other
words the second test is not started before the first one has finished completely.

4.3.2 Parameter Scan

For a parameter scan at least one “Scan[N]” variable sets have to be defined and set active (see
Appendix B.1.5). A test will be repeated while scanning a parameter of an excitation channel such
as the amplitude, the offset or the frequency. An example would be to investigate the coupling of
input beam jitter into the gravitational wave band (sine response test) while changing the angular
alignment of the interferometer test masses.

4.3.3 Optimization

For an optimization to take place the “Find” variable set has to be defined and enabled.
Additionally, a valid parameter scan has to be setup (see Appendix B.1.6). An optimization is a
parameter scan where parameters are adjusted to their “best value”. Typically, the parameter is set
to a new value after a scan interval has been completed. The “best value” is determined by a merit
function which has to be provided by the test.

4.4 TESTS

4.4.1 Sine Response

The timing diagram of a sine response test is shown in Fig. 11. The full test time is divided into a
dwell time and a number of measurement periods. The dwell time is divided into a ramp up period
and a settling time (see also Appendix B.3.1). The settling titge, , is determined by the
“Test.SettlingTime” valuest, and. , according to the following formula (negative values are
ignored):

n
tg = minBA, TCE (30)

wheref represents the frequency of the excitation signal. In case of multiple excitations with
difference frequencies the smallest frequency value is used for the calculation.

page 36 of 90

LIGO-T990013-C

tr+ig Ty
- > >
fo 5] P i3 In tn+1
-——- P time
@ gwell 1st meas. 2nd meas. Nth meas.
time period period period
N s
{y) {3 Y tv+1
I -— - I I B time
(b)
1st meas. 2nd meas. Mth meas.
point point point

Figure 11: Timing diagram of a sine response (a) and a swept sine tesN(ahd M are the
number of averages and the number of measurement points, respectively.

During the ramp up time the amplitude of the excitation signals are slowly increase to their final

requested levels. The ramp up tirhe, , is determined by the following formula:
tg = max(tg ty.) (31)
wheret,, = 1sec is the maximum allowed ramp up time. The total dwell tippe t is always

rounded up to the next sampling period. If an excitation signal can not be synchronized with a
GPS clock, the minimum ramp up time is set to 500ms to account for network latencies. The
default ramp up function is a quadratic phase-in, see Eqns. (49) and (52).

The time of a single measuremely, is determined by the “Test.MeasurementTime” Ugjues,
andN_ , according to the same formula as the settling time with the only modificatiom that is
always rounded up the next full cycle and sampling period. If multiple excitation frequencies are
present, the smallest frequency is used to perform the calculation.

4.4.2 Swept Sine

A swept sine is essentially a series of sine response tests with a single excitation frequency which
is swept through a predefined frequency interval. The frequency points can be spaced linearly,

page 37 of 90

LIGO-T990013-C

logarithmically or by user supplied values. The frequency pdints are calculated from the start
and stop frequenciety,; ang,, Wwith the following formulae:

fo—f
linear fo= fooqt (i —1)—S—t%/|9_—15t5‘—rt (32)
i1
logarithmic fo= f ff stopr M —2 (33)
i start(f__ 1]

whereM represents the number of frequency points and theiindex runs fravh 1 to

The dwell time is calculated the same way is for a simple sine response test. The only difference is
that the ramp up signal between measurement points is replaced by a ramp signal which
guarantees a smooth transition in both amplitude and frequency. For the amplitude Egns. (49) and
(52) are used again; for sweeping the frequency Egns. (53) and (54) are used for linear swept sine
tests and Eqgns. (55) and (56) for logarithmic swept sine tests, respectively.

4.4.3 FFT Tests

The timing diagram of an FFT test is shown in Fig. 12. The total test time is broken into possibly

overlapping measurement intervals. The frequency spfaslaan of the FFT is calculated by
tl tz 2nd meas. tN tN+l
period
I | | | L —- | I > time
(@) 1st meas. ts Nth meas.
period =¥ period
overlap
t Ty ty t3 Ly th+1
-
I I I —— I I ;
| 1 1 | 1 »- time
1st meas. __ 2nd meas. Mth meas.
(b) period ts period period

_ I |

trigger signal

-
pre-trigger time

Figure 12: Timing diagram of an FFT test (a) and a time series/trigger response telstgbjiM
are the number of averages and the number of measurement points, respectively.

page 38 of 90

LIGO-T990013-C

rounding Sy eic fsiop— Fstar 10 the next frequency which is a power of 2. The stretch factor,
Siyetchy IS S€t at 1.1 which guarantees that the requested frequency range is within the bandwidth
of the decimation filters. To make sure that the number of FFT points is a power of 2, the specified
bandwidth is rounded to the closest power of 2. The measurement time is determined by the

bandwidth through
Ty = — . (34)
faw

Of course, if a non-uniform window function is selected, the effective measurement bandwidth is
given by the width of the window function, i.e.

few= (35)
W Atwindow
If fg.> 0 the time series is first down-converted by
fsion— T
f = fo. .+ Nepr roung2estart (36)
zoom start FFT C% ZNFFT |

whereNg is the number of points used by the FFT algorithm. It is given by

U _
N | 2 fspar(fBW for fstart_ 0 (37)
FrT = U
E fspar(wa for f >0

start

In general, input channels pass through three stages of preprocessing. First, a decimation stage
adjusts the sampling rate to the required signal bandwidth. Second, the time series can be down-
converted by f, .. ; and third, an additional decimation stage adjusts the sampling rate to the
frequency span of the FFT.

The following rules apply for determining sampling rates and decimation factors:

(i) The sampling rate,f s,y , after the first stage is deduced fnear(2f ;i 2 5 by
rounding to the next power of 2.

(i) The decimation factor of the second stage is set to 1 if no down-conversion was applied and to

fsampid’ fspa Otherwise.

Compared to a standard (real) FFT analysis, a zoom analysis works with a complex time series
which effectively doubles the number of data values, but only needs half the sampling rate (since
negative frequency components are truly different from positive ones). As a net effect the number
of data values sent to the FFT algorithm are identical.

If the number of averages is greater than 1, the starttjme for each measurement interval is given
by

t =ty +i(1-n)Ty (38)

with n the overlap factor.

page 39 of 90

LIGO-T990013-C

4.4.4 Time Series Measurements

Time series and trigger response measurements are broken up in equal length measurement
intervals (see Fig. 12). The trigger rafig, .o, . is related to the measuremenfyjme, , by

1
ftrigger - :I-—M— (39)

The stored time series can be limited in length by specifying a dead tgne, , which is subtracted
from the end of the measurememnt interval. In order to keep the averaging algorithms simple both
the length of the measurement interval and the settling time have to be a multiple of the sampling
period after decimation. If the Nyquist frequency of the original time trace is more than twice as
large as the required bandwidth, the data is filtered and decimated to a rate no less than twice the
bandwidth and no more than four times the bandwidth. The pre-trigger time specifies the time the
start of the trigger signals lags behind the start of the measurement.

page 40 of 90

LIGO-T990013-C

5 EXCITATION ENGINE

5.1 OuTPUT WAVEFORMS

5.1.1 Overview

Every output signal produced by the arbitrary waveform generator consists of two parts: a
fundamental waveform and phase-in and phase-out transition. The following fundamental
waveforms are supported by the signal generator:

sine wave s(t) = Asin(2rtt) (40)
[l
square wave s(t) = O *A 0= 2mit mod 2n<Tt (41)
O-A 1< 21t mod 2ri< 21
ramp s(1) = A%{ with @ = 2mft mod 21t (42)
0 A2
J ADF(p—lg 0 < 2mft mod 2t < Tt
triangle s(t) = O (43)
E A%’;—%“E T < 21t mod 2ri< 2m
0
flat noise (44)
band limited noise (45)
pink noise (46)
sweep 47

5.1.2 Periodic Waveforms

The output signab(t) of an arbitrary waveform generator for a periodic waveform starting at

time ty, lasting for a duratios\t , ramping up betwegn apet tp, , and phasing out after
to+1t, (t, = At—tp5) can be written as:

wheres(@) is the periodic signal (fundamental waveform) of frequéncy and phaseghift . The
functions¢ andb are then functions which determine the phase-in and phase-out transitions at

page 41 of 90

LIGO-T990013-C

the beginning and at the end of the output signal. The phase-in and phase-out times are denoted
with tp, andt, , respectively. The functidn controls the amplitude and we write it as:

E 0 t<0 or t>At
0 9:(t tpy) O<t<tp

Ho,(t-tythy) At-tpg<t<At

whereg,; andy, are the amplitude phase-in and phase-out functions, respectively. The following
options are available: step, linear ramp, and quadratic.

gy(ttp) =0
step oo(t o) = 1 (50)
ot
g.(t, tp)) = i
linear Pl (51)
Oo(t tho) = 1—(1-c)g,(t, tpp)
g]_(t, tp|) = _alg"' Zalg
quadratic Pl Pl (52)

Oo(t tpo) = 1—=(1-0c)gy(t, tpp)

wherec denotes the amplitude ratio of the signal before the phase-out and the one after. For two
periodic waves of different frequencies which should smoothly transform into each other, it is
usually more practical to sweep the frequency, rather than phase-out one signal by ramping it
down while ramping up the other one. The sweep fundiion is defined as follows:

O(t tpo) = 0;(t, tpo) (2MAFt — AQ) (53)

with M = f, - f.the frequency difference between the beginning and the end of the sweep. The
phase adjustmef¢p can be written as:

AQ = A@+ 2TTFAL + 2MAftpg| (54)
mo

with A the phase difference between the signal att, tand, + At

The above sweep function can be readily generalized to logarithmic sweeps. For the time during
the sweep one can rewrite Eqn. (48) as follows:

o(t)|t2£t—tosm = S(ZT[ftZ_(pO"'q)qu(t_tO_tz'tPO)) (55)

page 42 of 90

LIGO-T990013-C
with the sweep function

t
rafde —| ¢
Drog(t tho) = zmtpongg _Ag|-L (56)

tec
where the phase adjustment is the same as in Eqn. (54).

5.1.3 Non-Periodic Waveforms

Non-periodic output waveforms can be written as:
o(t) = n(t—ty) x b(t—ty, At, tp), tpo) (57)

with the only difference to a periodic waveform that the actual sigria) does depend on the
time directly rather than the phase, and that no sweep function is provided.

page 43 of 90

LIGO-T990013-C

APPENDIX A NETWORK INTERFACES

A.1l SERVICES INFORMATION

Diagnostics services such as the test point interface, the excitation engine and the diagnostics test
kernel implement a configuration and information interface which can be queried by a client using
broadcast messages on the local subnet. This allows user interface programs to be configured
dynamically. Service information requests and answers all have the same format:

Service information request/answer:

msb Isb| 1 2 N

information id ASCII string (optional)

The transport protocol is udp/ip. A service information server can answer with any number of
datagrams to a single request.

The following information requests are available:

info id argument description answer avstered by

0 - ask for interfaces interface descriptor all

An interface descriptor has the following format:
‘interface’ ‘ifo’ ‘# ‘host name’ ‘port/prog # ‘version’
Examples are:

awg O O gdsawgl 8220876582 1
awg * 0 coboxO 5000 *

The excitation engine and the test point manager implement their own information server for their
respective services, whereas the diagnostics kernel relies on daemon to announce its services. The
following lines should be added to the ‘/etc/inet/services’ and ‘/etc/inet/inetd.conf’ files on every
machine which runs a remote diagnostics kernel:

diagconf 5355/udp

diagconf dgram udp wait gds /home/gds/bin/diagconfd diagconfd \
/home/gds/param/diag.conf

(Assuming the full path name of the diagnostics service daemon is ‘/home/gds/bin/diagconfd’ and
the corresponding configuration file is located at ‘/home/gds/param/diag.conf’.)

Each line of the configuration file contains an interface descriptors. Lines starting with ‘# are
ignored. Service names starting with a “?’ will only be part of the configuration information, if the
corresponding machine is alive (i.e. answers to a ping). Service names starting with ‘&’ are using

page 44 of 90

LIGO-T990013-C

host name lookup to replace hostnames with IP names. A service name starting with ‘&?’ will
first look up the host name and then wait for the ping answer.

A.2 MESSAGE PASSING INTERFACE

The message passing interface is the main communication channel between the user interface and
the diagnostics test kernel.

A.2.1 USING REMOTE PROCEDURE CALLS

The rpc message passing interface implements four basic functions:

i) open a connection to a diagnostics kernel,

i) close the connection to a diagnostics kernel,

iii) send a message to a diagnostics kernel and wait for the answer, and
iv)install a callback function for messages send back by the diagnostics kernel.

These functions are defined in the C header file ‘gdsmsg.h’ (for a more detailed description see
there, or in the corresponding web page). A message consists of a message header and a
parameter argument; it returns a reply argument. Valid message headers are ASCII strings which
are generally identical to the commands which are recognized by the diagnostics kernel as
specified in section 2.3. In general, a command and its ASCIl arguments are passed through the
message header, whereas binary arguments are passed through the parameter argument.

One important difference to the command line interface are the ‘save’ and ‘restore’ commands:
(i) the flag argument must be specifig€d) the filename is assumed to be local to the machine
which runs the diagnostics kernel, aid) the reserved filename specifier -’ is used to indicate
that file is part of the message. When using ‘save’, the file is passed back through the reply
argument. When using ‘restore’ the file has to be passed to the diagnostics kernel through the
parameter argument.

The diagnostics kernel can run on a local machine—in this case the shared object library
‘libgds.so.1’ is loaded dynamically when the connection is established—or it can run on a remote
machine—in this case the diagnostics kernel has to run on the remote machine. The diagnostics
server listens at a well known tcp/ip port for a client to connect. Every client launches a new
diagnostics kernel which then established an rpc communication channel. Upon on connection the
client sends three 32 bit number in network byte order:

1. If the first number is larger than 65535, it is interpreted as an rpc program number which will be
used to send notification messages back to the client,

2. The second number is a client specific identification number. It will be used when sending
notification messages, and

3. The third argument is a flag describing the required services (as specified by the gdsMsgOpen
function).

In return the server will answer with up to three 32 bit numbers in network byte order:

1. The first one is the status flag which describes whether the server was initialized successfully. If
non-zero, it indicates an error and the transmission is closed,

2. When successful, the second number describes the rpc program number which has to be used
by the client for subsequent calls, and

page 45 of 90

LIGO-T990013-C

3. The third argument describes the capabilities provided by the server (as defined by the
gdsMsgOpen function).

The diagnostics server program can be started either at the command line prompt or through a
port monitor. Assuming the current path is the diagnostics binary directory the server is started by
typing ‘./diagd’. When using the port monitor, the following lines have to be added to the ‘/etc/
inet/services’ and ‘/etc/inet/inets.conf’ files:

diag 5354/tcp
diag stream tcp nowait gds /home/gds/bin/diagd diagd
(Assuming the full path name of the diagnostics server is ‘/home/gds/bin/diagd’.)

Whenever a request is made at the specified port a new diagnostics kernel is launched and a
private two way communication channel is established between the caller and the diagnostics
kernel. After closing the connection the diagnostics kernel is automatically terminated. To prevent
an automatic shutdown, the client has to call the keep alive function every 30 sec.

A.2.2 USING SOCKETS

Instead of using remote procedure calls a client can also request that messages are sent through
tcp/ip sockets. The start-up procedure is exactly the same as for the rpc interface, but with a value
for the first argument between 0 and 65535. If a non-zero number is specified, it is interpreted as a
port number of a socket maintained by the client, and it will be used by the server to send back
notification messages. A zero value indicates that the server should use the already open
connection to both transfer and receive messages. The server will answer with a status number
and, if successful, the flag describing the available services.

page 46 of 90

LIGO-T990013-C

After establishing a connection to the diagnostics server messages are passed using the format
shown below:

Header:
mshb Isb| 1 2 N
size of message header ASCII string (diagnostics command)

Binary argument:

msb Isb| 1 2 N

size of binary argument binary argument

Return argument:

msh Isb| msh Isb| 1 2 N

status size of binary argumenfASCII / binary

Every message consists of a header and a binary argument (their sizes can be zero); it will return
either an ASCII or a binary argument dependent on the command. Each argument is preceded by
a 32 bit number in network byte order describing the length of the following argument. The server
will send the answers back in the order the commands were received. The return argument
consists of a status word, a word describing the following data and the data itself. A status of O
marks a success, a status of —1 indicates an error, and a status of —2 indicates a notification
message. (Notification messages are send from the diagnostics kernel to the user interface using
the same format but without at return argument.)

To prevent automatic shutdown of the server the client has to send at least one message every 30
seconds. If no regular message is available the client can send an empty message with header and
argument of size zero (a null message will not produce any answer). Starting a diagnostics kernel
for socket use is identical to the one for remote procedure calls, both from the command line and
through a port monitor. There is one important difference between using rpc or sockets: the rpc
interface is fully multi-threaded, i.e. several messages can be send to diagnostics kernel by the
same client independently, whereas messages sent through sockets are processed one after the
other.

page 47 of 90

LIGO-T990013-C

APPENDIX B DATA REPRESENTATION

The diagnostics kernel manages variables, parameters and data which describe a diagnostics test
using the same basic representation. The basic storage objects are data objects and parameter
objects. Parameter objects consists of a name, a type and a value or a list of values. A data object
is a container which can contain a multidimensional data array, a set of parameter objects and
other data objects. The diagnostics kernel stores all variables associated with a diagnostics test
within a single (global) data object. The diagnostics kernel limits the hierarchical levels of data
objects to two. Meaning, the global object can contain parameters and data objects which in turn
can contain other parameter objects, but no more data objects.

Every data object and every parameter object within a single data object must have a unique
name. Any parameter can then be accessed by specifying its name and the name of its data object
(group name). The parameters in the global data objects can be accessed by their name only, or by
specifying an empty data object name. A name is not case sensitive and can not contain the *’
character, since this character is used to separate its name from the group name.

A name must not contain square brackets, because they are used for indexing. Names and group
names can have an array index, e.g., ‘Scan[1] or ‘HO:GDS_TEST[0][2]’. A maximum of two
array indices are supported with values ranging from 0 to 999.

Both data and parameter objects have associated data fields consisting of a data type, a dimension
list, the actual datum, an optional string describing the physical unit and an optional comment
string. Supported data types are:

Name C/C++ data type Abbreviation
8 bit integer char c
16 bit integer short s
32 bit integer int i
64 bit integer long long I
boolean bool b
single precision floating point float f
double precision floating point double d
single precision complex number complex<float> zf
double precision complex number complex<double> | zd
string char* st
channel name char* ch

Parameter objects typically have a single value associated with them, whereas data objects can be
multi-dimensional.

The diagnostics kernel uses a set of data objects and parameters with predefined names for
describing:(i) the test parameter§j) the test resultgjii) the raw data an¢v) the plot options.
The following data objects are used by the diagnostics kernel:

page 48 of 90

LIGO-T990013-C

Name Type Description

Def test param. Global default settings of diagnostics tests.

Sync test param. Synchronization information.

Env[N] test param. Excitation environment; N from 0 to 99.

Scan[N] test param. Scan parameters; N from 0 to 9.

Find test param. Optimization parameters.

Test test param. Specific settings for a diagnostics test.

Index result Index of the results

‘channel name’[M][N] raw data measured time series; M and N from 0 to 999.
results of diagnostics test: FFT, transfer functions,

Result[N] result averaged time series, coefficients and list of
measurement values; M from 0 to 999.
plot settings:

Plot[N][M] settings H z 2 sggult pad window
N > 1: additional pad windows

Calibration[N] settings calibration records; N from 0 to 999.

All data objects have a string parameter of name ObjectType which identifies the data object. The

following object types are supported:

ObjectType Associated data objects
DiagnosticsTest global
Defaults Def
Synchronization Sync
Environment Env(N]
Scan Scan[N]
Optimization Find
TestParameter Test
TimeSeries ‘channel name’[M][N] or Result[N]
Spectrum Result[N]
TransferFunction Result[N]
Coefficients Result[N]
MeasurementTable Result[N]
Plot Plot[N][M]
Calibration Calibration[N]

page 49 of 90

LIGO-T990013-C

B.1 COMMON

This section list the parameters which are common to all diagnostics tests.

B.1.1 GLOBALS

A few parameters are defined in global scope:

Name Type | Dim Description

ObjectType st 1 | DiagnosticsTest

describes the data input selection:
InputSource i 1 | 0 - online system
1 - LIGO data access (LiDaX)

describes the diagnostics test class. Possible values

TestType st 1 | are: TimeSeries, SweptSine, FFT, SineResponse,
RandomResponse.

TestName st 1 | name of test, user supplied.

Supervisory st 1 | name of supervisory task; default standard.

name of test iterator; default repeat. Possible values

Testlterator st 1 . .
are: repeat, scan, find.
Comment st 1 | user supplied comment.
TestTime I 1 | time when test was done in GPS nsec.
TestTimeUTC st 1 time when test was done in UTC format, e.g.

1998-11-08 17:40:00.032035.

The following default parameters are common to all tests:

Name Type | Dim Description
Def.ObjectType st 1 | Defaults
Def.AllowCancel b 1 | if true (default), cancel a test is allowed at any time.
Def.NoStimulus b 1 | if true, no stimulus is applied; default is false.
Def.NoAnalysis b 1 | if true, omits the analysis; default is false.
Def KeepTraces i 1 specifies how many of the original time traces are kept

(-1 represents all); default 100.

describes the default site; any channel name that
Def.SiteDefault c 1 | contains an ‘X’ as the site identifier will be adjusted to
the specified default site.

Def.SiteForce c 1 | overrides the site identifier in every channel name.

describes the default interferometer number. Any
channel name containing an ‘X’ instead of an
interferometer number will be adjusted to the specified
interferometer.

Def.IfoDefault c 1

page 50 of 90

LIGO-T990013-C

Name Type | Dim Description
. overrides any none zero interferometer identifier in

Def.ifoForce c 1
every channel name.

Def.PlotWindows i 1 | Number of windows

Def.PlotwindowLayout[N] i 1 Wln_d_ow Iayqut id. N=1 embedded window, N>1
additional windows

Def.CalibrationRecords i 1 | Number of calibration records

Channel names can be specified site and interferometer independent. To do so the character ‘X’ is
used instead if the site or the interferometer identifier, respectively. Any ‘X’ character will be
replaced with its corresponding default value before the test is started. Alternatively, it is possible
to override site or interferometer identifiers of all channel names. This can be useful when moving
a diagnostics test from one instrument to an other.

B.1.2 DATA INPUT SELECTION

When Lidax is selected for data input the following parameters can be set:

Name Type | Dim Description

Lidax.ObjectType st 1 | InputSource

Lidax.Server[N] st 1 | identifies the data server

Lidax. UDN[N] st 1 describes the selected data set (universal data set
name)
describes the selection of channels for the selected

Lidax.Channel[N][M] ch 1 | server/UDN. These channels names can contain
wildcards.

Lidax.Rate[N][M] d 1 | data rate of channel

B.1.3 SYNCHRONIZATION TOOLS

Diagnostics test can be synchronized with EPICS channels. A test can halt at the beginning of a
test and/or at each step of a measurement until a trigger signal is received on a specified EPICS
channel. Similarly, a diagnostics test can send a trigger signal on a specified EPICS channel at the
end of a test and at the end of each measurement step.

Name Type | Dim Description
Sync.ObjectType st 1 | Synchronization
0 — Now,
Svne.Tvpe i 1 1 —relative
yne.1yp 2 — absolute
3 — abolsute + relative
Sync.Start I 1 | start time of test (GPS nsec); default O (now)

page 51 of 90

LIGO-T990013-C

Name Type | Dim Description
. time to wait before starting test (in sec); default 0.
Sync.Wait d 1 the wait time is added to the start time.
Sync.Repeat i 1 | number of times of repeating the test; default 1.
Sync.RepeatRate d 1 | rate of repeating tests (in sec); default O (no wait).

if defined, the test only starts after receiving a trigger
Sync.WaitForStart ch 1 | signal on the specified EPICS channel (waits for a 1;
resets channel to zero after trigger was received).

if defined, the test only starts a new step after

Sync.WaitAtEachStep ch 1 | receiving a trigger signal on the specified EPICS
channel.
. if defined, signals the end of a test step on the
Sync.SignalEndOfStep ch 1 specified EPICS channel (sets channel to 1).
Sync.SignalEnd ch 1 if defined, signals the end of the test on the specified

EPICS channel.

B.1.4 ENVIRONMENT

While performing a diagnostics test, excitation and EPICS channels can be set to specified
waveforms and values, respectively. This environment is set before the test starts and
automatically reset after the test terminates. Environments are numbered, describing a single
excitation channel each:

Name Type | Dim Description
Env[N].ObjectType st 1 | Environment
Env[N].Active b 1 | if true (default), includes the Env[N] excitation channel.
Env[N].Channel ch 1 | string describing an excitation channel name.
e waveor I At it
Env[N].Points f M | describes the values of an arbitrary waveform.
Env[N].Wait d 1 | time to wait for the environment to settle down.

If an excitation channel is defined in the environment and is also used by a stimulus response test,
the two excitation waveforms are simply added. Certain restrictions apply if the excitation
channel is a stand-alone signal generator.

page 52 of 90

LIGO-T990013-C

B.1.5 PARAMETER SCAN

Any test can be repeated while sweeping either frequency, amplitude or offset of one or multiple
excitation channels. Sweep parameters are numberedNre 0, 2,... 9,describing a single
excitation channel each:

Name Type | Dim Description
Scan[N].ObjectType st 1| Scan
Scan[N].Active b 1 | if true (default), includes Scan[N] in the sweep.
name(s) of sweep channel, can be an excitation
Scan[N].Channel ch 1 channel, or an EPICS analog output.
Scan[N].Type i 1 0 — linear sweep (default), 1 — logarithmic sweep,
-yP 2 — user supplied sweep points.
Scan[N].Direction i 1 | O - upwards (default), 1 — downwards.
. 0 — offset (default), 1 — amplitude, 2 — frequency
Scan[N].Parameter ' 1| only offset is valid for an EPICS channel.,
specifies the frequency of the signal (not used, if the
Scan[N].Frequency d 1 frequency is swept, or if EPICS channel).
. specifies the amplitude of the signal (not used, if the
Scan[N].Amplitude d 1 amplitude is swept, or if EPICS channel).
specifies the offset of the signal (not used, if the offset
Scan[N].Offset d 1 is swept, or if EPICS channel).
Scan[N].Start d 1 specifies the start point of the sweep (not used when
' user supplies sweep points).
Scan[N].Sto d 1 specifies the stop point of the sweep (not used when
~210p user supplies sweep points).
Scan[N].N i 1 specifies the number of points of the sweep (not used
' when user supplies sweep points).
Scan[N].Points f M | specifies the user supplied sweep points
specifies the settling time before each measurement;
Scan[N].Wait d 2 | default is 10 cycles, or 65 ms, whatever is shorter.
first value is time in sec.

The dimension of the scan is determined by the number of defined channel names. If fewer than N
values are specified for an N dimensional parameter, the remaining values are automatically
padded with zero.

A multi-dimensional linear or logarithmic sweep will use a multi-dimensional mesh to set the
sweep points. For a user defined multi-dimensional sweep the user has to supply every sweep
point which will be used; they can be located anywhere in the multi-dimensional parameter space.

If the same excitation channel which is defined in the environment and/or by a stimulus response
test, is also used by a sweep, the excitation waveforms are simply added. Certain restrictions
apply if the excitation channel is a stand-alone signal generator

page 53 of 90

LIGO-T990013-C

B.1.6 PARAMETER OPTIMIZATION

A parameter scan can be combined with a parameter optimization. When optimization is enabled
the sweep will try to set the sweep channel values to the best values as determined by a merit
function. For a multi-dimension linear or logarithmic sweep the optimization process will scan
through each dimension separately, and set the signal to the best value after each scan. A multi-
dimensional sweep with user supplied sweep points is interpreted as a one dimensional
optimization along the path of the user supplied points.

Name Type | Dim Description

Find.ObjectType st 1 | Optimization

if true, enables the optimization process; must be

Find Enable b 1 selected together with a sweep. Default is false.

if true (default), the detector state at the end of the test
will be set back to the values before the test, i.e. the
optimization process tries to find an optimal parameter
set without changing to the new and better state.

Find.Change b 1

Find.Type i 1 { 0 - maximum, 1 — minimum, 2 — zero, 3 — value

Find.Value d 1 | value to find, if type is ‘value’.

The merit function which is used depends on the
selected diagnostics test:

SineResponse (single frequency only):

0 — amplitude, 1 — phase,

2 — harmonic distortion,

3 — intermodulation product (added in quadrature)
TimeSeries:

0 — average, 1 —rms

FFT or RandomResponse:

0 — band-limited power

Find.Function i 1

Find.Param d 2 | low and high frequency values for band-limited power
Find.Method i 1| 0-scan

B.2 RESULTS

A diagnostics test can consist of multiple measurements such as the individual steps of a sweep.
Each measurement can contain multiple measurement points, such as the frequency points of a
swept sine measurement. Typically, there is the need to store results of individual measurement
points, as well as the results of each measurement step and the final result. This is achieved by
using array indices which are part of the result name. However, there is no one-to-one relation
between result index and measurement step or point. Instead, an index is used to list measurement
results together with the information where they are stored.

page 54 of 90

LIGO-T990013-C

B.2.1 INDEX

An index is automatically generated by the diagnostics kernel while performing a test. It is
updated whenever a new results becomes available. The index is structured as follows:

Name Type | Dim Description
ObjectType st 1 | Result
Entry[N] st 1 | index entry

current status describing the current measurement

Status st 1 point/average and the current test iteration step.

An index entry has the following format: “<category>[step] : {<parameter> = <value> ;}" where
the curly brackets denotes items which can be repeated multiple times. Possible categories are:

Index Category Description
Masterindex list of all index entries (master index)
TimeSeries describes a time series result
PowerSpectrum describes a power spectrum measurement
Coherence describes a coherence estimate for FFTs
CrossCorrelation describes a cross-spectrum measurement
TransferFunction describes a transfer function
CoherenceFunction describes the coherence estimate for swept sine measurements
TransferCoefficients describes a set of transfer coefficients
TransferMatrix describes a transfer matrix
CoherenceCoefficients describes a set of coherence coefficients
HarmonicCoefficients describes a set of harmonic coefficients
IntermodulationCoefficients describes a set of two-tone intermodulation coefficients

B.2.2 PLOT

A plot object does not contain the data it displays, rather it describes the settings of the plot and
stores pointers to the data objects which contain the plotted data. Plot objects are not generated by
the diagnostics test, but rather by the graphical user interface to keep track of the plot settings. A
plot object can handle A and B channels. When displaying a transfer function or a cross-power
spectrum, A and B channels point to the individual measurement channel; and the plotting routine
is responsible to calculate the ratio or product, respectively. Plots settings are organized into
separate lists, “Plot[0][M]” represents a list of M user defined options, “Plot[1][M]” represents
the list of settings for the standard graphics window containing M pads, “Plot[N][M] (N > 1)
represents lists of settings for additional graphics windows. The number of graphics windows by
“Def.PlotWindows”.

page 55 of 90

LIGO-T990013-C

The plot settings are separated into options associated with trace selection and properties (Traces),
range selection (Range), unit selection (Units), cursor settings and values (Cursor), configuration
parameters (Config), style settings and plot title (Style), axes settings (AxisX and AxisY), legend
settings (Legend), and parameter settings (Param).

The following options are used to control the appearance of the plot.

Parameter Name

Type

Dim

Description

ObjectType

st

Plot

Name

st

Name of setting

TracesGraphType

st

Name of plot type

TracesActive[N]

b

True if trace is active, N =0,... 7

TracesAChannel[N]

st

Name of A channel

TracesBChannel[N]

st

RlRr|Rr|Rr|R|R

Name of B channel

TracesPlotStyle

0 — Line,

1 — Marker,

2 — Line and Marker
3 —Bar

TracesLineAttrColor

Line color:

1 - black,

2 —red,

3 — green,

4 — blue,

5 — yellow,

6 — magenta,
7 — cyan,

28 — brown.

TracesLineAttrStyle

Line style:

1 - solid,

2 —dash,

3 — dot-dot,
4 — dash-dot.

TracesLineAttrWidth

Line width

TracesMarkerAttrColor

Marker color

page 56 of 90

LIGO-T990013-C

Parameter Name

Type

Dim

Description

TracesMarkerAttrStyle

Marker style:

20 — circle,

22 —triangle up,
21 — square,

23 —triangle down,
29 — star,

28 — open diamond,
2 —cross,

5 —angle cross,

24 — open circle,
26 — open triangle,
25 — open square,
28 — open cross,
30 — open star,

1 —dot.

TracesMarkerAttrSize

Marker size

TracesBarAttrColor

Bar color

TracesBarAttrStyle

Bar fill style:

1001 - solid,

0 — hollow,

3004 — diagonal up,
3005 - diagonal down,
3006 — vertical,
3007 — horizontal,
3013 — cross hatch,
3010 — brick,

3014 — funny,

3012 — circle.

TracesBarAttrWidth

Bar width

RangeAxisScale

Axis scale (X and Y):
0 - linear,
1 — logarithmic.

RangeRange

Axis range type (X and Y):
0 — automatic,
1 - manual.

RangeRangeFrom

Manual range lower limit (X and Y)

RangeRangeTo

Manual range upper limit (X and Y)

RangeBin

bining of data

RangeBinLogSpacing

PRI IDNDN

if true, logarithmic spacing of bin intervals

UnitsXValues

X coordinate type:

0 — normal,

1 — date/time format,
2 —angular frequency.

page 57 of 90

LIGO-T990013-C

Parameter Name Type | Dim Description

Y coordinate type:

0 — magnitude,

1 — dB magnitude,

2 —real part,
UnitsYValues [1 3 —imaginary part, .

4 — real/imaginary part interchanged,

5 — phase in degrees,

6 — phase in rad,

7 — unwrapped phase in degrees,

8 — unwrapped phase in rad.
UnitsXUnit st 1 | Unit name for X coordinate
UnitsYUnit st 1 | Unit name for Y coordinate
UnitsXMag i 1 | Magnitude qualifier for X ccordinate
UnitsYMag i 1 | Magnitude qualifier for Y ccordinate
UnitsXSlope d 1 | Slope correction for X coordinate
UnitsYSlope d 1 | Slope correction for Y coordinate
UnitsXOffset d 1 | Offset correction for X coordinate
UnitsYOffset d 1 | Offset correction for Y coordinate
CursorActive b 2 | If true, corresponding cursor is active
CursorTrace i 1 | Active trace of cursors

Cursor style:

0 —invisible,
CursorStyle i 1| 1-cross,

2 — vertical,

3 — horizontal.

Cursor type:
CursorType i 1 | 0 - absolute,

1 — difference.
CursorX d 2 | X values of cursors
CursorH d 2 | Horizontal values of cursors
CursorValid b 8 | If true, cursor statistics for trace is valid
CursorY d 16 | Y cursor values
CursorN d 8 | Number of points between cursors
CursorXDiff d 8 | X difference of cursors
CursorYDiff d 8 | Y difference of cursors
CursorMean d 8 | Mean between cursors
CursorRMS d 8 | RMS between cursors
CursorStdDev d 8 | Standard deviation between cursors
CursorSum d 8 | Sum between cursors

page 58 of 90

LIGO-T990013-C

Parameter Name Type | Dim Description
CursorSgrSum d 8 | Square sum between cursors
CursorArea d 8 | Area between cursors
CursorRMSArea d 8 | RMS area between cursors
CursorPeakX d 8 | X of largest value between cursors
CursorPeakY d 8 | Y of largest value between cursors
ConfigAutoConfig b 1 | If true, plots are configured automatically
ConfigRespectUser b 1 | If true, respects user selection when reconfiguring
ConfigAutoAxes b 1 | If true, axes are configured automatically
ConfigAutoBin b 1 | If true, data is binned automatically when large
ConfigAutoTimeAdjust b 1 | if true, time traces are synchronized in time
StyleTitle st 1 | Plot title
StyleTitleAttrAlign i 1 | Alignment of plot title
StyleTitleAttrAngle d 1 | Angle of plot title
StyleTitleAttrColor i 1 | Color of plot title
StyleTitleAttrFont i 1 | Font of plot title
StyleTitleAttrSize d 1 | Size of plot title
StyleMargin d 4 | Margin around plot
AxisXAxisTitle st 1 | X axis title
AxisXAxisAttrAxisColor i 1 | X axis color
AxisXAxisAttrLabelColor i 1 | X axis label color
AxisXAxisAttrLabelFont i 1 | X axis font
AxisXAxisAttrLabelOffset d 1 | X axis label offset
AxisXAxisAttrLabelSize d 1 | X axis label size
AxisXAxisAttrNdivisions i 1 | X axis tick divisions
AxisXAxisAttrTickLength d 1 | X axis tick length
AxisXAxisAttrTitleOffset d 1 | X axis title offset
AxisXAxisAttrTitleSize d 1 | X axis title size
AxisXGrid b 1 | If true, draw X axis grid
AxisXBothSides b 1 | If true, X axis is drawn on both sides
AxisXCenterTitle b 1 | If true, X axis title is centered
AxisYAXxisTitle st 1| Y axis title
AxisYAxisAttrAxisColor i 1| Y axis color
AxisYAxisAttrLabelColor i 1 | Y axis label color

1

AxisYAxisAttrLabelFont

Y axis font

page 59 of 90

LIGO-T990013-C

Parameter Name Type | Dim Description
AxisYAxisAttrLabelOffset d 1 | Y axis label offset
AxisYAxisAttrLabelSize d 1 | Y axis label size
AxisYAxisAttrNdivisions i 1 | Y axis tick divisions
AxisYAXxisAttrTickLength d 1 | Y axis tick length
AxisYAXxisAttrTitleOffset d 1| Y axis title offset
AxisYAXisAttrTitleSize d 1| Y axis title size
AxisYGrid b 1 | If true, draw Y axis grid
AxisYBothSides b 1 | Iftrue, Y axis is drawn on both sides
AxisYCenterTitle b 1 | Iftrue, Y axis title is centered
LegendShow b 1 | If true, show legend

0 — top right,
LegendPlacement i 1 ; ~ Egggm lrégﬁht

3 —top left.
LegendXAdjust d 1 | Legend offset in X from border
LegendYAdjust d 1 | Legend offset in Y from border
LegendSymbolStyle i 1 (1) ~ iz';]n: as trace,
LegendTextStyle i 1 (z:Lesxetrdtigsced from trace name,
LegendSize d 1 | Size of legend
LegendText[N] st 1 | User text for legend; traces N = 0,... 7
ParamShow b 1 | If true, show parameters
ParamTO b 1 | If true, show start time
ParamAvg b 1 | If true, show number of averages
ParamSpecial b 1 | If true, show third parameter
ParamTimeFormatUTC b 1 | If true, display start time in UTC rather than GPS
ParamTextSize d 1 | Size of parameters

Plotting packages which do not implement the complete set of above options have to implement

as many as possible.

page 60 of 90

LIGO-T990013-C

B.2.3 TIME SERIES

Time series containing raw channel information are stored by the channel name and two indices
(measurement step and measurement point). Each of these data object contains the data of one
channel only. The following table lists the parameters of a time series object:

Name Type | Dim Description
ObjectType st 1 | TimeSeries
0 — normal time series in format (Y),
1 — down-converted time series in format (Y),
2 — averaged time series in format (Y),
3 — averaged time series in format
Subtvpe i 1 (mean, std. dev., min., max., rms),
yp 4 — normal time series in format (t,Y),
5 — down-converted time series in format (t,Y),
6 — averaged time series in format (t,Y),
7 — averaged time series in format
(t, mean, std. dev., min., max., rms),
t0 I 1 | starttime in GPS nsec.
dt d 1 | temporal spacing in sec.
pre-cursor time in sec. The time stamp of the first data
tp d 1 N
point is: t0 — tp.
0 d 1 modulation frequency in Hz (type 2/5),
trigger rate in Hz (type 1/4).
tfO I 1 | start time for modulation signal in GPS nsec.
Decimation i 1 | overall decimation factor; default 1.
Decimation1. i 1 decimation factor before modulation (first stage);
default 1.
DecmiationType i 1 | decimation filter type identifier; default 1 (see Table 1).
DecimationFilter st 1 | description of decimation filter.
DecimationDelay d 1 | delay introduced by the decimation filter in sec.
DelayTaps i 1 nu_mber of taps in the time delay filter (in number of
original samples).
TimeDelay d 1 | remaining time delay of time series in sec.
. 0 — fixed number,
AverageType : 1 1 —running (exponential weight).
Averages i 1 | number of averages.
Channel ch 1 | channel name

page 61 of 90

LIGO-T990013-C

Name Type | Dim Description

N i 1 | number of points.

Unit st 1 | physical unit.

N | time series in format (Y),
2xN | time series in format (t,Y),
5xN | time series in format (mean, dev., min., max., rms),
6xN | time series in format (t, mean, dev., min., max., rms).

f/ zf

Normally, raw data uses subtypes 0 or 1, whereas a time series of a result object uses subtype 2 or
3.

B.2.4 FFT AND (CROSS) POWER SPECTRUM

A data object which describes FFT and power spectra can contain multiple spectra. By convention
the first one always describes the averaged spectrum. The following table lists the parameters
associated with a power spectrum:

Name Type | Dim Description

Type st 1 | Spectrum

0 — FFT in format (Y),

1 — power spectral density in format (Y),
2 — cross-power spectrum in format (Y),
3 — coherence in format (),

4 — FFT in format (f, Y),

5 — power spectral density in format (f,Y),
6 — cross-power spectrum in format (f,Y),
7 — coherence in format (f,Y).

Subtype i 1

fo d 1 | start frequency in Hz.

df d 1 | frequency spacing in Hz.

t0 Il 1 | starttime in GPS nsec.

temporal spacing in sec (only useful for averaged

dt d 1
power spectrum).

BW d 1 | resolution bandwidth

0 — uniform (no window),
1 — Hanning,

2 — Flat-top,

3 — Welch,

4 — Bartlett,

5 — BMH,

6 — Hamming,

7 — Kaiser.

Window i 1

0 — fixed number,

AverageType ! 1 1 — running (exponential weight).

Averages i 1 | number of averages (only useful for power spectra).

page 62 of 90

LIGO-T990013-C

Name Type | Dim Description
ChannelA ch 1 | channel name
ChannelB[M] ch 1 | 2nd channel name(s) for cross-power spectra
N i 1 | number of points.
M [1 | number of spectra.
Unit st 1 | physical unit.
f MxN | power spectral density/coherence in format (Y),
+N | power spectral density/coherence in format (f,Y),
o MxN | FFT/cross spectrum in format (Y),
+N | FFT/cross spectrum in format (f,Y).

Diagnostics tests will generally use subtype 1 for a power spectrum, subtype 2 for the cross-
spectra and subtype 3 for the coherence. Power spectra are typically stored indiviiuiadyi(),
whereas cross-spectrum and coherence are stored as a set of spectra with one A channel and
multiple B channels.

B.2.5 TRANSFER FUNCTION AND COHERENCE

A transfer function object can contain multiple transfer functions of the same two measurement
points. By convention the first one is the average of the following ones. The following list presents
the associated parameters of a transfer function:

Name Type | Dim Description

ObjectType st 1 | TransferFunction

0 — transfer function B/A in format (Y),
1 — transfer function A in format (Y),

2 — coherence B/A in format (Y),

3 — transfer function B/A in format (f,Y),
4 — transfer function A in format (f,Y),

5 — coherence B/A in format (f, Y).

Subtype i 1

fO d
df d
t0 Il
BW d

start frequency in Hz.

frequency spacing in Hz.

start time in GPS nsec.

Rk |k |k

measurement bandwidth in Hz.

0 — uniform (no window),
1 — Hanning,

2 — Flat-top,

3 — Welch,

Window i 1 | 4 — Bartlett,

5 - BMH,

6 — Hamming,

7 — Kaiser.

default: 1

page 63 of 90

LIGO-T990013-C

Name Type | Dim Description
AverageTvoe i 1 0 — fixed number,
gelyp 1 —running (exponential weight).
Averages i 1 | number of averages.
ChannelA ch 1 | name of A channel
ChannelB[M] ch 1 | name(s) of B channel
N i 1 | number of points.
M [1 | number of transfer/coherence functions.
o MxN | transfer function in format (),
+N | transfer function in format (f,Y),
f MxN | coherence in format (Y),
+N | coherence in format (f,Y).

Diagnostics tests will generally use subtype 3 for a transfer function and subtype 5 for the
coherence. Typically, they are both stored as a set of functions with one A channel and multiple B

channels.

B.2.6 LIST OF COEFFICIENTS

A sine response measurement can yield multiple transfer coefficients which are stored in two
dimensional arrays. One of the dimension always represents the multiple measurement points,
whereas the other dimension may represent the multiple excitation points, the harmonic order or

the modulation product terms.

Name

Type

Dim

Description

ObjectType

st

Coefficients

Subtype

0 — transfer coefficients in format (Y),

1 — harmonic coefficients in format (Y),

2 — intermodulation product in format (Y),
3 — coherence coefficients in format (Y),

4 — transfer coefficients in format (f, Y),

5 — harmonic coefficients in format (f, Y),

6 — intermodulation product in format (f, Y),
7 — coherence coefficients in format (f, Y),
8 — transfer matrix in format ().

t0

start time in GPS nsec.

BW

measurement bandwidth in Hz.

AverageType

0 — fixed number,
1 - running (exponential weight),
2 — running (accumulative).

Averages

number of averages.

ChannelA[M’]

ch

channel name corresponding to M’-th readback point.

ChannelB[N]

ch

channel name corresponding to N-th detection point.

page 64 of 90

LIGO-T990013-C

Name Type | Dim Description

number of detection points (A + B channels, except
subtype 8 which only counts B channels)

number of frequency points:

f 1,f 2, f M: transfer/coherence coefficients,

M I 1| 0,f 2f 3f Mf: harmonic coefficients (the 0 frequency
is used for storing the total harmonic distortion),
fi1,f2|[f1-f2|,f1+f 2:intermodulation product

Unit[N] st 1 | physical unit.
zf transfer coefficients in format (Y),
zf harmonic coefficients in format (Y),
zf MxN intermodulation product in format (Y),
f coherence coefficients in format (),
zf transfer matrix in format (),
zf Mx transfer coefficients in format (f, Y),
zf (N+1) harmonic coefficients in format (f, Y),
zf intermodulation product in format (f, Y),
f coherence coefficients in format (f, Y).

B.2.7 MEASUREMENT VALUES

Measurement values which do not fit into one of the above category can be stored in a table:

Name Type | Dim Description
ObjectType st 1 | MeasurementTable
t0 I 1 | starttime in GPS nsec.
TableLength i 1 | length of table
Name[N] st 1 | name of measurement variable
Unit[M] st 1 | physical unit.
Description[M] st 1 | description of measurement
ValueType[M] st 1 | type of value: number or complex

zf M | measurement values

page 65 of 90

B.3 DIAGNOSTICS TESTS

LIGO-T990013-C

B.3.1 SINE RESPONSE, HARMONIC DISTORTION AND TWO-TONE

INTERMODULATION TESTS

Name

Type

Dim

Description

ObjectType

st

TestParameter

Subtype

st

SineResponse

MeasurementTime

measurement time at each frequency; first value in
sec, second value in cycles. The smaller one is taken
and rounded up to the next cycle. Negative values are
ignored.

default: 100, 10.

AverageType

0 - fixed number,

1 — running (exponential weight),
2 — running (accumulative).
default: 0.

Averages

number of averages;
default is 1.

SettlingTime

settling time; specified in fraction of the total
measurement time; default is 0.1.

StimulusChannel[M]

ch

name of stimulus channel.

StimulusActive[M]

determines if a stimulus channel is active or inactive.
For a stimulus channel to be active it must define a
valid channel name and the active parameter must not
be set to false.

StimulusReadback[M]

ch

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel. A stimulus readback
can be explicitly disabled by specifying a “!” as the
stimulus readback channel.

StimulusFrequency[M]

frequency of stimulus channel in Hz.
default: 100.

StimulusAmplitude[M]

amplitude of stimulus channel.
default: 0.

StimulusOffset[M]

offset of stimulus channel.
default: O.

StimulusPhase[M]

phase of stimulus signal in rad; the phase is relative to
the last 0:00UTC. default: 0.

MeasurementChannel[N]

ch

measurement channel.

page 66 of 90

LIGO-T990013-C

Name Type | Dim Description

determines if a measurement channel is active or
inactive. For a measurement channel to be active it
must define a valid channel name and the active
parameter must not be set to false.

MeasurementActive[N] b 1

indicates the highest harmonic order of interest; when
set to a value larger than 1 (default), it prevents that
HarmonicOrder i 1 | the data to be decimate to a rate below

2 * max (StimulusFrequency) * HarmonicOrder. A
value of zero or smaller will prevent any decimation.

0 — uniform (no window),
1 — Hanning,

2 — Flat-top,

3 — Welch,

Window i 1 | 4 — Bartlett,

5 - BMH,

6 — Hamming,

7 — Kaiser.

default: 1

if true (default), calculates averaged 1024 point FFTs

FFTResult b 1 of each measurement channel as part of the result.

If there is only one stimulus channel, the result will automatically include a harmonic analysis of
the first stimulus channel at every measurement point. Similarly, if there are exactly two stimulus
channels of different frequencies, the result will include a two-tone intermodulation analysis at
every measurement point. In all cases the result will include a sine response analysis of every
stimulus frequency at every measurement point.

B.3.2 SWEPT SINE TESTS

Name Type | Dim Description
ObjectType st 1 | TestParameter
Subtype st 1 | SweptSine
0 - linear,
1-log,
2 — user supplied frequency points,
SweepType i 1 | 3 —user supplied frequency/amplitude points,

4 — linear with user supplied envelope (freg/ampl),
5 — log with user supplied envelope (freg/ampl),

default: 1.
o . 0 — upwards,
SweepDirection ' 1| 1~ downwards (defautt).
StartFrequency d 1 start frequency of swept sine in Hz.

default: 1.

page 67 of 90

LIGO-T990013-C

Name

Type

Dim

Description

StopFrequency

stop frequency of swept sine in Hz.
default: 1000.

NumberOfPoints

number of frequency steps;
default is 61.

SweepPoints

user supplied frequency and amplitude points:

if SweepType is equal 2 the points consist of only
frequency values; if SweepType is 3 or 4, they consist
of frequency-amplitude pairs.

AChannels

Number of A channels; default O.

If this value is non-zero, the specified amount of
channels starting with the first measurement channel
are also considered A channels. By default only the
excitation channel is considered an A channel. For
each A channels, the swept sine test will calculate
both the transfer function and the coherence between
them and any other (B) channel. A negative number
will automatically include all channels.

Averages

number of averages;
default is 1.

MeasurementTime

measurement time at each frequency; first value in
sec, second value in cycles. The smaller one is taken
and rounded up to the next cycle. Negative values are
ignored.

default: 100, 10.

SettlingTime

settling time at each frequency step; specified in
fraction of the total measurement time; default is 0.1.

StimulusChannel

ch

name of stimulus channel.

StimulusReadback

ch

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel.

StimulusAmplitude

amplitude of stimulus channel.
default: 0.

MeasurementChannel[N]

ch

measurement channels; must be at least two. By
default the first channel is the A channel.

MeasurementActive[N]

determines if a measurement channel is active or
inactive. For a measurement channel to be active it
must define a valid channel name and the active
parameter must not be set to false.

HarmonicOrder

indicates the highest harmonic order of interest; when
set to a value larger than 1 (default), it prevents that
the data to be decimate to a rate below

2 * max (StimulusFrequency) * HarmonicOrder. A
value of zero or smaller will prevent any decimation.

page 68 of 90

LIGO-T990013-C

Name

Type

Dim

Description

Window

0 — uniform (no window),
1 — Hanning,

2 — Flat-top,

3 — Welch,

4 — Bartlett,

5 - BMH,

6 — Hamming,

7 — Kaiser.

default: 1

FFTResult

if true, calculates averaged 1024 point FFTs of each
measurement channel for each frequency step as part
of the result; default is false.

B.3.3 FOURIER TESTS

Name

Type

Dim

Description

ObjectType

st

TestParameter

Subtype

st

FFT

StartFrequency

start frequency of FFT in Hz.
default: 0.

StopFrequency

stop frequency of FFT in Hz; internally always rounded
up so that the frequency spawn is a power of 2.
default: 1000.

BW

bandwidth in Hz; always rounded to the closest power
of 2.
default: 1.

Overlap

overlap of FFT windows (only useful when averaging);
t(i) =t0 +i * (1 — Overlap) * dt.
default: 0.5.

RemoveDC

if true the mean value of the time series is removed
prior of computing the FFT; default: false.

Window

0 — uniform (no window),
1 — Hanning,

2 — Flat-top,

3 — Welch,

4 — Bartlett,

5 - BMH,

6 — Hamming,

7 — Kaiser.

default: 1

page 69 of 90

LIGO-T990013-C

Name

Type

Dim

Description

AChannels

Number of A channels; default O.

If this value is non-zero, the specified amount of
channels starting with the first measurement channel
are considered A channels. For A channels, the fft test
will calculate both the cross-correlation and the
coherence between them and any other channel. Any
stimulus readback channel is automatically considered
an A channel. A negative number will automatically
include all channels.

AverageType

0 — fixed number,

1 —running (exponential weight),
2 — running (accumulative).
default: 0.

Averages

number of averages;
default is 10.

SettlingTime

settling time; specified in fraction of the measurement
time; default is 0.

StimulusType[M]

0 — no signal,

1 - sine wave,

2 — square wave,

3 —ramp,

4 — triangle,

5 — impulse,

6 — constant amplitude,

7 — normally distributed noise,

8 — uniformly distributed noise,

9 — arbitrary waveform,

10 — linear amplitude/frequency sweep,
11 - logarithmic amplitude/frequency sweep.
default: 0.

StimulusChannel[M]

ch

name of trigger channel.

StimulusActive[M]

determines if a stimulus channel is active or inactive.
For a stimulus channel to be active it must define a
valid channel name and the active parameter must not
be set to false.

StimulusReadback[M]

ch

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel. A stimulus readback
can be explicitly disabled by specifying a “!” as the
stimulus readback channel.

StimulusFrequency[M]

frequency of trigger signal; default is 0, i.e.
1/MeasurementTime.

describes the center frequency for sweeps and band-
limited noise signals; describes the sampling
frequency for arbitrary waveforms.

StimulusAmplitude[M]

amplitude of trigger signal; default 0.
describes the center amplitude for sweeps.

page 70 of 90

LIGO-T990013-C

Name Type | Dim Description
. offset of trigger signal; default 0.
StimulusOffset[M] d (describes the delay in sec for impulse).
phase of stimulus signal in rad; the phase is relative to

. the last 0:00UTC. default: 0.

StimulusPhase{M] d (describes the duration in sec for impulse and
sweeps).

StimulusRatio[M] d rgno bgtween r_ngh and the full period of a square wave
signal; default is 0.5.

. describes the frequency range for sweeps and band-
StimulusFrequencyRange[M] | d limited noise signals; default 10000.
StimulusAmplitudeRange[M] d describes the amplitude range for sweeps; default 0.
StimulusPoints[M] f K | array describing an arbitrary waveform.
MeasurementChannel[N] ch measurement channel.

determines if a measurement channel is active or
. inactive. For a measurement channel to be active it
MeasurementActive[N] b

must define a valid channel name and the active
parameter must not be set to false.

B.3.4 TIME SERIES MEASUREMENTS AND TRIGGER RESPONSE TESTS

Name Type | Dim Description

ObjectType st TestParameter

Subtype st TimeSeries
measurement time in sec.
To allow simple averaging this value is rounded to the

. next multiple of the sample period of the measurement

MeasurementTime d . . X
channel with the lowest sampling rate. The sampling
rate of a channel can be reduced by specifying a
bandwidth.

PreTriqaerTime d measurement time before trigger is applied (given as a

99 ratio); default is 20% of the total measurement time.
. dead time; specified in fraction of the measurement

DeadTime d L X
time; default is 0.

SettlingTime d s.ettll.ng tlme;_specmed in fraction of the measurement
time; default is 0.
required signal bandwidth in Hz; always rounded up to

BW d the closest power of 2. This value is used to determine

the decimation factor.
default: 10000.

page 71 of 90

LIGO-T990013-C

Name

Type

Dim

Description

IncludeStatistics

If true (default), the resulting time series includes the
mean, the standard deviation, the minimum, the
maximum and the root-mean-square value. If false,
only the mean is included.

Averages

number of triggers/averages.

1 - single trigger response (no average),

>1 — periodic trigger response (with average),
default: 10.

AverageType

0 — fixed number,

1 —running (exponential weight),
2 — running (accumulative).
default: 0.

Filter

st

Filter design string (none if empty) for IIR filter
defintion

StimulusType[M]

0 — no signal,

1 - sine wave,

2 — square wave,

3 —ramp,

4 — triangle,

5 — impulse,

6 — constant amplitude,

7 — normally distributed noise,

8 — uniformly distributed noise,

9 — arbitrary waveform,

10 — linear amplitude/frequency sweep,
11 - logarithmic amplitude/frequency sweep.
default: 0.

StimulusChannel[M]

ch

name of trigger channel.

StimulusActive[M]

determines if a stimulus channel is active or inactive.
For a stimulus channel to be active it must define a
valid channel name and the active parameter must not
be set to false.

StimulusReadback[M]

ch

if defined, this is the readback of the stimulus channel,
otherwise, it is assumed the readback channel is
identical to the stimulus channel. A stimulus readback
can be explicitly disabled by specifying a “!” as the
stimulus readback channel.

StimulusFrequency[M]

frequency of trigger signal; default is 0, which is
interpreted as 1/(MeasurementTime).

describes the center frequency for sweeps and band-
limited noise signals; describes the sampling
frequency for arbitrary waveforms.

StimulusAmplitude[M]

amplitude of trigger signal; default 0.
describes the center amplitude for sweeps.

StimulusOffset[M]

offset of trigger signal; default 0.
(describes the delay in sec for impulse).

page 72 of 90

LIGO-T990013-C

Name Type | Dim Description
phase of stimulus signal in rad; the phase is relative to

. the trigger point. default: 0.

StimulusPhase{M] d 1 (describes the duration in sec for impulse and
sweeps).

StimulusRatio[M] d 1 rgno bgtween r_ngh and the full period of a square wave
signal; default is 0.5.

. describes the frequency range for sweeps and band-
StimulusFrequencyRange[M] | d 1 limited noise signals; default 10000.
StimulusAmplitudeRange[M] d 1 | describes the amplitude range for sweeps; default 0.
StimulusPoints[M] f K | array describing an arbitrary waveform.
MeasurementChannel[N] ch 1 | measurement channel.

determines if a measurement channel is active or
. inactive. For a measurement channel to be active it
MeasurementActive[N] b 1) . .
must define a valid channel name and the active
parameter must not be set to false.

B.3.5 RANDOM STIMULUS RESPONSE TESTS
TBD.

B.4 XML C ONVENTIONS

The file format for saving a diagnostics test is the LIGO lightweight file format which is based on
XML. Data fields of parameters are ASCIl encoded; in case the parameter uses a list of values
they are comma delimited. Data fields of data objects are save as binary arrays following the C
convention for storing rows and columns and using a big-endian representation. These binary data
fields are appended to the XML file, so that a diagnostics test can be stored in a single file.

page 73 of 90

LIGO-T990013-C

APPENDIX C SOFTWARE MODULES

A fair amount of documentation is written directly into the header files of the C and C++ modules.
This documentation can be converted into html web pages using the doc++ program. The web
pages can be reached at www.ligo-wa.caltech.edu/gds. This appendix is intended to give an
overview of the existing software modules and to explain their main functions. A detailed
description of the constants, types, macros, objects, routines and their parameters is found in the
web pages.

C.1 OVERALL STRUCTURE

The source tree of the diagnostics test software is divided into sections (sub directories)
representing groups of modules. A typical section contains all the modules associated with a
software interface or category. The following sections are implemented:

Section

Description

Modules

src/algorithm

analysis algorithms:

FFT, swept sine, etc.

decimate — decimation

gdsrand — random number generation
gdssigproc — general purpose signal processing
sineanalyze — sine amplitude determination

src/awg

arbitrary waveform
generator,
excitation engine

awg — excitation generator and manager
awgapi — API to the excitation engine

awgfunc — general purposes awg functions
awgtype — types used by the excitation engine
awg_server — rpc server of excitation engine
excitation — diagnostics test interface to the awg
rawgapi — rpc (remote procedure call) interface

src/cmd

command line
interface

cmdline — command line interpreter

gdscmd — cmd line interface to diagnostics kernel
gdsmsg — message interface for sending commands
gdsmsg_server — rpc server for command messages
rgdsmsg — rpc interface

src/daq

interface to the data
acquisition system

gdschannel — interface to channel information database
gdsrtdd — interface to the network data server

src/diag

diagnostics tests

diagclass — basic class for diagnostics tests
diagnames — names used by tests

repeat — repeats a test

sineresponse — sine response test
sweptsine — swept sine test

testiter — basic object for test iterations
testorg — manages all diagnostics tests

page 74 0f90

LIGO-T990013-C

Section

Description

Modules

src/drv

hardware drivers

cobox — driver for an ethernet-to-RS232 converter
ds340 — driver for SR DS340 signal generators
gdsdac — driver for ICS115 digital-to-analog converter
gpsclk — driver for the VME gps clocks

hardware — parameters of the VME modules

rmapi — driver for reflective memory boards

target — VME host parameters

src/prog

programs

chndump — dumps the channel database to screen
chnsave — saves channel data to disk

diag — main program

gdsd — diagnostics kernel (daemon)

src/rmem

reflective memory
interface

map — memory map of the reflective memory
rmorg — macros for managing DCUs
testpoint — API for selecting test points
testpoint_server — test point manager
rtestpoint — rpc interface

src/sched

scheduler

gdssched — scheduler

gdssched_client — remote scheduler client interface
gdssched_server — remote scheduler server interface
gdsrsched — rpc interface

src/storage

storage objects for
diagnostics tests

gdsdatum — hierarchical storage object
diagdatum — diagnostics storage object
rtddinput — storage interface to the network data server

src/test

test programs

miscellaneous

src/util

utilities

gdserr — common error log

gdserrmsg — error messages

gdsheartbeat — heartbeat interface and synchronization
gdsmain — compiler directives for different hosts
gdsmutex — mutual exclusion semaphore objects
gdsprm — parameter file interface

gdsstring — additional string functions

gdstask — task/thread creation

rpcinc — common rpc routines

tconv — time conversion routines

gdsutil — includes most utility modules

page 75 of 90

LIGO-T990013-C

C.2 UTILITIES

The following sections list the main routines and objects of the more important software modules.

C.2.1 GDSERR

Function Description
gdsConsoleMessage prints a message to the gds console
gdsErrorMessage prints an error message
gdsError prints one of the predefined error conditions
gdsWarningMessage prints a warning message
gdsDebugMessage prints a debug message
gdsDebug prints a debug message if the DEBUG is defined

C.2.2 GDSHEARTBEAT

Function Description
installHeartbeat installs a heartbeat interrupt (16 Hz clock derived from GPS)
syncWithHeartbeat . .
syncWithHeartbeatEx synchronizes the program execution to the next heartbeat

C.2.3 GDSMUTEX

Object Description
mutex mutex object
recursivemutex mutex which can be called multiple times from the same thread
readwritelock read/write lock semaphore
semlock locks a semaphore/mutex as long during the scope of the object

C.2.4 GDSPRM

Function Description
findParamFileSection finds a section within a parameter file
nextParamFileSection finds the next section
getParamFileSection gets a section
findParamSectionEntry finds a parameter section entry
nextParamSectionEntry finds the next entry
getParamSectionEntry gets the entry

page 76 0f90

LIGO-T990013-C

Function Description
loadParamSectionEntry loads a parameter
loadBoolParam loads a boolean parameter
loadIntParam loads an integer parameter (int)
loadNumParam loads a numerical value (unsigned long)
loadFloatParam loads a floating point number (double)
loadStringParam loads a string parameter

C.2.5 GDSSTRING

Function Description
gds_strcasecmp compares two strings ignoring the case
strend goes to the end of a string
strecpy copies a string and returns the end of the resulting string
chnlsValid returns true if a correctly formatted channel name is supplied
chn... miscellaneous channel name handling functions

C.2.6 GDSTASK

Function Description

taskCreate creates a new task/thread
C.2.7 RPCINC

Function Description
rpcGetHostaddress returns the host address
rpcGetLocalAddress gets the address of the local machine
rpcGetClientAddress gets the rpc client address
rpcinitializeServer initializes an rpc server
rpcRegisterService registers an rpc service
rpcStartServer starts an rpc server
rpcStartCallbackService starts an rpc callback service
rpcStopCallbackService terminates the rpc callback service
rpcResgisterCallback registers a callback service
rpcProbe test if an rpc service exists

page 77 of 90

LIGO-T990013-C

C.2.8 TCONV
Function Description
TAInow returns the time in GPS seconds
TAItoUTC . . .
UTCtoTAl converts between universal coordinate time and gps seconds

C.3 ALGORITHMS

C.3.1 DECIMATE

Function Description
decimate filter decimation stage
zoom down-conversion
C.3.2 GDSRAND
Function Description
urand_r MT safe uniformly distributed random number generator
urandv_r uniformly distributed random vector generator
nrand_r normally distributed random number generator
nrandv_r normally distributed random vector generator

C.3.3 GDSSIGPROC

Function Description
DotProd vector dot product
Mean vector mean
Mixdown complex down-conversion
C.3.4 SINEANALYZE
Function Description
sineAnalyze determines the amplitude and phase of a sine wave

sweptSineNpts

calculates the number of necessary data points

page 78 0f90

LIGO-T990013-C

C.4 ARBITRARY WAVEFORM GENERATOR

C.4.1 AWG
Function Description
initAwg initializes the arbitrary waveform generator
getindexAWG gets an unused slot in the awg

releaselndexAWG

frees an awg slot

resetAWG resets an awg slot

configAWG configures an awg from a parameter file

showAWG displays the current state information of an awg slot

processAWG calculates the waveform

disableAWG disables a slot

enableAWG enables a slot

addWaveformAWG adds a waveforms to a slot

setWaveformAWG sets an rabbitry waveform vector

queryWaveformAWG returns the current waveforms

checkConfigAWG checks the configuration

resetAllIAWG,

configAlIAWG,

showAllIAWG, . .

processAlIAWG, same as corresponding functions above but for all awg slots

disableAIIAWG,

enableAlIAWG

getStatisticSAWG get the real-time performance statistics of an awg
C.4.2 AWGAPI

Function Description

awg_client installs the awg client interface

awgSetChannel reserves a slot of an awg

awgRemoveChannel frees the slot

awgAddwWaveform adds waveforms (signals)

awgSetWaveform sets an arbitrary waveform vector

awgQueryWaveform returns the current waveforms

awgReset resets an awg

page 79 of 90

LIGO-T990013-C

Function Description
awgStatistics returns the real-time performance statistics of an awg
awgShow shows the status information of an awg
awgCommand command interpreter for arbitrary waveform generators

C.4.3 AWGFUNC

Function Description
normPhase normalizes the phase to be between 0 and 21t
productLog calculates the inverse of z(w)=wexp(w)
awgSignal calculates a waveform function
awgPhaseln phase-in function
awgPhaseOut phase-out function
awgSweepOut phase-out for frequency sweep
awgSweepComponents defines a frequency sweep waveform component

awgPeriodicComponent

defines a waveform component of a periodic waveform

awglsValidComponent

tests if waveform component is valid

awgSortComponents

sorts awg components according to their start time

C.4.4 AWG_SERVER

Function

Description

awg_server

starts the rpc services for an arbitrary waveform generator

C.4.5 EXCITATION
TBD.

C.5 COMMAND LINE INTERFACE

C.5.1 CMDLINE

Object / Method

Description

commandline

command line object

operator !

returns true if finished

operator ()

calls the command line interpreter

page 80090

C.5.2 cbscMD

LIGO-T990013-C

Function Description
gdsCmdinit Initializes the diagnostics kernel
gdsCmdFini terminates the diagnostics kernel
gdsCmd executes a diagnostics command
gdsCmdNotifyHandler installs a command notification handler
cmdNotification sends a notification back to the command line interface

C.5.3 GDSMSG

Function Description
gdsMsgOpen opens a communication channel to the diagnostics kernel
gdsMsgClose closes the communication channel
gdsMsgSend sends a message to the diagnostics kernel
gdsMsginstallHandler installs a message callback handler for receiving notifications

C.5.4 GDSMSG_SERVER

Function

Description

gdsmsg_server

starts the rpc message server of the diagnostics kernel

C.5.5 GDSMSG_SOCKETS

Function

Description

gdsmsg_sockets

starts the TCP/IP message server of the diagnostics kernel

C.6 DATA ACQUISITION INTERFACE

C.6.1 GDSCHANNEL

Function

Description

gdsChannelinfo

obtains channel information

gdsChannelListLen

returns the number of channels in the database

gdsChannelList

returns a list of all channels

page 81 of 90

C.6.2 GDSRTDD

LIGO-T990013-C

Function

Description

gdsSubscribeData

subscribes a channel to the network data server

gdsUnsubscribeData

unsubscribes the channel

gdsGetNewdata

gets new channel data

gdsGetData

gets channel data for a specific time interval

C.7 DIAGNOSTICS TEST UTILITIES

C.7.1 DIAGNAMES

C.7.2 DIAGORG

C.7.3 TESTENV

C.7.4 TESTSYNC

C.8 DIAGNOSTICS TEST SUPERVISORY

C.8.1 SUPERVISORY

C.8.2 STDSUPER
TBD.

C.9 DIAGNOSTICS TEST ITERATORS

C.9.1 TESTITER

C.9.2 REPEAT

C.9.3 SCANITER

C.9.4 FINDITER

C.10DIAGNOSTICS TESTS

C.10.1DIAGTEST

page 82090

LIGO-T990013-C

supervisory test environment
diagStorage

basic_supervisory r

diagtest

standardsupervisory -
O sineresponse

[) >
. sweptsine
testiterator

/ - FFT
kel repeatiterator

» timeseries
» scaniterator
v » pseudorandom
rtddManager
[) finditerator
/ excitationManager
testpointMgr
—Pp» inheritance — (O contains
— @ contains pointer list container

Figure 13: Class hierarchy of the diagnostics supervisory, the disgnostics tests and the test
iterators.

page 83 of 90

LIGO-T990013-C

C.10.2SINERESPONSE
C.10.3SWEPTSINE
C.10.4FOURIER
C.10.5TIMESERIES

C.10.6PSEUDORAN

C.11HARDWARE DRIVERS

The layout of the excitation engine VME modules can be found in the hardware and target header
files.

C.11.1coBoOX
Function Description
openCobox opens a socket connection to a cobox (ethernet-to-RS232 converter)
C.11.2Ds340
Function Description
connectSerialDS340 connects a DS340 through a serial port
connectCoboxDS340 connects a DS340 through a cobox
resetDS340 resets a DS340
isDS340Alive tests if the DS340 is alive
pingDS340 tests if the DS340 is connected and powered up
setDS340 ' .
uploadDS340Block sets the configuration of a DS340
getDS340 ' .
downDS340Block gets the configuration
sendWaveDS340 uploads an arbitrary waveform vector to a DS340
sendResetDS340 sends a reset signal
sendClearDS340 sends a clear signal
sendTriggerDS340 sends a trigger signal

page 840f90

C.11.3GDSDAC

LIGO-T990013-C

Function Description
daclnit initializes the ICS115 board
dacRestart restarts the ICS115 and re-synchronizes it with the GPS clock
dacCopyData copies data to the ICS115

Not yet implemented.

C.11.4GPscCLK

Function

Description

gpsBaseAddress

returns the VME base address of the GPS clock

gpslnit

initializes the board

gpsSyncinfo

returns the synchronization status

gpsTimeNow

returns the current time in GPS nsec

gpsTime

converts the native time format of the board into GPS nsec

gpsNativeTime

returns the current time in the native format

gpsMicroSec

returns the micro seconds only

gpslinfo

returns GPS information

gpsHeartbeatinstall

Installs a 16Hz GPS synchronized interrupt

gpsHeartbeatHealth monitors the health of the heartbeat interrupt
C.11.5RMAPI
Function Description
rminit initializes the reflective memory board
rmBaseAddress returns the base address of the reflective memory region
rmBoardAddress returns the base address of the reflective memory board

rmBoardSize

returns the memory size supported by the board

rmLED turns the LED on and off

rmResetNode resets a reflective memory node

rmint sends an interrupt to a reflective memory node
rmCheck check if a memory region is accessible
rmRead reads from reflective memory

rmWrite writes to reflective memory

page 85 of 90

LIGO-T990013-C

C.12REFLECTIVE MEMORY ORGANIZATION

The memory map of the reflective memory and set of macros to handle parameters of data
collection units can be found in the header files of the map and rmorg modules.

C.12.1TESTPOINT

Function

Description

testpoint_client

initializes the test point client interface

tpRequest selects a set of test points
tpClear clears test points
tpQuery returns the active test points

tpGetindexDirect

returns the test point index on VME systems

tplsVvalid tests if a test point is valid
tpAddr returns the address of a test point in reflective memory
tpCommand command line interface to the test point manager

C.12.2TESTPOINT_SERVER

Function

Description

testpoint_server

starts the rpc services of the test point manager

C.13SCHEDULER

C.13.1GDSSCHED

Function

Description

createScheduler

creates a scheduler

closeScheduler

closes a scheduler

scheduleTask

adds a new task to the scheduler

getScheduledTask

obtains information about a scheduled task

removeScheduledTask

removes a task from a scheduler

waitForSchedulerToFinish

waits until all tasks have been scheduled and finished

setScheduleTag

sets a synchronization tag

page 86 0f90

LIGO-T990013-C

C.13.2GDSSCHED_CLIENT

Function Description
createRemoteScheduler creates a new local scheduler for remote use
createBoundScheduler creates a new scheduler on a remote machine

C.13.3GDSSCHED SERVER

Function Description
registerSchedulerClass registers a task which can be scheduler from remote
runSchedulerService start the rpc services of a remote scheduler manager

C.14STORAGE OBJECTS

The class hierarchy of the diagnostics storage interface is shown in Fig. 14. There are two main
class categoriegi) classes which contain data (inherited from gdsDatum)(andlasses which

manage the access to the data (inherited from diagObjectName). The main diagnostics storage
object is of type diagStorage, it is inherited from a generic storage object, gdsStorage, and
contains all access classes. This main object is able to set and get variables by name from the
generic storage object using the access classes to make sure the variable names are valid test data
object and valid test parameters. The storage object is organized implementing two hierarchical
levels: the main storage objects contains both data objects and global parameter objects; whereas
data objects can contain their own private parameter objects. Thus, the generic storage object,
gdsStorage inherits from the data object, gdsDataObject, and also contains a list of data objects.

Access classes for data objects are inherited from diagObject which itself is inherited from
diagObjectName. The diagObject contains a list of access classes for the parameters which are
associated with this data object. Data objects which contain results and data objects which
describe a diagnostics test are inherited from diagMultipleObject. The diagMultipleObject
manages a list of access classes which are used depending on the type of the data object.

C.14.1GDSDATUM

Object / Method Description
gdsDatum object which stores data, can be multi-dimensional.
gdsNamedStorage object with a name.
gdsNamedDatum object which stores data and has a name.
gdsDataReference object which manages data references to memory mapped files.
storage. pir 2E}gcpt)§inter object which manages pointers to parameter and data

page 87 of 90

LIGO-T990013-C

Figure 14: Class hierarchy of the diagnostics storage interface.

page 88 0f90

gdsDatum gdsNamedStorage auto_ptr
gdsNamedDatum gdsDataReference
/ storage_ptr
gdsParameter (Q gdsDataObject 0O
gdsParameterList O gdsObjectList
gdsStorage O/
diagObjectName
¢ _ diagStorage
diagParam
diagObject @)
\ diagParamList l
all from below J
r diagGlobal J diagMultipleObject diagResult
Ll diagDef J +
. | diagTimeSeries
ra diagSync J diagTest J
- diagChn J
Lt diagEnv J
P testSineResponse Ll diagSpectrum
Lt diagScan J P J =P J
—— Lt testSweptSine J | diagTransferFunction J
Lt diagFind J
Lt testFFT J | diagCoefficients J
i diagPlot J
L testTimeSeries J - diagMeasurementTabIeJ
S testPseudoRandomJ — inheritance

—» (O contains

list container

LIGO-T990013-C

Object / Method

Description

gdsParameter parameter object.
gdsDataObject data object; contains a list of parameter objects.
gdsStorage generic storage object; contains a list of data objects.

C.14.2DIAGDATUM

Object / Method Description
diagObjectName generic access class, handles names, dimensions, indices, data types
and access writes.
diagParam generic access class for a parameter object.
diagObject generic access class for data objects.

diagGlobal, diagDef,
diagSync, diagEnv,
diagScan, diagFind,
diagPlot

access class for global parameters, default parameters, synchronization
variables, environment settings, scan parameters, optimization
parameters and plot settings, respectively.

diagMultipleObject

generic access class for a data object with multiple possible
configurations.

diagTest

access class for the diagnostic test object.

testSineResponse,
testSweptSine, testFFT,
testTimeSeries,
testPseudoRandom

access class for sine response test, swept sine test, FFT test, time series
measurement, and pseudo random response test, respectively.

diagResult

access class for a result object.

diagTimeSeries, diagChn
diagSpectrum,
diagCoefficients,
diagMeasurementTable

access class for time series vectors, channel data, FFT spectra,
measurement coefficients, and measurement tables, respectively.

diagStorage

diagnostics storage object; manages parameters and data objects which
can have their own parameters. Uses the access classes to make sure
that only valid parameter and data objects are stored.

C.14.3RTDDINPUT

Object / Method

Description

rtddcallback

class implementing a callback method for the network data server API

class for reading channel data from the network data server, it manages

gdsRTDDchannel a single channel, knows how to handle data partitions and knows where
to store the read data in the diagnostics storage object.

partition class which describes a channel data partition

gdsRTDDinput class which manages a list of gdsRTDDchannel objects, i.e. class which

handles the input from the network data server.

page 89 of 90

LIGO-T990013-C

C.15PROGRAMS

C.15.1CHNDUMP

This is a utility program to dump all channel information records to the standard output.

C.15.2DIAG

This program is the interface to the diagnostic system, it can invoke either the command line
interface or the graphical user interface. For a more detailed discussion see Sections 2.2—-2.4.

C.15.3GDsD
This is the diagnostics kernel. See Appendix A.2 on how to set it up.

C.15.4LI1BGDS.SO

This is the dynamic link library which implements most of the diagnostics kernel. It is used by the
‘diag’ program if a connection to a local kernel is established.

page 90090

	1 Overview
	2 User Interface
	2.1 Installation
	2.2 Getting Started
	2.3 Command Line Interface
	2.3.1 Diagnostics Tests
	2.3.2 Arbitrary Waveform Generator
	2.3.3 Testpoint Control

	2.4 Graphical User Interface
	2.4.1 Common Properties of Diagnostics Tests
	2.4.2 Diagnostics Tests
	2.4.3 Control Screens

	3 Analysis Algorithms
	3.1 FFT Measurements
	3.1.1 Sampling rate reduction: multistage decimation
	3.1.2 Zoom Analysis
	3.1.3 Data Windowing
	3.1.4 Power spectrum estimation using the FFT
	3.1.5 Cross-spectral density
	3.1.6 Transfer function estimates
	3.1.7 Coherence estimates

	3.2 Swept Sine Measurements
	3.2.1 Digital demodulation & frequency response calculation
	3.2.2 Numerical integration algorithm
	3.2.3 Integration time
	3.2.4 Settling time
	3.2.5 Coherence calculation

	3.3 Sine Response Measurements
	3.3.1 Harmonic Analysis
	3.3.2 Two-Tone Intermodulation
	3.3.3 Transfer Matrix Measurements

	3.4 IIR Filters
	3.4.1 Second Order Stage
	3.4.2 Poles and Zeros of Commonly Used Filters

	3.5 Pole-Zero Curve Fitting
	3.6 Correlation Measurements
	3.7 Time Measurements
	3.8 Octave Band Analysis

	4 Test Organization
	4.1 Interfaces
	4.1.1 Storage API
	4.1.2 Real-Time Data Distribution API
	4.1.3 Excitation API
	4.1.4 Test Point API

	4.2 Test Supervisory
	4.2.1 Standard Supervisory Task

	4.3 Test Iterators
	4.3.1 Repeat
	4.3.2 Parameter Scan
	4.3.3 Optimization

	4.4 Tests
	4.4.1 Sine Response
	4.4.2 Swept Sine
	4.4.3 FFT Tests
	4.4.4 Time Series Measurements

	5 Excitation Engine
	5.1 Output Waveforms
	5.1.1 Overview
	5.1.2 Periodic Waveforms
	5.1.3 Non-Periodic Waveforms

	Appendix A Network Interfaces
	A.1 Services Information
	A.2 Message Passing Interface
	A.2.1 Using Remote Procedure Calls
	A.2.2 Using Sockets

	Appendix B Data Representation
	B.1 Common
	B.1.1 Globals
	B.1.2 Data Input Selection
	B.1.3 Synchronization Tools
	B.1.4 Environment
	B.1.5 Parameter Scan
	B.1.6 Parameter Optimization

	B.2 Results
	B.2.1 Index
	B.2.2 Plot
	B.2.3 Time Series
	B.2.4 FFT and (Cross) Power Spectrum
	B.2.5 Transfer Function and Coherence
	B.2.6 List of Coefficients
	B.2.7 Measurement Values

	B.3 Diagnostics Tests
	B.3.1 Sine Response, Harmonic Distortion and Two-Tone Intermodulation Tests
	B.3.2 Swept Sine Tests
	B.3.3 Fourier Tests
	B.3.4 Time Series Measurements and Trigger Response Tests
	B.3.5 Random Stimulus Response Tests

	B.4 XML Conventions

	Appendix C Software Modules
	C.1 Overall Structure
	C.2 Utilities
	C.2.1 gdserr
	C.2.2 gdsheartbeat
	C.2.3 gdsmutex
	C.2.4 gdsprm
	C.2.5 gdsstring
	C.2.6 gdstask
	C.2.7 rpcinc
	C.2.8 tconv

	C.3 Algorithms
	C.3.1 decimate
	C.3.2 gdsrand
	C.3.3 gdssigproc
	C.3.4 sineanalyze

	C.4 Arbitrary Waveform Generator
	C.4.1 awg
	C.4.2 awgapi
	C.4.3 awgfunc
	C.4.4 awg_server
	C.4.5 excitation

	C.5 Command Line Interface
	C.5.1 cmdline
	C.5.2 gdscmd
	C.5.3 gdsmsg
	C.5.4 gdsmsg_server
	C.5.5 gdsmsg_sockets

	C.6 Data Acquisition Interface
	C.6.1 gdschannel
	C.6.2 gdsrtdd

	C.7 Diagnostics Test Utilities
	C.7.1 diagnames
	C.7.2 diagorg
	C.7.3 testenv
	C.7.4 testsync

	C.8 Diagnostics Test Supervisory
	C.8.1 supervisory
	C.8.2 stdsuper

	C.9 Diagnostics Test Iterators
	C.9.1 testiter
	C.9.2 repeat
	C.9.3 scaniter
	C.9.4 finditer

	C.10 Diagnostics Tests
	C.10.1 diagtest
	C.10.2 sineresponse
	C.10.3 sweptsine
	C.10.4 fourier
	C.10.5 timeseries
	C.10.6 pseudoran

	C.11 Hardware Drivers
	C.11.1 cobox
	C.11.2 ds340
	C.11.3 gdsdac
	C.11.4 gpsclk
	C.11.5 rmapi

	C.12 Reflective Memory Organization
	C.12.1 testpoint
	C.12.2 testpoint_server

	C.13 Scheduler
	C.13.1 gdssched
	C.13.2 gdssched_client
	C.13.3 gdssched_server

	C.14 Storage Objects
	C.14.1 gdsdatum
	C.14.2 diagdatum
	C.14.3 rtddinput

	C.15 Programs
	C.15.1 chndump
	C.15.2 diag
	C.15.3 gdsd
	C.15.4 libgds.so

