Cm : A multitask communication package.
Version v8r1

Christian ARNAULT
Pierre MASSART
LAL - Orsay, France. arnault@lal.in2p3.fr

December 11, 2004

VIR-MAN-LAL-5600-107

1 Presentation.

The Cm package is an attempt to make simple and system independant the task-to-task commu-
nication problem. It covers the communication between tasks that operate on different operating
systems, different architectures by hiding every detail of the use of TCPIP on which it is based.

These characteristics are quite important when one considers the domain of control-
command in a real time environment, and in a more general meaning when one deals with dis-
tributed applications ans informations, the cooperative behaviour of applications permits to obtain
a quite modular and structured architecture in the system design.

1.1 Document structure.

This document may be read at different levels, whether one merely wants to use Cm or if expertise
is required in order to understand the detailed internal mechanisms.

So for a first approach the specification section, the section describing the CmMessage class
and the one describing how to build a Cm application could be sufficient.

Then the CmConnect class description introduces some more internal mechanisms and per-
mits to understand the detailed behaviour of the CmMessage objects.

The section on package installation and reconstruction is needed for the system manager
who will install Cm , in particular for understanding how to configure the environment.

Lastly, a section is reserved for implementation details and other technical bits. Experienced
programmers who want to work on additional layers on top on Cm (for instance) will require it.

Examples are provided at many places in the document. They all correspond to a real C
file in the package distribution (the file name is mentionned with each example) and they may be
compiled and linked to exercize Cm .

All possible remarks and suggestions either on the package (such as bugs, installation or
behaviour problems) or on this document itself are welcome and will be addressed to the author :

Christian Arnault
email : arnault@lal.in2p3.fr

2 Specifications.

This section and all subsequent ones in this version of the document always take into account the
most recent changes in the package.

Cm is meant to manage the task-to-task communications (sending or receiving messages)
running on heterogeneous machines (with different architectures or operating systems) without
limitations on the number of active connections (apart those induced by the operating systems).

The set of tasks (or applications) that may participate this network define a Cm domain
managed by one special application - the NameServer - in charge of the physical addressing scheme,
allowing several independant such domains to coexist.

An application with which a connection is requested is referenced by a name, that must be
unique within one Cm domain and that doesn’t need to mention anyhow the machine on which it
runs, nor the transport characteristics (such as TCPIP parameters).

The central manager application NameServer is in charge of every mechanism for name
registration, port number allocation and physical addressing operations transparently for the user
applications.

Sending and receiving messages are managed asynchronously (without acknowledge man-
agement). This in particular implies that a special data framing protocol is added to the internal
basic protocol (TCPIP) used for Cm .

The basic TCPIP protocol ensures the effective message transmission but not the arrival
time nor the data packets organization (since successive message may be concatenated or split
into pieces). It is therefore required to add a software layer on top of it in order to ensure the
asynchronous data architecture. Cm provides this feature by the CmMessage package.

On the reception side, a callback-based mechanism is installed, so that user declared functions
are triggered on message detection. This mechanism is combined with blocking (with transaction
handling) or non-blocking capabilities in order to provide a rich integration scheme for interactive
or real-time environments.

2.1 Implementation specifications.

Cm has been designed using a conceptual methodology using object oriented principles. The two
main concepts manipulated by Cm are the connection that handles the path between two tasks
and the message that manages structured information that can be worked on and transported
along the connections. Implementation relies on the classes corresponding to these two concepts
for organizing the functions presented to the users and data manipulated by Cm

Cm exploits specifically the features and properties of the TCPIP protocol and for the
implementation, the socket interface of the C language, and one of the main goals of Cm is to hide
both of them to the user, showing only their major properties.

Cm is written with ANSI C and a set of principles based on object orientation. in order to
achieve a good quality level for maintainance, portability on wide range of environments and easy
evolutions (Cm has been ported to different operating systems such as DEC-ULTRIX, DEC-OSF1,
HP-UX, LynxOS, 089, SunOS, Solaris and DEC-VMS).

3 Cm architecture.

Cm is built around two main concepts the connection and the message. Two classes correspond to
these concepts : the CmConnect class and the CmMessage class.

CmConnect manages the physical connections between applications by hiding the internal
TCP-IP based mechanisms. It supports the packet-oriented data transfers and relies on the data-
framing protocol provided by CmMessages in order to achieve fully asynchronous communications.

CmMessage gives the structuration to data needed for operating Cm in asynchronous mode.
Many levels of security will guarantee internal integrity of message data as well as separation
between messages themselves.

CmMessage objects generally hide the use of the CmConnect class and the user interface of
CmMessage is sufficient to handle most of the operations.

The Cm package provides both a library meant to be linked to user applications and a set
of predefined utility applications :

o the NameServer that manages TCPIP port allocation and associations between logical names
and physical addresses. A private data base makes the configurations persistent.

e the cm tool that queries the NameServer about its internal data base, and can perform some
interactive Cm activities.

3.1 The CmConnect class.

CmConnect handles the basic communication mechanisms. It is based on the use of the TCPIP
protocol, and exploits the C socket interface. It manages (creates, opens, closes, destroys) the
sockets and the primary level of unformatted data exchange.

The first role of CmConnect is to hide the C socket interface and the complexity of the
TCPIP protocol, providing a simplified and secured environment.

Then it’s able to handle the various management communications with the NameServer when
connections are established. Therefore, a physical connection is closely related to the existence of
one CmConnect instance, thus the construction method for such an object : CmConnectNew is used
for initializing this connection by using the logical application name (received as its argument).
Each CmConnect object is actually created only when the connection is possible (if the applica-
tion is alive). Similarly, a connection loss (due to the application or the network) will yield a
desactivation of the corresponding object and eventually its destruction.

Therefore properties of CmConnect objects may be summarized as follows :

A connection is a peer-to-peer link between two applications (and is always associated with
one TCPIP socket).

e Connection losses are automatically and transparently managed by Cm .

e Each application owns at least one connection : the one that will handle the connection
requests from other applications. This particular CmConnect object can be accessed by the
CmConnectWhoAmI function. The creation of this private connection is automatically taken
into account by the CmMessageOpenServer function.

e Each application may manage one or several server connections (that may be addressed from
other applications), each defined by one name which is the address by which a client will
establish the connection.

3.1.1 Application initialisation.

Before any operation on CmConnect objects (and therefore on CmMessage objects) an application
must declare one or several servers to the system by a name for each server. Each server may be
declared either as a unique instance for this name with the CmMessageOpenServer function, or as
a clonable server with the CmMessageOpenMultipleServer function. The actual name is a text
string that must be unique in one Cm domain. Therefore, when used for a clonable server, the
name is considered as a generic name and is suffixed by the NameServer by the sequence number
of each particular instance.

The NameServer is requested to handle the name checking in both situations and to perform
the port number allocation by the two open functions. One private connection is then created for
each server if all required conditions are met.

An example of such a declaration that would like to be called Toto could be :

/* File examplel.c */

#include <stdio.h>
#include <CmMessage.h>

main()

{
if (!CmMessageOpenServer ("Toto"))
{
fprintf (stderr, "Declaration error.\n");
return (0);

}
}

Fig.1- Server name declaration.

/* File example2.c */

#include <stdio.h>
#include <CmConnect.h>

main()
{
if (!CmMessageOpenServer ("Toto"))
{
fprintf (stderr, "Declaration error.\n");
return (0);
}
if (!CmMessageOpenServer ("Titi"))
{
fprintf (stderr, "Declaration error.\n");
return (0);
}
}

Fig.2- Two-server name declaration.

3.1.2 Data conversion on machine architecture basis.

Each CmConnect maintains templates describing the byte ordering context characteristic of its
originating machine. This context is visible through a converter object (instance of the Cvt class)
which is able to convert to local representation any kind of received data. Each connection knows
the converter required by the particular association of the two machines (possibly both the same)
that are involved in a point-to-point communication.

At the connection time (thus only once in the connection life) this conversion information is
exchanged between the two applications and from then on will be used for every message transfer
(in both directions).

The current converter object of a given CmConnect may be accessed using the CmConnectGetCvt
function, and conversions use the CvtGetShort, CvtGetInt, CvtGetFloat, CvtGetDouble func-
tions. One should note that these translations are automatically performed by the CmMessage ob-
jects.

3.2 The CmMessage class.

This class exploits the connections in full asynchronous mode while keeping the CmConnect ob-
jects manipulations tranparent to the users. Although the direct access to the internally managed
CmConnect objects is always possible it is never required to get such access for a normal user. Two
specialized startup functions CmMessageOpenServer and CmMessageOpenMultipleServer must be
used to initialize Cm . Once the appropriate startup is performed CmConnect objects are transpar-
ently managed by CmMessage objects both when sending a CmMessage (the CmConnect is created
internally) and when receiving it (the CmMessage is created at connection request internally).

The CmMessage objects handle an extensible-array based mechanism to construct the mes-
sage data, permitting to accumulate typed informations while the CmMessage object keeps the
knowledge of the type structure provided by the user. Each CmMessage object built so is then
transported across the connection, propagating its internal structure.

The internal data formatting takes care of the different machine architectures at each side
of the connection by an automatic translation (using the Cvt converter object of the relevant
CmConnect object).

Then CmMessage objects can be given a type (specified as a character string) that will be
used at reception level to trigger dedicated activities or handlers (these handlers are declared by
the user using the CmMessageInstallHandler function).

3.3 The internal protocol managed by CmMessage objects.

In order to maintain the global consistency of messages a framing format made of a prefix and a
suffix is managed transparently for each CmMessage data. This protocol permits in particular to
understand the global enveloppe of the CmMessage data, for detection of contiguous messages or
for guaranteeing the completion of the data transfer for each CmMessage .

This mechanism makes the detection possible on message basis instead of on physical frame
basis. Thus, a level of handlers is provided for CmMessages based on message types and specialized
handlers are automatically triggered at each individual CmMessage reception.

3.4 CmMessage building and sending.

A CmMessage aimed at being sent is not associated to an existing connection (and to the
CmConnect object). Instead, the CmMessage will be built (accumulating data in it) and then
sent to some destination, or possibly several destinations (each of those having a dedicated
CmConnect object transparently managed).

A CmMessage object must first be created using the CmMessageNew function that prepares
it to act as an extensible structure for typed values such as numeric values, texts, arrays etc...

Several specialized functions are provided by Cm in order to construct the CmMessage struc-
ture dynamically :

e CmMessagePutChar

o CmMessagePutShort
o CmMessagePutInt

e CmMessagePutLong

e CmMessagePutFloat
e CmMessagePutDouble
o CmMessagePutText

o CmMessagePutBytes
e CmMessagePutArray

o CmMessagePutExtArray

The last two functions install arrays of values within the CmMessage structure either by
copying it directly into the CmMessage data or by rather installing a description for it, avoiding
the physical duplication of the array data. In this case, the array data is actually accessed only
when the CmMessage is transfered. Arrayselements may be of any one of the simple types managed
as single items and are converted the same way as simple items.

In both cases, the array is available at reception side the same way.

The conversion mechanism (using the Cvt converter object) takes care of byte ordering and
word alignment according to the receiving machine. Control informations are installed along the
CmMessage structure for guaranteeing the data integrity and to control the semantic of the data
items while retrieving data from a received CmMessage .

Each CmMessage object may be given a type through the CmMessageSetType function. The
type is provided as a free character string, and is meant to be used at the reception side to trigger
dedicated handlers.

The function CmMessageSend is then used to send the CmMessage object to an application
(specified by its name). This function takes care of the global message formatting, creates (or reuse)
a CmConnect object and send the CmMessage object without any acknowledge manipulation.

The CmMessageSend operation completes in two phases : it first posts the message and then
waits for its tranfer until it is finished. The CmMessageWait function is used internally for the
second phase.

It is possible to control manually the two phases by using the CmMessagePost function which
does not wait for the entire transmisson of the message. The use of this function must be done
quite carefully since, for instance the CmMessage object is set in a special state (Sending) while
packets are sent. While it is in this state, the CmMessage object cannot be used (Cm takes care
of the internal protections) and for instance, trying to Put any item in a CmMessage while it is in
this state has no effect on its internal state.

The CmMessagePost function receives as an argument a termination handler (which has the
same syntax as the handlers declared for receiving messages) that will be called when the last
packet of the CmMessage has been successfully sent, or if the connection is lost.

Each CmMessage object is controled internally by a finite set of possible states that are
checked upon at each CmMessage operation. Actions are then either performed (yielding possibly
a state transition) or ignored if the corresponding transition is forbidden. The following diagram
shows the set of possible states and transitions permitted to a CmMessage object :

- +
| Dead |
e +
| -
New | |
I | Delete
v |
- +
> New |<-—————-—- +
| Ao + |
| I |
| PutXxx | +-———<———+ |
- I I | |
| v v | | |
| Reset +-——————————- + | |
|---<---| NotEmpty | - |
I Hmmmmmmm— oo +
| I I | -
| Send | | PutXxx | |
- | +———=>-——+ |
I v I
| Reset +-————————- + |
+---<----| Closed | |
- + |
I T |
| | | PutXxx |
Send | I
I I
v |
o +
| Sending |
o +
| -
Send | [
+———+

Fig.3- State diagram for the CmMessage objects.
Some explanation will help understanding this diagram :

Actions correspond to methods of the CmMessage class which name is built by prefixing the
action name by CmMessage such as CmMessageSend or CmMessageDelete.

The Send operation can be repeatedly applied to a given CmMessage object, only the first of
them will operate the Close operation.

The first operation different than Send on a Closed CmMessage will perform a Reset action,
which in particular will erase previous data in this CmMessage .

The Delete action is actually available from any state and always correspond to the physical
destruction of the object.

e The Reset initializes the data structure of the CmMessage and therefore loses all previously
accumulated data.

The following example shows the steps of a CmMessage object building and how it is sent
to applications with a type :

/* File example6.c */
#include <stdio.h>
#include <CmMessage.h>
void build_an_image (char** pixels, int* size)
{
static char image[100];
*pixels = image;
xsize = sizeof (image);
}
main()
{
CmMessage message;
int images = 3;
int image;
char* pixels;
int imageSize;
if (!CmMessageOpenServer ("Toto"))
{
fprintf (stderr, "Declaration error.\n");
return (0);
}
message = CmMessageNew ();
CmMessagePutText (message, "Hello you");
CmMessagePutText (message, "I send you");
CmMessagePutInt (message, images);
CmMessagePutText (message, "images : ");
for (image = 0; image < images; image++)
{
/* something to build an image... */
build_an_image (&pixels, &imageSize);
CmMessagePutBytes (message, pixels, imageSize);
}
CmMessageSetType (message, "Image");
CmMessageSend (message, "Clientl");
CmMessageSend (message, "Client2");
CmMessageSend (message, "Client3");
}

Fig.4- Building and sending a CmMessage object.

3.5 Receiving a CmMessage .

CmMessage objects are received by type-dedicated handlers managed by the basic Cm engine.

The detection and assembly of individual message frames are performed internally and
handlers are triggered when each complete message is available with an automatic detection of
message types.

Handlers are installed using the CmMessageInstallHandler when they are associated with
one particular type or using the CmMessageInstallDefaultHandler for handling unforeseen mes-
sage type occurence.

The CmMessage data items are retrieved from it using the following functions :

e CmMessageGetChar

e CmMessageGetShort

e CmMessageGetInt

e CmMessageGetLong

e CmMessageGetFloat

e CmMessageGetDouble

o CmMessageGetText

e CmMessageGetBytes

o CmMessageGetArray

One should notice that retrieving arrays is done the same way whether they have been
produced as embedded or external arrays. In both situations, data are received within the message
frame.

The CmMessageGetType permits in addition to get the actual type of the received message
(this feature is likely to be usefull in a default handler).

It is also possible to enquire the CmMessage object about the type of the next available
item while retrieving the data, by using the CmMessageGetItemType function. The result of this
function may be :

e CmMessageltemTail

e CmMessageItemChar

e CmMessageltemShort
e CmMessageltemInt

e CmMessageltemLong

e CmMessageltemFloat
o CmMessageIltemDouble

e CmMessageltemText

10

e CmMessageltemBytes

e CmMessageltemArray

The first value, CmMessageItemTail means that the message’s tail is met and no further
data item is available. It is then useless (though harmless) to keep on getting more data items.

On the other hand, trying to retrieve a data item with the wrong type yields an error
message, and results in skipping the current item. Therefore, in case the type of each data item
is not statically known in the handler’s context, the use of CmMessageGetItemType is strongly
encouraged.

An example of an application receiving messages from the one in the previous example. One
uses here a dedicated handler that takes care selectively of the messages typed "Image" :

/* File example7.c */

#include <stdio.h>
#include <CmMessage.h>

CmMessageStatus my_image_handler (CmMessage message, charx sender,
char* serverName) ;

void show_an_image (char* pixels, int size)
{
}

main()
{
if (!CmMessageOpenServer ("Clientl"))
{
fprintf (stderr, "Declaration error.\n");
return (0);

}

CmMessageInstallHandler (my_image_handler, "Image");

CmMessageWait ();
}

/* (to be continued) ... */

11

/* ... File example7.c (continued) */

CmMessageStatus my_image_handler (CmMessage message, charx* sender,
char* serverName)
{
char* text;
int images;
int image;
char* pixels;
int imageSize;

text = CmMessageGetText (message);
text = CmMessageGetText (message);
images = CmMessageGetInt (message);
text = CmMessageGetText (message);

for (image = 0; image < images; image++)

{
pixels = CmMessageGetBytes (message, &imageSize);
/* something to use this image... */
show_an_image (pixels, imageSize);

}

return (CmMessageok) ;

Fig.5- Receiving CmMessage objects with a dedicated handler.

12

/* File example8.c */

#include <stdio.h>
#include <CmMessage.h>

CmMessageStatus my_image_handler (CmMessage message, charx* sender,
char* serverName) ;

void show_an_image (char* pixels, int size)

{
}
main()
{
if (!CmMessageOpenServer ("Clientl"))
{
fprintf (stderr, "Declaration error.\n");
return (0);
}

CmMessageInstallHandler (my_image_handler, "Image");

for (53)
{
CmMessageCheck () ;

/*
Here come actions to be executed repeatedly
with no explicit wait for messages.
The CmMessageCheck will only detects them and
activate the appropriate handlers.

*/...
}
}

/* (to be continued) ... */

13

/* ... File example8.c (continued) */

CmMessageStatus my_image_handler (CmMessage message, charx* sender,
char* serverName)
{
char* text;
int images;
int image;
char* pixels;
int imageSize;

text = CmMessageGetText (message);
text = CmMessageGetText (message);
images = CmMessageGetInt (message);
text = CmMessageGetText (message);

for (image = 0; image < images; image++)

{
pixels = CmMessageGetBytes (message, &imageSize);
/* something to use this image... */
show_an_image (pixels, imageSize);

}

return (CmMessageOk) ;

Fig.6- Non blocking detection of CmMessage objects.

14

4 Transaction management in Cm .

Cm is mainly designed to be operated asynchronously, and in an event driven non blocking mode.
This in particular means that protocols installed between applications should not be based on a
blocking wait for a dedicated answer.

However logic of the applications often require that a specific answer is expected after having
send a request. Cm provides an optional transaction based mechanism to implement such a logic.

4.1 Description

A typical scenario showing how to use the Cm transaction could be :

1. A transaction is first opened, creating a unique identifier for it, using the CmOpenTransaction
function.

2. This identifier is installed (by the user) in the message containing the request (thus the
protocol is increased to include the transaction id).

3. The request is sent and the requestor enters a conventional wait loop (typically using the
CmMessageWait function)

4. The application receiving the request is expected to answer is a finite amount of time. When
the answer is sent back, it now includes the transaction id. Notice that the complete answer
may include several messages, only the very last one has to include the returned transaction
id.

5. The request sender eventually receives the answer, and among it the message containing
the transaction id. It then terminates the transaction using the CmTerminateTransaction
function (from within the massage handler). (Notice that in this case the handler will return
CmMessageOk and that the traditional CmMessageBreak should not be used any longer).

6. The main wait loop is then stopped and the requestor can now close the transaction (using
the CmCloseTransaction function). This last operation releases the allocated transaction
id.

4.2 An example

An example of how to implement this scenario includes three code sections :

1. The request sending, the wait for the anser and the transaction cleanup,

15

int id;
CmMessage request;

id = CmOpenTransaction ("my request", NULL);
(now building the request)

CmMessagePutInt (request, id);
CmMessageSend (request, "server");

while (!CmIsTransactionTerminated (id))

{
CmMessageWait () ;

}

CmCloseTransaction (id);

Fig.7- Sending a request with a transaction id

2. The handler in the receiver application used to manage the request, compose and send the
answer,

CmMessageStatus request_handler (CmMessage message, ...)

{
int id;
CmMessage answer;
(getting the request contents)

id = CmMessageGetInt (message);

(working with the request)
(and building the answer)

CmMessagePutInt (answer, id);
CmMessageSend (answer, sender);

return (CmMessage(Qk);

Fig.8- Building up an answer to a request with a transaction id

3. The handler in the requestor used to receive the request.

16

CmMessageStatus answer_handler (CmMessage message, ...)
{
int id;
(getting the answer contents)
id = CmMessageGetInt (message);

CmTerminateTransaction (id);

return (CmMessageOk) ;

}

Fig.9- .

One should notice the differences between this mechanism and the traditional use of a return
(CmMessageBreak) used in the receiving handler:

e The break mechanism was global to the application, and thus it was impossible to distinguish
between two break events produced from interlaced handlers (i.e. occurring recursively to
each other).

e Similarly it was not possible to safely interlace protocols which used the same request-anwer
protocol, since there was a risk for a confusion between two of them.

e Therefore the transaction-based protocol permits to interlace any protocol even recursively.

¢ One may also benefit from the possibilty to associate a user object with each transaction in
order to safely pass its reference between the calling sequence and the handler, providing an
unambiguous one-to-one relationship between the answer and the request.

4.3 Remote debugging facilities for transactions

Cm provides internal debugging facilities for transactions. Through sending a dedicated Cm mes-
sages, it is possible to

e Dump all existing transactions of an application,

> cm send -to=my_app -type=CmMessageDebug text=Transactions

Fig.10- Dump active transactions in an application

e Force an existing transaction to terminate, providing a kind of emulation of a failing server
(typically to abort an infinite wait for answer)

> cm send -to=my_app -type=CmMessageDebug text=TerminateTransaction \
int=<the transaction id>

17

Fig.11- Remote termination of a transaction

Fig.12- .

4.4 Programming interface

The following entry points are provided so as to manipulate transactions :

4.4.1 CmOpenTransaction
Syntax int CmOpenTransaction (const char* info, void* user_object)

Description This function opens a new transaction, allocating a free identifier for it. A free in-
formational character string can be provided as well as a reference to a user object.
This reference can be retrieved at any time using the CmGetTransactionObject
function.

4.4.2 CmTerminateTransaction

Syntax void CmTerminateTransaction (int id)

Description This function terminates an opened transaction. The main effect of terminating
a transaction is to stop the current waiting loop.

4.4.3 CmCloseTransaction

Syntax void CmCloseTransaction (int id)

Description This function definitively closes an existing transaction. The identifier will be
released (and can be reused for another transaction).

4.4.4 CmlsTransactionTerminated

Syntax int CmIsTransactionTerminated (int id)

Description This function tests whether the referenced transaction is terminated.

18

4.4.5 CmGetTransactionObject

Syntax void* CmGetTransactionObject (int id)
Description This function retrieves the reference to an object associated with the specified
transaction.

4.4.6 CmGetTransactionInfo

Syntax char* CmGetTransactionInfo (int id)

Description This function retrieves the informational character string associated with the
specified transaction.

4.4.7 CmCloseTransaction
Syntax CmTransactionStatus CmCloseTransaction (int id)

Description Definitively close a transaction, releasing its identifier. No other operation are
permitted on this transaction.

Possible values for the returned CmTransactionStatus are :

CmTransactionOk
CmTransactionNotFound
CmTransactionAlreadyClosed

4.4.8 CmTerminateTransaction

Syntax CmTransactionStatus CmTerminateTransaction (int id)

Description Terminate an opened transaction. This operation generally results in stopping
the current wait loop, marking the transaction as terminated. The transaction
may then be either restarted or stopped.

4.4.9 CmRestartTransaction
Syntax CmTransactionStatus CmRestartTransaction (int id)

Description Restart a transaction for a next occurence of the event associated with it.

19

4.4.10 CmGetTransactionState

Syntax CmTransactionState CmGetTransactionState (int id)

Description Returns the current state of the referenced transaction. Possible values are :

CmTransactionClosed
CmTransactionPending
CmTransactionTerminated

20

5 Handling errors in Cm .

Two mechanisms permit a user to detect misfunctions while using Cm . Firstly, most (if not all!)
Cm entry points return a value which can be either a requested object (such as CmMessageNew) or a
status value (such as CmMessageSend or CmMessageWait). Whenever a failure in doing the required
operation occurs, the return value would be NULL (for returned objects) or 0 (zero) (for status
values). The user should therefore test upon these returned values in order to avoid continuing an
illegal Cm sequence. However, internal states are maintained and checked upon for every Cm object
in order to keep some safety level.

Secondly, internally detected errors that would not be directly translated into returned
values often produce error messages that are sent by default onto stderr. A user defined printer
operator, syntacticly similar to the standard vprintf function (use man vprintf in order to get
the exact and complete syntax for it) may be declared to Cm with the CmMessageInstallPrinter
function. Typical usages for such printer operators are for putting error messages into log-files or
displaying them into graphical windows.

21

6 The NameServer .

The NameServer is a special application (built with Cm) aimed at managing associations between
logical names chosen by the Cm applications and their physical addresses (Internet host addresses
and port numbers).

Each such address must be unique on the network, therefore, one of roles of the
NameServer is to allocate one dedicated port number per application running on a given machine.

The mechanism used to ensure the correct allocation consists in the selection of a value
within a specified range for the following entities :

e The host name where the NameServer runs.
e The port number allocated to the NameServer .

e The first port number that the NameServer may allocate for Cm applications within its do-
main.

e The number of port numbers that the NameServer may allocate within the domain.

One sees that the set of this four values is enough to specify a complete Cm domain or
environment able to manage a coherent set of Cm servers, and opaque to any other Cm domain as
far as there is no overlap on the specified address ranges. Within each such domain the server
names should be unique, while a given name may exist in two different Cm domains.

The domains that correspond to an individual set of configuration parameters are described
within one dedicated text file named $CMRO0T/mgr/CmDomains. However, no mechanism or tool
is provided yet to ensure that the definitions are consistent and yield no overlap. The greatest
care is thus required by system managers while defining the address ranges in this database.
Nevertheless, the NameServer applications that manage each individual domain are automatically
configured from this database, giving some security level.

The format for this file is described as follows :

e Each domain is specified on one line in the file.

e The attributes of the domain are specified each on one word and separated by space charac-
ters.

e The format for the specification of one domain is :

— The domain name.

— The host where to run the NameServer .

— The port assigned to the NameServer .

— The first port number of the range used by the NameServer to allocate user’s ports.
— The size of this range.

— The root location of the database repository. This directory specification is understood
as a base for installing the database. However a subdirectory named with the domain
name is added in order to manage several domains in the same environment.

An application (corresponding to one executable object) may declare several servers. The
behaviour is strictly equivalent then as if the servers would be handled each by one application.
The port numbers are allocated individually as well. Clients for both servers should never notice
that they are physically installed in the same space.

22

6.1 The query operations for the NameServer .

A set of requests may be sent to the NameServer to get informations on the connections it is
managing or to ask it to perform some operations.

Each of those requests has to be sent under the form of a CmMessage sent to the
NameServer , with dedicated types for each kind of request. When needed request parameters
are installed as the CmMessage contents. An answer is always returned to the caller, in the form
of CmMessages with corresponding types, so that an application will declare dedicated handlers
being in charge of understanding the result of the requests.

On another hand, the prebuilt application cm (shipped in the distribution kit) exploits this
functionality and allows to interactively interrogate the NameServer using a shell command as
follows :

Unix> cm <request>

The various requests understood by the NameServer can be summarized in the following
table. Each request is described with the message type used and the data items provided. Answers
are described with the message type and the data items returned.

Request Parameters Answer

NSGetAddress Text <name> NSAddress

Text <original-name>
Int <port>
Text<new—name>

NSGetPort NSPort
Text <name>
Int <port>

NSGetNames Text <reg-expr> NSNames
Text <name>
Text <name>

NSStop NSStopped

NSRestart NSStopped
NSGetConnects NSConnects

Text <name>
Text <host>
Int <port>

NSGetPorts NSPorts
<port>
<port>

NSSetPeriod Int <period> NSPeriod
Int <new value>

NSGetPeriod NSPeriod
Int <new value>

e The NSStop request will stop the NameServer itself (for exploitation purposes). The sta-
tus value returned to the shell is such that the script NameServer.start used to drive the
NameServer will itself terminate. The NSRestartrequest has a similar meaning except for the
status value returned to the shell that makes the driver script to restart the NameServer in-
stead.

23

e The NSGetAddress request returns a null port number (value 0) when the specified name
does not correspond to any active application. It also returns other informations that are
(mainly internally) required to initialize the connections, such as the conversion format (for
byte swapping numeric values). The set of informations returned by this request is used
internally by Cm and is not meant to be used by a normal Cm user.

e The NSGetNames request looks for a set of names according to a pattern (a regular expression
such as used in egrep or sed) and returns the list of active application names that match
this pattern. The following example shows how to use this request :

24

/* File example9.c */

#include <stdio.h>
#include <CmMessage.h>

CmMessageStatus handler (CmMessage message);

main ()

char* answer;
char* destination;

if (!CmMessageOpenServer ("Request"))

{
CmConnectExit ();
return (1);

}
CmMessageInstallHandler ((CmMessageHandler) handler, "NSNames");
message = CmMessageNew () ;
CmMessageType (message, "NSGetNames");
CmMessagePutText ("Cameral[0-9]x");
destination = CmConnectGetName (CmConnectGetNameServer ());

CmMessageSend (message, destination);

CmMessageWait ();
}

CmMessageStatus handler (CmMessage message)
{

char* name;

printf ("answer = ");
while (CmMessageGetItemType (message) == CmMessageItemText)
{

name = CmMessageGetText (message) ;
printf ("Ys ", name);
}
printf ("\n");

return (CmMessageOk) ;

}

running this application will produce the following output :

25

answer = Cameral2 Camera23

if the applications Cameral2 and Camera23 were active when the request has been received
by the NameServer .

e The NSGetConnects request returns a description of the complete set of connections currently
served by the NameServer , including their host address and port number.

e The NSGetPorts request returns the complete set of allocated port numbers.

e The NSTestPort request checks the status of the given port number relatively to Cm : this
port number may be :

— outside the allowed range of port numbers for this particular Cm environment,

already allocated to one of the Cm applications,

— available to a future allocation,

not available for allocation by a Cm application (likely it is used by a non-Cm applica-
tion).

e The NSSetPeriod request changes the cleanup period used by the NameServer to check pe-
riodically the status of the Cm applications. The default value is 100 seconds.

The NSGetAddress and NSGetPort are meant for internal use only. A dedicated handler is
declared within Cm and thus should never be overriden whithout unexpected results.

6.2 Data persistency in the NameServer .

Each NameServer activation maintains within dedicated files the whole set of informations on
connections it manages. This permits in particular to restart it after it stopped (either on explicit
user’s request or due to a crash!!) while rebuilding the complete knowledge of active connections.

The connections between applications are not killed by a NameServer interruption, only
new connections are impossible (and of course requests to NameServer). Eventually, when the
NameServer is restarted, reconnection by the applications is performed transparently.

Thie database is maintained in a directory named with the domain name and installed in a
root directory specified in the domain configuration file.

Each connection is stored in a specific file named with connection’s name.

6.3 Activating the NameServer .

The NameServer application must be activated with the entire set of values that defines one
Cm domain. Domains available to a site where Cm is installed are all specified in a single textual
file :

$CMRO0T/mgr/CmDomains

which contains one individual line per domain with the following format :

26

e The domain name.

e The host where to run the NameServer .

e The port assigned to the NameServer .

e The first port number of the range used by the NameServer to allocate user’s ports.
e The size of this range.

e The root location of the database repository. This directory specification is understood as
a base for installing the database. However a subdirectory named with the domain name is
added in order to manage several domains in the same environment.

The connection files are stored into the database directory and retrieved in subsequent re-
activations of the NameServer .

The Cm distribution kit provides a tool (a Unix shell script located in $CMRO0T/mgr/NameServer .start)

that, in addition to performing some checks about the effectiveness of the current domain defini-
tions (although these checks are also performed within the NameServer itself) would handle an
automatic restart mechanism of the NameServer when it fails for strange reasons, guaranteeing
a permanent life. This script is able to understand the various conditions that may occur for a
termination of the NameServer , allowing to actually stop it when this is required by the manager,
or when a non-recoverable error is detected (such as a bad environment definition or a failure to
bind the TCPIP port).

It is important to understand that manually launching the NameServer ezecutable (i.e. with-
out using the dedicated script) is generally a non-safe operation since this may not be done within
the proper directory, or on the appropriate machine. The result of doing this is therefore unspeci-
fied.

An example of a typical Unix session where the NameServer is first activated then stopped
(by a request) and lastly restarted is shown as follows :

27

>## One first selects a domain from the set specified
>## in the $CMROOT/mgr/CmDomains file.

> more $CMROOT/mgr/CmDomains

LAL as2.lal.in2p3.fr 22000 22001 999 $CMRO0T/infos
LALDev as2.lal.in2p3.fr 30000 30001 999 /tmp/Cm

> setenv CMDOMAIN LALDev

>

St Actual NameServer activation :
>

> $CMRO0T/mgr/NameServer.start

>

>## Then some applications are activated, using this
>## Cm domain for a while.

SHE ...

>## Then one decides to stop the NameServer.
>

> cm stop

>

>## When the NameServer is reactivated, and as long as

>## the same domain is still selected, the database will be
>## restored, and still alive process will be re-connected to
>## the NameServer.

>

>## Reactivating the NameServer is just a matter of

>## using the same shell script :

>

> $CMROOT/mgr/NameServer.start

>

Fig.13- Controling the NameServer by the special NameServer.start script.
The special script could be installed in the system’s frame for automatic daemon activa-

tion tools (rc.local or cron) but it also provides an automatic reactivation mechanism of the
NameServer in case of unexpected crash.

28

7 cm send : The interactive Cm exerciser.

The cm send utility available in the Cm package provides means of building and sending any kind
of message to any application.

The message description is built using arguments given to the cm send command as follows :

e the destination

-to <name>

e the message type

-type <type>

e 3 possibility to receive one or several answers of given types

-handler <type>...

e the message contents :

—char <character value>,...
-short <short value>,...
-int <int value>,...

—-float <float value>,...
—double <double value>,...
-text <text value>,...

When a single value is given such as in :
-int 10

then a scalar value is installed in the message (using CmMessagePutInt here) and when a
list of values is specified, such as in :

-int 10,11,12,16
then an array of values is installed in the message (using CmMessagePutArray here).

The following example shows how to send a request for comment to an application and
receive the corresponding answer :

> cm send -to DbServerv4r3 -type CmRequestComment -handler CmComment
Message type CmComment received from DbServerv4r3
-text ServerAlive

Fig.14- Using the Cm exerciser.

29

8 Linking Cm to XWindows.

Linking Cm to XWindows, Motif or other such style of interactive environment requires to manage
the event-loop coherently in the two worlds (since both are event-driven). Special modules are
provided by the Cm distribution kit to handle this question properly either in a context of pure
Xt/Motif manipulation or of the OnX package.

These modules provide each a setup function CmXtSetup or CmOnzSetup that will integrate
the handler activation scheme of Cm and the callbacks mechanism through a common use of the
general wait function CmMessageWait.

The integration of the two environments is shown in the following example :

/* File examplelO.c */

#include <stdio.h>
#include <Ci.h>
#include <0Kit.h>
#include <0OWidget.h>

#include <CmMessage.h>

Widget XtWidgetTop () ;
int O0XtDispatchEvent (XEvent*);
void CmSwitch ();

/* A Cm handler */

CmMessageStatus MyHandler (CmMessage message,
char* name,
char* serverName) ;

/* An OnX callback */
void SendMessage (char* to, char* text);

/* (to be continued) ... %/

30

int main (int argc, char** argv)

{

}

if (!CmMessageOpenServer ("Toto")) return (0);

/* Declares the Cm handler */
CmMessageInstallDefaultHandler (MyHandler) ;

/* Install Cm in the C interpretor */
CiPathNew ("CMSRC");
CiBindClass ("CmSwitch", (CiRoutine) CmSwitch);

/* Declares the OnX callback */
CiDo ("void SendMessage (char* to, char* text);");
CiFunctionBind ("SendMessage", (CiRoutine) SendMessage) ;

/* OnX is initialized */
OKitInitClass (argc, argv);

/* Install the Onx dispatcher inside Cm */
{

Display* display;

Widget w;

w = XtWidgetTop O ;

display = XtDisplay (w);

CmOnxSetup (display, OXtDispatchEvent);
}

/*
The CmMessageWait function is substituted to

the usual OKitMainLoop function.

*/
CmMessageWait () ;

OKitClearClass O

/* (to be continued) ... */

31

/* ... File examplelO.c (continued) */

CmMessageStatus MyHandler (CmMessage message,
char* name,
char* serverName)

char* text;

text = CmMessageGetText (message);
printf ("Received from %s : %s.\n", Name, text);

return (CmMessage0k) ;

}

void SendMessage (char* to, charx text)

{

static CmMessage message = 0;
if (!message) message = CmMessageNew ();

CmMessageReset (message);
CmMessagePutText (message, text);
if (!CmMessageSend (message, to))
{
printf ("Error sending message to %s\n", to);
}
}

Fig.15- Integration of Cm and OnX.

32

9 The Cm package : use and installation.
The Cm package is distributed with the following components :

e The tools required to develop a Cm application :

— the 1ibCm.a library.

— the include file defining the public types corresponding to the public classes of the
package, and the related functions prototypes :

* CmMessage.h

The NameServer application needed for the connection management.

The cm application for interactively interrogate the NameServer .

The NameServer.start shell script (only provided for Unix environment) for controling the
NameServer ’s activation.

A shell script containing the definition of the various environment variables required both to
access the package itself and to specify the Cm domains : setup.csh

A template for the CmDomains configuration file.

e The documentation manuals :

— This document (in Postscript format) : VIR-MAN-LAL-5600-107 .ps
— The architecture description document : VIR-MAN-LAL-5600-106.pdf

The general management of Cm (both for its building up and its usage) is handled through
the CMT environment. This in particular controls the way environment variables and make macros
are generated.

9.1 Configuring Cm .

The system configuration for Cm is two-sided : on the one hand, some environment variables
are used to access the package (sources, binaries or management tools) and on the other hand
Cm domains are specified using a special environment variable. Let’s first look at the configuration
variables :

33

$CMROOT The root directory where Cm is installed.
For instance, at LAL, the version v8r1is installed in :
e Unix> /1lal/Cm/v8ril
$CMROOT/src The directory where sources and header files are stored.
$CMROOT/ cmt The directory where administration and reconstruction files
(Makefile) are stored.
$CMROOT/mgr The directory where scripts (start up scripts for instance) are
stored.
$CMROOT/$CMCONFIG| The directory where package binaries are stored : the various
libraries and executables (NameServer and cm.exe). Usual values
are :
e $CMROODT/alpha
e $CMROOT/HP-UX
e $CMROOT/SunOs
e $CMROOT/Lynx0S
e $CMROOT/Linux
$CMRO0T/doc The directory where manuals are stored (IATEXsource, postscript
or HTML documents).

Then the current Cm domain is specified using the CMDOMAIN environment variable. The
set of possible domains is described in the file CmDomains (installed in the management directory
of Cm) and contains one line per domain with each having the format (items are separated by

spaces) :

e The domain name.

e The host where to run the NameServer .

e The port assigned to the NameServer

e The first port number of the range used by the NameServer to allocate user’s ports.

e The size of this range.

e The root location of the database repository. This directory specification is understood as
a base for installing the database. However a subdirectory named with the domain name is
added in order to manage several domains in the same environment.

9.2 Building a Cm application and using it.

The Cm application code should first get access to both the Cm functions definitions and to the
Cm types. This is done in C language by including the Cm header file :

34

#include <CmMessage.h>

Fig.16- Using the Cm header file in an application.

The first operation installed in the application’s code is to initialize one Cm personnal con-
nection, giving the selected server’s name. The important decision that must be taken at this
level is whether it will be clonable or not. Making a server clonable means that its name cannot
be hard-coded in any of it’s client, since its name will be suffixed by a sequence number by the
NameServer . Only non clonable servers can be referred to explicitely by clients. Clonable ones
may only be answered on requests.

The functions :

o CmMessageOpenServer

e CmMessageOpenMultipleServer

permit one of the two possible initialisation modes of Cm servers. They all receive the server’s
name as their argument, and can be tested upon normal completion.

During the application’s life, several servers may be activated or disactivated. Disactivation
of a server is done using the function :

e CmMessageCloseServer

An old style of server activation was used in the previous versions of Cm (up to version vbrx).
The corresponding entry points have been marked as ’obsolete’. The developpers are thus strongly
encouraged to switch to the new style. The entry points concerned with this remark are :

e CmConnectStartupAsServer

CmConnectStartupAsMultipleServer

CmConnectOpenServer

CmConnectOpenMultipleServer

CmMessageStartup

e CmMessageStartupMultiple

9.2.1 Compiling and linking a Cm application.

Developping an application using the methods environment automatically provides all required
connections and references to include search paths or library usage related with Cm .

This will be obtained if one specifies in the requirements file of the developped package :

use Cm v8ri

application MyApp MyApp.c

35

Fig.17- The use statement for Cm .

Then using the usual pck genmake utility will provide all required make macro definitions
so as to properly compile and link your application.

9.2.2 Running a Cm application.

The proper Cm context has to be correctly setup prior any application can be started. This
consists in the definition of some environment variables (usually by executing the shell script
$CMROOT/mgr/setup.csh) and launching the NameServer application (only if thhis is required
and by executing the shell script $CMRO0T/mgr/NameServer.start).

One way to ensure the proper installation is done one could be to execute the following
sequence of commands :

Unix> source .../Cm/../cmt/setup.csh

Check the NameServer :
Unix> cm names
CmNameServer
cm_1

(Minimal answer when NameServer is already active)
or :

Unix> cm names

Cm> Impossible to reach the NameServer.

(Answer when NameServer is unavailable)

Start the NameServer (when needed)
Unix> $CMROOT/mgr/NameServer.start

Run the application :
Unix> toto.exe

Fig.18- Setting and checking the Cm context.

9.3 Porting the Cm package on a new system.

In order to be properly rebuilt and operated on a given system, one should ensure the availability
of an ANSI C compiler with the socket interface environment supporting TCPIP.

The Cm package is distributed as a compressed Unix tar file comprising the sources, the
manual and the various administration or reconstruction files.

Once untarred, one should have a look at the file . /Cm/v8r1/mgr/requirements. It contains
definitions for various environment variables, that may need to be adjusted. Once this is done, the
following sequence of action should be performed :

36

Unix> cd <some root>
Unix> ftp lalftp.in2p3.fr

anonymous

> cd pub/Cm

> get CMTv3rl.tar.Z ! if needed

> get CSetv2r5.tar.Z ! if needed
> get Cmv7r7.tar.Z

> quit

Unix> mkdir Cm

Unix> cd Cm

Unix> uncompress ../Cmv7r7.tar.Z
Unix> tar xvf Cmv7r7.tar

Unix> cd v7r7/mgr

Unix> vi requirements

Unix> vi CmDomains

Unix> pck config

Unix> source setup.csh

Unix> [g]lmake

Unix> setenv CMDOMAIN ...

Unix> $CMROOT/mgr/NameServer.start &
Unix> cm names

9.4 How to figure out the actual situation of a Cm context.

Often, one has to understand on a given machine or environment whether Cm is configured, whether
the NameServer is running or not, and which domains are available or used.

The following points can be easily checked upon in order to figure out what is the current
setup of Cm

e Check the installation directory for the Cm package.

The environment variables CMROOT and CMVERSION must be defined. When this is not true
you should run the setup script (you need to explicitely know the exact location where Cm is
installed). At LAL you should do :

csh> source /lal/Cm/v8rl/setup.csh

e Select one of the possible domains to live with.

The set of domains is described in the basic configuration file located in $CMROOT/mgr /CmDomains.
the cat Unix command) one sees the list of available domains.

Selecting one of the domain is done by setting the environment variable CHNDOMAIN the selected
domain name.

37

e Check the NameServer .

Each domain is assigned one host address where the NameServer should run and a directory
where the NameServer database is maintained. Only one NameServer may exist in the
context of a particular domain. Therefore, before trying to run a new NameServer , one
should check its existence. On the machine assigned to it, the Unix ps command can be used
as follows :

home> ps -e | grep NameServer

8812 ttyp3 S + 0:00.01 grep NameServer
8762 ttyp4 S 0:00.10 csh -f NameServer.start
8808 ttyp4 S 0:00.05 NameServer.exe LAL v7r7

This shows that one NameServer is currently running in the context of the domain named
LAL and under the version v8r1.

o If the NameServer is not running for the selected context, one can try to launch it using the
$CMRO0T/mgr/NameServer.start shell script. However, this operation may require some
access privileges in order tolet the NameServer write out its database.

On the other hand, running this script must be done on the machine assigned to the selected
domain.
e Check the state of a runnning NameServer .

The typical application that can be run in order to verify the correct behaviour of the
NameServer is cm.

Typical use of it are :

38

home> cm <command> [args...

command :

names
connects

comments

ports

period [<new period>]

Gets the names of active Cm applications
Gets the descriptions of active connections
Gets the comments of active servers

Get the list of allocated ports

Get or set the cleanup period of the
NameServer

reconnect <name> <port> <host> <owner> : Try to reconnect NameServer

restart_server
stop_server

domain

domains

version

trace <level> <name>

debug [on/off] <name>
check_base

send

receive

cleanup <name>

print <name>
kill <comnnect>

kill <connect> <name>

to a lost application

Restart the NameServer
Stop the NameServer
Show domain info
Show all domains
Show Cm version
Trace messages in application <name>

0 : off

1/2/3 : on
Set/reset debug mode in application <name>
Perform various checks on the database
Build and send a message to an application
Receive messages

cleanup <name> in the Cm connects list
(process does not exist anymore)
print out all connections currently opened
with <name>

close <connect> Cm connect opened with the
NS

close <connect> Cm connect opened with
<name>

home> cm names
CmNameServer
cm_1

39

10 Application programming interface for Cm .

This section presents the functions available on the CmConnect and CmMessage classes.

10.1 The CmMessage functions.

This class handles a structured protocol within data frames that have to be sent over the network
through CmConnect objects. The mechanism they provide permits to operate the connection
asynchronously since the data itself knows about their internal structure. In addition to the
control operations, a general typing mechanism is added in order to install specialized behaviour
on specific message receptions.

In most of the CmMessage ’s methods, the first argument is a reference to the CmMessage ob-
ject acted upon in this method. For all these situations, the corresponding argument is not docu-
mented explicitely.

10.1.1 CmMessageOpenServer - CmMessageOpenMultipleServer

Syntax

Description

Parameters

Returned value

int CmMessageOpenServer (char* name)

int CmMessageOpenMultipleServer (char* genericName)

These functions declare a server as a participant to a Cm domain defined by
its context and selects a-priori an asynchronous operating mode for incoming
connections. One of these two functions should be selected on the basis of whether
the server should be unique in the Cm domain or clonable.

This is the very first operation to do within a Cm application before any attempt
to communicate with another server.

For clonable servers, each clone is given a sequence number corresponding to the
instance number for this server. Clone numbers are reused when clones disappear.

name The name under which the server will be known by the system
for unique applications.

genericName The generic name used to form the actual server’s name for
clonable ones.
Names of clones are built by suffixing the generic name by an
underscore followed by the sequence number of the clone.

An integer value (1 or 0) describing the correctness of the initialisation procedure.
A null value means the required name is not available or the NameServer is not
reachable.

10.1.2 CmMessageNew

Syntax

CmMessage CmMessageNew (void)

40

Description

Returned value

Creates a CmMessage object. It is meant to be filled up with typed items using
the CmMessagePutXxx functions. Once filled up it can be sent to a server using
the CmMessageSend function.

A given CmMessage object may be sent consecutively to several servers.

A CmMessage is not a-priori associated to any connection. Instead, either it is
used for sending informations, and in this case connections (using CmConnect ob-
jects) will be created (or referenced) dynamically or if it used for receiving in-
formations, the CmMessage itself is brought along with the transfered data (and
automatically instanciated locally in the application’s space).

The reference of the newly created CmMessage .

10.1.3 CmMessageDelete

Syntax

Description

void CmMessageDelete (CmMessage message)

Destroys the CmMessage object.

Greatest care should be taken not to destroy CmMessage objects received from
another application : the Cm engine is taking care of it automatically. Killing
them would damage the system.

10.1.4 CmMessageReset

Syntax

Description

void CmMessageReset (CmMessage message)

This functions sets the CmMessage back to the original state it had just after its
creation, losing in particular all of its previously stored informations.

10.1.5 CmMessageSetType

Syntax

Description

Parameters

void CmMessageSetType (CmMessage message, char* type)

Defines the message type. The type can be redefined as many times as wished,
only the last value at sending time is relevant.

Types are used for selecting at the reception side a specialized handler declared
in the client application using the CmMessageInstallHandler function.

type The type given to this message.

41

10.1.6 CmMessageSend

Syntax

Description

Parameters

Returned value

int CmMessageSend (CmMessage message, char* name)

This function sends the specified CmMessage object to a server. The internal
mechanism is such that one may consider that one copy of the CmMessage is
actually sent over the network, and will be received as it is by the server, thus
preserving the accumulated informations.

Once a CmMessage has been sent, it is logically closed for further data accumula-
tions. Thus any further CmMessagePutXxx operation will automatically re-open
it, clearing the internal buffers, and accumulate again into a fresh area.

name The name of the server.

A boolean value (1 or 0) describing the correctness of the sending operation. A
null value indicates an error while sending the message, showing usually that the
client application is not currently active.

One should notice that in case of error, the close operation that would occur after
any send is not performed, permitting in particular to try again to send it.

An internal timeout check is performed while sending the message. If the timeout
duration is exceeded a error value 1 is returned. The present value of the timeout
duration is 10 seconds (except for OS9: 1 second).

10.1.7 CmMessagePutXxx

Syntax

Description

Several versions of this function are available, according to the type of the value
that is to be accumulated within the CmMessage

e void CmMessagePutChar (CmMessage message, char value)

e void CmMessagePutShort (CmMessage message, short value)

e void CmMessagePutInt (CmMessage message, int value)

e void CmMessagePutLong (CmMessage message, long value)

e void CmMessagePutFloat (CmMessage message, float value)

e void CmMessagePutDouble (CmMessage message, double value)
e void CmMessagePutText (CmMessage message, char* value)

e void CmMessagePutBytes (CmMessage message,
char* value, int length)

e void CmMessagePutArray (CmMessage message,
CmMessageArrayType type,
int elements, void* address)

e void CmMessagePutExtArray (CmMessage message,

CmMessageArrayType type,

int elements, void* address)

These functions accumulate typed values within the internal data buffers of the
specified CmMessage object. The values are internally formatted in a machine-
independant way for transparent transfer.

42

Arrays can be installed either with direct copy into the CmMessage ’s frame or
by referencing it. In the latter case, data will be used only when the message is
sent to some application, putting the array at that time only onto the network.
The CmMessage internal buffers are not extended either in this case.

Parameters value The value to be installed.
length The size of the byte array (only for the CmMessagePutBytes
function).
type The element type for arrays (only for the CmMessagePutArray

functions). The value may be chosen among one of the following
constant values :

o CmMessageChar

e CmMessageShort

e CmMessagelnt

elements The number of elements in the array (only for the CuMessagePutArray
functions).
address The address of the first element of the array.

10.1.8 CmMessageGetType
Syntax char* CmMessageGetType (CmMessage message)

Description This function reads the type of the specified message. It is typically used within
a reception handler and is often usefull when the handler is a default handler.

Returned value A character string representing the type. Be carefull not to modify in any manner
the return string this a direct pointer to the actual message type is returned.

10.1.9 CmMessageGetXxx

Syntax Several versions of this function are available, according to the type of the value
that has to be extracted from the message.

e char CmMessageGetChar (CmMessage message)

e short CmMessageGetShort (CmMessage message)

e int CmMessageGetInt (CmMessage message)

e long CmMessageGetLong (CmMessage message)

e float CmMessageGetFloat (CmMessage message)

e double CmMessageGetDouble (CmMessage message)

e char* CmMessageGetText (CmMessage message)

e char* CmMessageGetBytes (CmMessage message, int* returnedLength)

e void* CmMessageGetArray (CmMessage message,
CmMessageArrayType* type,

int* elements)

43

Description These functions sequentially decode values from the internal message buffer. Val-
ues are not actually copied into the user’s space, except for simple numeric ones.
Arrays and strings are merely returned as a reference to the actual value within
the message buffer. Their life time is therefore limited to the duration of the
reception handler from which these functions are called.

For functions that accept additionnal information (such as CmMessageGetBytes
or CmMessageGetArray) a reference to the variable that is meant to receive the
value is given in the argument list. If the NULL poiter value is provided, then this
argument is ignored.

Parameters returnedLength The effective length of the byte array retrieved (Only for the

type

CmMessageGetBytes function).
The element type of the returned array (only for the CmMessageGetArray
function). Its value can be one of :

e CmMessageChar

e CmMessageShort

e CmMessagelnt

elements The number of elements in the returned array (only for the

CmMessageGetArray function).

Returned value The value retrieved from the message : either the value itself for simple numeric
values or a reference to it for arrays or strings.

10.1.10 CmMessageGetItemType

Syntax CmMessageItemType CmMessageGetItemType (CmMessage message)

Description This function accesses the item type of the current item within the data buffer of
the specified message.

This information may be used for instance to check whether no more information
is available from this message.

Returned value A value describing the type of the current item. It may present one of the following
constant values (available from the CmMessage.h header file) :

CmMessageIltemChar
CmMessageItemShort
CmMessageltemInt
CmMessageltemLong
CmMessageIltemFloat
CmMessageIltemDouble
CmMessageIltemArray
CmMessageltemText
CmMessageltemBytes

CmMessageltemTail

44

10.1.11 CmMessagelInstallPrinter

Syntax int CmMessageInstallPrinter (CmConnectPrinter printer)

Description This function installs a printer operator

10.1.12 CmMessagelnstallDefaultHandler

Syntax void CmMessageInstallDefaultHandler (CmMessageHandler handler)
Description This function installs a reception handler that will be activated (by the Cm engine)
for any message which type is not handled.

The handler should likely be able to cope with any unforeseen message type (and
its data format too !). The use of the CmMessageGetType is usually recommanded
in such a handler.

Handlers should be prototyped as follows :

CmMessageStatus handler (CmMessage message, char* sender, char* serverName);

10.1.13 CmMessagelnstallHandler

Syntax void CmMessageInstallHandler (CmMessageHandler handler, char* type)
Description This function installs a reception handler meant to be activated (by the Cm en-
gine) when the message type matches the character string specified here.

The handler specified here is assumed to know about the data format within
messages of that particular type.

Handlers should be prototyped as follows :

void handler (CmMessage message, char* sender, char* serverName);

10.1.14 any-message-handler

Syntax CmMessageStatus any-message-handler (CmMessage message,
char* sender,
char* serverName)
Description This is how a user defined reception handler should be defined for a proper acti-
vation by the Cm engine.
The handler must return either CmMessageOk or CmMessageBreak when the in-

nermost wait loop must be broken.

Parameters sender The application’s name that sent this message. This name can
be used to (for instance) answer directly to the caller (this may
be done right from the handler itself).

serverName The server’s name to which the message was sent.

45

10.1.15 CmMessageUninstallHandler

Syntax

Description

void CmMessageUninstallHandler (charx type)

This function uninstalls a reception handler previously declared for the specified
message type.

10.1.16 CmMessageCheck

Syntax

Description

Returned value

Example

CmConnectCondition CmMessageCheck (void)

This function checks in non-blocking mode whether any of the existing connection
has a pending message. If any, the associated handler (when defined) will be
executed.

On another hand, this function checks the internal service messages such as con-
nection requests, connection losses and previously inactivated connection destruc-
tions (deleting the associated CmConnect objects).

The critical role played by this function for physical connection management
makes it strongly required whenever a long loop is to be performed in the ap-
plication. In such a case, the developper should ensure that CmMessageCheck is
regularly called within such a loop, specially if messages are sent within the loop.

The condition under which the check completed. On of the following values may
be returned :

o CmConnectNormalCompletion

e CmConnectNoHandler

e CmConnectBreakDetection

e CmConnectErrorCondition

The role and behaviour of this function is strictly the same as those of the
CmConnectCheck function.

46

/* File examplel2.c */

/*
Application looping on operations while being
listening to incoming messages.

*/

#include <stdio.h>
#include <CmMessage.h>

main ()

{
CmMessageOpenServer ("Toto");
for (53)
{

CmMessageCheck () ;

/*
Any message received prior to the check function
will trigger the activation of the corresponding
handler (if any).

*/

/* Actual processing loop ... */
}
}

Fig.19- Non-blocking message reception by CmMessage objects.

Example

47

/* File examplell.c */

#include <stdio.h>
#include <CmMessage.h>

CmMessageStatus my_handler (CmMessage message, char* sender,
char* serverName) ;

main()
{

CmConnectCondition condition;

if (!CmMessageOpenServer ("Client1"))

{
fprintf (stderr, "Declaration error.\n");
return (0);

}
CmMessageInstallHandler (my_handler, "Image");
condition = CmMessageWaitWithTimeout (1.0);

switch (condition)
{
case CmConnectTimeoutDetection :
/* The image did not come */
break;
case CmConnectBreakDetection :
/* The image is arrived */

break;
case CmConnectNoHandler :
break;
case CmConnectErrorCondition :
break;
}
}
/* (to be continued) ... */

48

/* ... File examplell.c (continued) */

CmMessageStatus my_handler (CmMessage message, char* sender,
char* serverName)

{
char* text;

text = CmMessageGetText (message);

return (CmMessageBreak);

}

Fig.20- Interrupting a wait operation from a handler using CmMessageBreak.

10.1.17 CmMessageServerCheck
Syntax CmConnectCondition CmMessageServerCheck (char* namePattern)

Description This function checks in non-blocking mode whether any of the existing servers
whose name match the pattern has a pending message. If any, the associated
handler (when defined) will be executed.

Otherwise, the behaviour is similar to the CmMessageCheck function.
Parameters namePattern The regular expression pattern used to select the servers.

Returned value The condition under which the check completed. On of the following values may
be returned :

e CmConnectNormalCompletion
e CmConnectNoHandler
e CmConnectBreakDetection

e CmConnectErrorCondition

Example

49

/*

*/

{

{

/*

*/

/*
}
}

/* File examplel3.c */

Application looping on operations while being
listening to incoming messages.

#include <stdio.h>

#include <CmMessage.h>

main ()
CmMessageOpenServer ("A");
CmMessageOpenServer ("B");
CmMessageOpenServer ("C");
for (;;)

CmMessageServerCheck ("[BC]");

Any message received prior to the check function
will trigger the activation of the corresponding
handler (if any) if they had been sent to a server
whose name contain B or C.

Actual processing loop ... */

Fig.21- Non-blocking message reception for selected servers..

10.1.18 CmMessageWait

Syntax

Description

Returned value

CmConnectCondition CmMessageWait (void)

This function is similar to the CmMessageCheck function except that it waits
continuously instead of just checking for the messages. Handlers are activated
and internal service activities are performed. However this function may complete
when a message is detected on a connection that has no declared handler.

The condition under which the wait completed. One of the following values may
be returned :

e CmConnectNoHandler

50

e CmConnectTimeoutDetection
e CmConnectBreakDetection

e CmConnectErrorCondition

The role and behaviour of this function is strictly the same as those of the
CmConnectWait function.

10.1.19 CmMessageWaitWithTimeout

Syntax CmConnectCondition CmMessageWaitWithTimeout (double seconds)
Description This function is similar to the CmMessageWait function except that it waits up
to a given number of seconds. The timeout is given as a floating point value of
seconds.
Parameters seconds The floating point value of seconds until the wait is forced to
complete.

Returned value The condition under which the wait completed. One of the following values may
be returned :

e CmConnectNoHandler
e CmConnectTimeoutDetection
e CmConnectBreakDetection

e CmConnectErrorCondition

10.1.20 CmMessageServer Wait

Syntax CmConnectCondition CmMessageServerWait (char* namePattern)

Description This function is similar to the CmMessageServerCheck function except that it
waits continuously instead of just checking for the messages for the selected
servers. Handlers are activated and internal service activities are performed.
However this function may complete when a message is detected on a connection
that has no declared handler. The messages sent to servers whose name does not
match the pattern are left pending and stacked until a non-selective wait function
is used.

Parameters namePattern The regular expression pattern used to select the servers.

Returned value The condition under which the wait completed. One of the following values may
be returned :

e CmConnectNoHandler
e CmConnectTimeoutDetection
e CmConnectBreakDetection

e CmConnectErrorCondition

51

10.1.21 CmMessageServer WaitWithTimeout

Syntax CmConnectCondition CmMessageServerWaitWithTimeout (char* namePattern,
double seconds)

Description This function is similar to the CmMessageServerWait function except that it waits
up to a given number of seconds. The timeout is given as a floating point value
of seconds.

Parameters namePattern The regular expression pattern used to select the servers.

seconds The floating point value of seconds until the wait is forced to
complete.

Returned value The condition under which the wait completed. One of the following values may
be returned :

e CmConnectNoHandler
e CmConnectTimeoutDetection
e CmConnectBreakDetection

e CmConnectErrorCondition

10.2 The CmConnect functions.

The CmConnect class implements the basic connection mechanisms, hiding the internal transport
layer (based itself on TCPIP and the C socket interface).
Generally, the CmMessage interface is enough to access the Cm features. However, some gen-
eral requests about the knowledge base of Cm are performed using the direct CmConnect interface.
In most of the CmConnect ’s methods, the first argument is a reference to the CmConnect ob-
ject acted upon in this method. For all these situations, the corresponding argument is not docu-
mented explicitely.

10.2.1 CmConnectNew

Syntax CmConnect CmConnectNew (char* name)
Description This function establishes a new connection to another server (found in the same
Cm domain). If the connection already exists, it is merely reused.

This function is useful when one wants to establish at a desired time the con-
nection to a given server, avoiding for instance any undesirable time penalty in
a real-time application when the first message would be sent or received to/from
it.

Parameters name Server name which one wants to communicate with.

Returned value The CmConnect object that supports the connection.

The NULL value is returned in case of error (likely, there is no such server active
under this name).

92

10.2.2 CmConnectGetReference
Syntax CmConnect CmConnectGetReference (char* name)

Description This function looks for a CmConnect object supporting an active connection to
the specified server.

Parameters name The logical Cm name of the server.

Returned value The CmConnect object supporting the connection or the NULL value.

10.2.3 CmConnectGetName
Syntax char* CmConnectGetName (CmConnect connect)

Description Yields the server’s Cm name currently connected through the specified CmConnect ob-
ject. This is often usefull within a handler since a reference to the CmConnect ob-
ject that produced data is provided as the first argument to any handler.

Returned value The server’s name or the NULL value if the CmConnect object is no longer active.

10.2.4 CmConnectGetHost

Syntax char* CmConnectGetHost (CmConnect connect)

Description Provide the host name of the specified connection. Use it in conjunction with the
CmConnectGetReference in a CmMessage handler.

Returned value The host’s name from which the connection is originating or the NULL value if the
CmConnect object is no longer active.

10.2.5 CmConnectGetOwner
Syntax char* CmConnectGetOwner (CmConnect connect)

Description Provide the owner name of the specified connection. Use it in conjunction with
the CmConnectGetReference in a CmMessage handler.

Returned value The user’s name who created this connection or the NULL value if the CmConnect ob-
ject is no longer active.

93

10.2.6 CmConnectGetServer

Syntax

Description

Returned value

CmConnect CmConnectGetServer (CmConnect connect)

Returns the CmConnect object representing the server which actually handles this
connection.

The CmConnect object representing the server.

10.2.7 CmConnectCleanup

Syntax

Description

void CmConnectCleanup (void)

This function closes all currently active connections, deletes all objects managed
by Cm and cleans up the dynamically allocated memory used by Cm .

This is clearly a function that has to be called only at the very end of a Cm appli-
cation. It may also show various information messages about possibly uncorrectly
cleaned up items. These messages are only informational but might be sent to
the Cm ’s author for debugging purposes.

10.2.8 CmConnectSelectServer

Syntax

Description

Parameters

Returned value

CmConnect CmConnectSelectServer (char* name)

This function permits to select one of the servers managed within the current
application to become the current server. This notion has no real internal meaning
except that it can be inquired using the CmConnectWhoAmI function.

name The name of one of the servers actually managed by the appli-

cation. If the name is not recognized, the current server is not
changed.

A reference to the private CmConnect object of the current application.

10.2.9 CmConnectWhoAmlI

Syntax

Description

Returned value

CmConnect CmConnectWhoAmI (void)

This function permits to access the personnal connection of the current applica-
tion. This particular connection is used to handle the connection requests from
other applications. The CmConnect object may then be used for management
purposes (such as retrieving the actual Cm name of the application using the
CmConnectGetName function).

A reference to the private CmConnect object of the current application.

54

10.2.10 CmConnectGetNameServer

Syntax CmConnect CmConnectGetNameServer (void)

Description This function permits to access the personnal connection established with the
NameServer . This CmConnect object may then be used for communicating with
it (together with the CmConnectGetName function).

Returned value A reference to the CmConnect object used for the NameServer .

11 History of changes

11.1 Changes since the version v8rl.

Add the possibility to kill a CmConnect NULL. c¢m kill ”jnull;”.

Add CmMessageLong in CmMessageArryType enum to be used in CmMessagePutArray.

Add the possibility to send long type with ”cm send ” command (it was before possible with int
type (implemented with long actually).

Add defined (CM_LINUX) in Block () DontBlock () in order to avoid problem for large data
transfer on Linux.

Add CmConnectKill (c) in CmServerInfosHandler: this handler is activated.

each time a server S1 tries to communicate with another one S2 (at the first communication try
ONLY). Hence if S2 has kept in memory an old obejct connect corresponding to S1, it will be
cleanup before creating the new object Connect in S2.

11.2 Changes since the version v7.

These versions fix several internal problems found in the database file management, and introduce
the transaction management mechanisms.

The package has also been cleaned up using the Insure++ tool.
The interactive Cm exerciser (the cm send utility) is also introduced.

The configuration management is now entirely and explicitely managed within the context
of the methods environment.

11.3 Changes since the version vérl.

This version introduces quite major changes, especially in the internal protocol management, since
all synchronous aspects of the internal management are now removed. The complete protocol,
be it between applications and the NameServer or between applications is now asynchronous and
fully based on CmMessages objects. In particular, sending CmMessages is now asynchronous, and
although the CmMessageSend function still provides the same functionality as before, its internal
behaviour relies now on a loop over CmMessageWait allowing the reception of messages while the
transmisson of individual packets is processed.

A new function CmMessagePost is provided in order to start the transmission of a (maybe
long) message without blocking the calling application. Termination is acknowledged by specifying
as an argument to this function a termination handler.

One should note that the NameServer is now a full CmMessage oriented application and
that the various service messages exchanged between applications or between applications and the
NameServer are all based on CmMessage objects. The result of this new mechanism is that even

95

the connection requests are non-blocking and can be managed entirely while a real-time activity
is performed.

This should not imply major changes in the user programming interface for the vast majority
of normal Cm users since only the internal acknowledge control mechanisms have been removed.

The only major change in the user programming interface concerns the syntax of message
handlers which should now return a value (that can be either CmMessageOk or CmMessageBreak)
that indicates whether the current wait loop must be broken or not. The previous mechanism was
using the CmMessageBreak function which is now removed from the Cm interface. The main impact
of this change is that handlers may now have wait loops themselves and that the break operations
act upon the most inner wait loop.

Besides the fact that this version was a major change, a few clean-up actions have been
performed on the implementation, that deal with :

e Internal error management : the production and printing of internal error messages is now
handled by a customizable printer operator (set by default to be the C standard function
vprintf). A special function (CmMessageInstallPrinter) permits to specify a user defined
printer operator, that will be called whenever an error message has to be delivered from the
internals of Cm .

e The startup functions like CmMessageStartup, CmMessageStartupMultiple,

CmConnectStartupAsServer and CmConnectStartupAsMultipleServer are now really ob-
solete, and will produce a informational message and return zero when called. The recently
introduced functions CmMessageOpenServer and CmMessageOpenMultipleServer are now
the unique way to initialize a Cm server.

e Several remote control mechanisms have been introduced in order to make applications pro-
duce debug or trace informations. Debug control is meant for quite low-level debugging
purposes since it would trace the primary calls to the TCPIP entry points. Trace actions
permit to show the contents of CmMessages exchanged by applications. Three levels of trac-
ing permit to show either simple informations up to complete and detailed dump of message
data (the latter should be used carefully since huge prinouts may result from this action).

e The communication with the NameServer is now based on asynchronous CmMessages .
Therefore the CmConnectAskNameServer has been removed. It must be replaced by a
CmMessage built with the request, and a message handler installed according to the required
request type (see the section on the NameServer for a detailed description of the message
formats).

e The internal package that handle the basic collection management or memory management
is now based on the version v2 of CSet which thus should be installed accordingly.

11.4 Changes since the version v6.

This new version adds the capability of waiting selectively for messages sent to one of the servers
declared within one Cm application. This is achieved only within the CmMessage environment by
providing the new wait functions to the CmMessage package :

e CmMessageWait
e CmMessageWaitWithTimeout
e CmMessageServerWait

o CmMessageServerWaitWithTimeout

96

The first two functions duplicate the two wait functions that were already available in the
Connect package (with identical argument syntaxes) and the two others perform a selective wait
(without or with a timeout specified). For these two selective wait functions, a pattern for selecting
one or several server names is provided as the first argument.

The same duplication has been offered (for the sake of symetry!) for the non-blocking check
functions with :

e CmMessageCheck

e CmMessageServerCheck

The following example shows how to wait for messages sent to servers which names start
with an A’ then wait for any message :

main()

{

CmMessageServerWait ("~A");

CmMessageWait ();

Fig.22- Selective wait on servers.

A change in the parameter syntax for the user defined message handlers reflects now the fact
that a particular message has been sent to a particular server. Therefore, a third argument receives
the server name to which this message was addressed (The first argument is still the reference of
the message and the second argument is still the name of the sender).

Connections are now selectively handled by the different servers that a given application
declares. Therefore, several connections may have the same name as long as they are managed by
different servers. On the other hand, one may now retrieve the server that handles a particular con-
nection, using the CmConnectGetServer function. The server that handles the servers themselves
is always the NameServer .

Few fixes have been done in this release in the mechanisms involved when deleting a message
object, in order to effectively release the memory exploited by this object. The consequence of this
is that the CmMessageCleanup operation should end up now with a completely released memory.

11.5 Changes since the version v5rl.

This new version introduces some major changes in the protocol between applications and the
NameServer that will increase the security level or even bring new functionnalities.

New features for management issues are supported here that introduce in particular the
notion of domain in order to give a more centralized vision of Cm environments.

A summary of the new features or changes is :
e Introduction of a mechanism for starting several servers from within one single application.

This mechanism permits to define servers (each still defined by its name - and corresponding
to one port number) independently from the fact they would be managed in one application.

57

They are viewed from their clients as separate objects. This is handled by opening or closing
the servers (entry points that can be used in place of the previous startupxxx old ones - still
available however for some time).

e The protocol between applications handles now the user name of the application’s owner.
This owner name can be checked upon in order to introduce security controls using the
CmConnectGetOwner function. It will be possible later on to configure the NameServer for
some level of automatic security checking.

e The port number allocation algorithm has been enhanced by taking the machine spaces
explicitely into account. Then, the busy port numbers are now detected and automatically
discarded from the resource set.

e Domains are introduced for describing each particular Cm environment. Each domain cor-
responds to a particular set of environment variables that describe uniquely the address
domains that can be reached by Cm applications, and are identified by a unique name. A
dictionnary of the defined domains is maintained within the Cm management area, and the
package will check at run time whether one of these domains is actually selected and setup.

e The NameServer database is now internally handled by the NameServer application (instead
of the driver script) which will ensure a greater lelel of reliability.

e The NameServer is now able to control and limit the expansion of its log file (that used to
produce system hang up by disk space exhaust).

e The cleanup mechanisms used while quitting the Cm package has been re-designed, taking care
of thoroughly flushing the allocated spaces when it’s no more needed or when the application
finishes.

Some defficiencies or bugs have also been fixed up :

e It is possible to uninstall a message handler using the CmMessageHandlerUninstall function.

e The CmMessageCleanup or CmConnectCleanup functions are available for cleaning up the
memory allocated during a Cm session. (In principle, after calling this cleanup function, one
should be able to re-open a server...)

11.6 Changes since the version v5.

This release deals mainly with bug fixing but improves slightly the reporting facilities for the
NameServer

e A few checks have been added for allocating port numbers by the NameServer , with the
detection of busy port numbers (even for number chosen within the right range defined in a
Cm environment).

e Some new commands are understood by the NameServer (and served by the AskNameServer ap-
plication) that help getting statistics informations.

e A correction solves a problem that sometimes forced Cm applications to exit after a restart
of the NameServer .

11.7 Changes since the version v4.

Several important features have been introduced in this Cm version :

e Full support of binary exchange format for any C type (floating values in particular)

58

Management of multiple instances of identical tasks. The generic task is declared with a
Cm name, and an actual name is built by suffixing the sequence number of this task instance
to the generic name.

Possibility of calling the main wait loop with a timeout.

Possibility of requesting a break in the main loop from within a Message handler.

Queries about the items in a message : a function asks about the type of the next item while
retrieving message data.

11.8 Changes since the version v3.

This is a reminder of the changes between the version v3 and the version v4.

e NameServer data persistency. This feature makes the active Cm tasks unaffected by a stop
(or a crash) of the NameServer , since it can be reactivated with the knowledge of the system
state previously to the stop (particularly the set of allocated TCPIP port numbers). Active
tasks are transparently reconnected to the NameServer .

e Extension of the supported item types within a CmMessage to arrays for handling large
chunks of data without actually duplicating them.

e Improvements in the exchange mechanism when different machine architecture are involved
(no intermediate ascii format for instance).

o Pesistency of the CmMessage data beyond the transfer, allowing in particular multiple trans-
fers of one CmMessage .

99

List of Figures

© 00 ~J O Ut W N =

N N N = = e e e e e e e e
N = O © 00 ~J O U k= W N = O

Server name declaration.o Lo 4
Two-server name declaration.o oo 5
State diagram for the CmMessage objects. 8
Building and sending a CmMessage object. 10
Receiving CmMessage objects with a dedicated handler. 12
Non blocking detection of CmMessage objects. 14
Sending a request with a transactionid 16
Building up an answer to a request with a transactionid 16

.. 17
Dump active transactions in an application 0oL .. 17
Remote termination of a transactiono ... 17
OO 18
Controling the NameServer by the special NameServer.start script. 28
Using the Cm exerciser. i i e 29
Integration of Cm and OnX.o 32
Using the Cm header file in an application. 35
The use statement for Cm Lo 35
Setting and checking the Cm context., 36
Non-blocking message reception by CmMessage objects. 47
Interrupting a wait operation from a handler using CmMessageBreak. 49
Non-blocking message reception for selected servers.. 50
Selective wait ON SEIVErS. v o v v vt e e e e e e e e e e e e e e 57

60

Contents

1 Presentation.

1.1 Document structure. e e e e e e e e e e e e e e e e

2 Specifications.

2.1 Implementation specifications. oL

3 Cm architecture.

3.1 The CmConnect class. i i ittt

3.1.1 Application initialisation. oo

3.1.2 Data conversion on machine architecture basis.
3.2 TheCmMessage class.
3.3 The internal protocol managed by CmMessage objects.
3.4 CmMessage building and sending. Lo oo
3.5 Receiving aCmMessage

4 Transaction management in Cm .
4.1 Description L e e e e e
4.2 Anexample e
4.3 Remote debugging facilities for transactions L.
4.4 Programming interface Lo Lo e
441 CmOpenTransaction
44.2 CmTerminateTransaction
4.4.3 CmCloseTransaction
444 CmlsTransactionTerminated
4.4.5 CmGetTransactionObject
4.4.6 CmGetTransactionInfo.
447 CmCloseTransaction e
4.4.8 CmTerminateTransaction
4.4.9 CmRestartTransaction it
4.4.10 CmGetTransactionState oo

5 Handling errors in Cm .

6 The NameServer .
6.1 The query operations for the NameServer
6.2 Data persistency in the NameServer
6.3 Activating the NameServer

7 cm send : The interactive Cm exerciser.
8 Linking Cm to XWindows.

9 The Cm package : use and installation.

9.1 Configuring Cm L e e e e

61

S O Ot Ut W W

10

15
15
15
17
18
18
18
18
18
19
19
19
19
19
20

21

22
23
26
26

29

30

33

9.2 Building a Cm application and usingit.o oL 34

9.2.1 Compiling and linking a Cm application. 35
9.2.2 Running a Cm application. L o 36

9.3 Porting the Cm package on a new system. 36
9.4 How to figure out the actual situation of a Cm context. 37
10 Application programming interface for Cm . 40
10.1 The CmMessage functions. L. 40
10.1.1 CmMessageOpenServer - CmMessageOpenMultipleServer 40
10.1.2 CmMessageNew e 40
10.1.3 CmMessageDelete L 41
10.1.4 CmMessageReset 41
10.1.5 CmMessageSetType i i i i i i e 41
10.1.6 CmMessageSend 42
10.1.7 CmMessagePutXxx oo 42
10.1.8 CmMessageGetType o 43
10.1.9 CmMessageGetXXX . . . o v v v vt i e e e e e e e 43
10.1.10CmMessageGetItemType o oL e 44
10.1.11 CmMessagelnstallPrinter L. 45
10.1.12CmMessagelnstallDefaultHandler 45
10.1.13CmMessagelnstallHandler oL 45
10.1.14 any-message-handler L 45
10.1.15CmMessageUninstallHandler 46
10.1.16 CmMessageCheck L 46
10.1.17CmMessageServerCheck L oL 49
10.1.18 CmMessageWait e 50
10.1.19 CmMessageWaitWithTimeout, 51
10.1.20CmMessageServerWait 51
10.1.21 CmMessageServerWaitWithTimeout 52

10.2 The CmConnect functions. it vttt 52
10.2.1 CmConnectNew o . it e e e 52
10.2.2 CmConnectGetReference 53
10.2.3 CmConnectGetName oo 53
10.2.4 CmConnectGetHost 53
10.2.5 CmConnectGetOwner e 53
10.2.6 CmConnectGetServer 54
10.2.7 CmConnectCleanup oo v it it e e 54
10.2.8 CmConnectSelectServer e 54
10.2.9 CmConnectWhoAmI 54
10.2.10CmConnectGetNameServero 55

11 History of changes 55
11.1 Changes since the version v8r1.. 55
11.2 Changes since the version v7. L o 55

62

11.3 Changes since the version v6rl.. 55

11.4 Changes since the version v6. 56
11.5 Changes since the version vBrl.. L 57
11.6 Changes since the version v5. L Lo o 58
11.7 Changes since the version v4. L oL Lo o8
11.8 Changes since the version v3. 59

63

