
Pegasus 4.8.2 User Guide

Pegasus 4.8.2 User Guide

Table of Contents
1. Introduction .. 1

Overview and Features .. 1
Workflow Gallery .. 2
About this Document .. 2
Document Formats (Web, PDF) .. 2

2. Tutorial . 3
Introduction .. 3
Getting Started .. 3
What are Scientific Workflows ... 4
Submitting an Example Workflow ... 5
Workflow Dashboard for Monitoring and Debugging ... 7
Command line tools for Monitoring and Debugging ... 16

pegasus-status - monitoring the workflow ... 16
pegasus-analyzer - debug a failed workflow ... 16
pegasus-statistics - collect statistics about a workflow run .. 17

Recovery from Failures .. 19
Submitting Rescue Workflows ... 20

Generating the Workflow ... 22
Information Catalogs .. 23

The Site Catalog .. 23
The Transformation Catalog .. 25
The Replica Catalog .. 25

Configuring Pegasus .. 26
Conclusion .. 26

3. Installation .. 27
Prerequisites .. 27
Optional Software .. 27
Environment .. 27
RHEL / CentOS / Scientific Linux ... 28
Ubuntu .. 28
Debian .. 28
Mac OS X ... 28
Pegasus from Tarballs . 29

4. Creating Workflows ... 30
Abstract Workflows (DAX) ... 30
Data Discovery (Replica Catalog) .. 33

File .. 33
Regex ... 34
Directory .. 34
JDBCRC ... 35
MRC ... 35

Resource Discovery (Site Catalog) .. 37
XML4 ... 37
XML3 ... 39
Site Catalog Converter pegasus-sc-converter .. 40

Executable Discovery (Transformation Catalog) .. 41
MultiLine Text based TC (Text) . 41
TC Client pegasus-tc-client . 43
TC Converter Client pegasus-tc-converter .. 44

Variable Expansion .. 44
5. Running Workflows ... 46

Executable Workflows (DAG) ... 46
Mapping Refinement Steps .. 47

Data Reuse .. 48
Site Selection .. 49
Job Clustering .. 51
Addition of Data Transfer and Registration Nodes .. 51

iii

Pegasus 4.8.2 User Guide

Addition of Create Dir and Cleanup Jobs .. 53
Code Generation .. 54

Data Staging Configuration .. 55
Shared File System ... 56
Non Shared Filesystem ... 57
Condor Pool Without a Shared Filesystem ... 59

PegasusLite .. 60
Pegasus-Plan .. 61
Basic Properties .. 61

pegasus.home ... 62
Catalog Related Properties .. 62
Data Staging Configuration Properties .. 67

6. Monitoring, Debugging and Statistics .. 70
Workflow Status .. 70

pegasus-status .. 70
pegasus-analyzer .. 71
pegasus-remove ... 72
Resubmitting failed workflows ... 72

Plotting and Statistics .. 72
pegasus-statistics .. 72
pegasus-plots .. 79

Dashboard .. 84
Workflow Dashboard .. 84

Notifications .. 97
Specifying Notifications in the DAX ... 98
Notify File created by Pegasus in the submit directory .. 99
Configuring pegasus-monitord for notifications .. 99
Default Notification Scripts .. 100

Monitoring Database .. 101
pegasus-monitord .. 101
Overview of the Workflow Database Schema. .. 103

Stampede Workflow Events .. 104
Typedefs .. 105
Groupings .. 107
Events .. 108

7. Execution Environments .. 121
Localhost . 121
Condor Pool .. 121

Glideins .. 123
CondorC ... 123

Cloud (Amazon EC2/S3, Google Cloud, ...) . 125
Amazon EC2 ... 126
Google Cloud Platform ... 127

Remote Cluster using PyGlidein .. 127
Remote Cluster using Globus GRAM 130
Remote Cluster using CREAMCE ... 132
Local Campus Cluster Using Glite .. 132

Setting job requirements .. 134
Specifying a remote directory for the job .. 138

SDSC Comet with BOSCO glideins .. 138
Remote PBS Cluster using BOSCO and SSH ... 140
Campus Cluster .. 141
XSEDE ... 141
Open Science Grid Using glideinWMS ... 142

.. 142
8. Containers .. 143

Overview ... 143
Configuring Workflows To Use Containers .. 143

Containerized Applications in the Transformation Catalog .. 143
Container Execution Model .. 144

iv

Pegasus 4.8.2 User Guide

Staging of Application Containers .. 144
Symlinking .. 145

Container Example - Montage Workflow ... 145
Montage Using Containers .. 145

9. Example Workflows ... 147
Grid Examples .. 147

Black Diamond ... 147
NASA/IPAC Montage .. 149
Rosetta .. 149

Condor Examples .. 149
Black Diamond - condorio .. 149

Container Examples .. 150
Montage Using Containers .. 150

Local Shell Examples .. 151
Black Diamond ... 151

Notifications Example .. 151
Workflow of Workflows ... 151

Galactic Plane .. 151
10. Data Management .. 153

Replica Selection .. 153
Configuration .. 153
Supported Replica Selectors .. 153

Data Transfers .. 155
Data Staging Configuration .. 155
Local versus Remote Transfers .. 160
Controlling Transfer Parallelism ... 161
Symlinking Against Input Data .. 161
Addition of Separate Data Movement Nodes to Executable Workflow ... 162
Executable Used for Transfer and Cleanup Jobs .. 164
Staging of Executables .. 165
Staging of Worker Package .. 166
Staging of Application Containers .. 167
Staging of Job Checkpoint Files .. 168
Using Amazon S3 as a Staging Site .. 168
iRODS data access .. 169
GridFTP over SSH (sshftp) .. 169
Globus Online .. 170

Credentials Management .. 170
X.509 Grid Proxies .. 171
Amazon AWS S3 ... 171
Google Storage .. 171
iRods Password .. 171
SSH Keys .. 172

Staging Mappers .. 172
Output Mappers .. 173

Effect of pegasus.dir.storage.deep .. 173
Data Cleanup ... 174

Data Cleanup in Hierarchal Workflows ... 174
Metadata .. 174

Metadata in the DAX ... 175
Workflow Level Metadata .. 176
Task Level Metadata .. 176
File Level Metadata .. 177
Automatically Generated Metadata attributes .. 178
Tracing Metadata for an output file .. 178

11. Optimizing Workflows for Efficiency and Scalability .. 180
Optimizing Short Jobs / Scheduling Delays .. 180
Job Clustering .. 180

Overview ... 180
How to Scale Large Workflows ... 192

v

Pegasus 4.8.2 User Guide

Hierarchical Workflows ... 192
Introduction .. 192
Specifying a DAX Job in the DAX ... 193
Specifying a DAG Job in the DAX ... 194
File Dependencies Across DAX Jobs .. 195
Recursion in Hierarchal Workflows ... 195
Example .. 197

Optimizing Data Transfers .. 197
Job Throttling .. 198

Job Throttling Across Workflows ... 200
Increase Memory Requirements for Retries .. 201

12. Pegasus Service .. 202
Service Administration .. 202

Service Configuration .. 202
Running the Service .. 203

Dashboard .. 203
Running Pegasus Service under Apache HTTPD ... 203
Ensemble Manager .. 204

13. Configuration .. 206
Differences between Profiles and Properties .. 206
Profiles .. 206

Profile Structure Heading .. 206
Sources for Profiles .. 206
Profiles Conflict Resolution .. 209
Details of Profile Handling .. 209
The Env Profile Namespace .. 210
The Globus Profile Namespace .. 210
The Condor Profile Namespace .. 212
The Dagman Profile Namespace .. 214
The Pegasus Profile Namespace .. 216
The Hints Profile Namespace .. 221

Properties .. 222
Local Directories Properties .. 222
Site Directories Properties .. 223
Schema File Location Properties .. 226
Database Drivers For All Relational Catalogs .. 227
Catalog Related Properties .. 229
Replica Selection Properties .. 235
Site Selection Properties .. 237
Data Staging Configuration Properties .. 241
Transfer Configuration Properties .. 243
Monitoring Properties .. 247
Job Clustering Properties .. 249
Logging Properties .. 250
Cleanup Properties .. 252
Miscellaneous Properties .. 254

14. Submit Directory Details . 257
Layout .. 257
Condor DAGMan File .. 258

Sample Condor DAG File .. 258
Kickstart XML Record .. 259

Reading a Kickstart Output File .. 260
Jobstate.Log File .. 261

Pegasus Workflow Job States and Delays .. 263
Braindump File .. 263
Pegasus static.bp File .. 264

15. Jupyter Notebooks .. 266
Introduction .. 266
Requirements .. 266
The Pegasus DAX and Jupyter Python APIs .. 266

vi

Pegasus 4.8.2 User Guide

Creating an Abstract Workflow ... 266
Creating the Catalogs .. 266
Workflow Execution .. 267

JupyterHub ... 267
API Reference .. 267
Tutorial Example Notebook ... 267

16. API Reference .. 269
DAX XML Schema ... 269

DAX XML Schema In Detail . 269
DAX XML Schema Example .. 277

DAX Generator API .. 278
The Java DAX Generator API .. 278
The Python DAX Generator API .. 281
The Perl DAX Generator .. 282
The R DAX Generator API .. 284

DAX Generator without a Pegasus DAX API .. 286
Monitoring .. 286

Resource Definition .. 287
Endpoints .. 290
Querying .. 298
Ordering .. 299
Examples .. 300

17. Command Line Tools .. 305
pegasus-analyzer .. 306
pegasus-cluster .. 310
pegasus-configure-glite .. 314
pegasus-config .. 315
pegasus-dagman ... 317
pegasus-dax-validator .. 318
pegasus-db-admin ... 319
pegasus-em ... 322
pegasus-exitcode .. 323
pegasus-globus-online-init . 325
pegasus-globus-online .. 326
pegasus-graphviz .. 327
pegasus-gridftp .. 328
pegasus-halt . 330
pegasus-init . 331
pegasus-integrity .. 332
pegasus-invoke .. 333
pegasus-keg .. 335
pegasus-kickstart . 338
pegasus-metadata .. 346
pegasus-monitord .. 348
pegasus-mpi-cluster .. 352
pegasus-mpi-keg .. 363
pegasus-plan .. 364
pegasus-plots .. 371
pegasus-rc-client . 373
pegasus-remove ... 376
pegasus-run .. 378
pegasus-s3 .. 380
pegasus-sc-converter .. 386
pegasus-service .. 388
pegasus-statistics .. 389
pegasus-status .. 391
pegasus-submit-dag .. 394
pegasus-submitdir . 395
pegasus-tc-client . 397
pegasus-tc-converter .. 401

vii

Pegasus 4.8.2 User Guide

pegasus-transfer .. 403
pegasus-version .. 405

18. Useful Tips .. 407
Migrating From Pegasus 4.5.X to Pegasus current version .. 407

Database Upgrades From Pegasus 4.5.X to Pegasus current version .. 407
Migration from Pegasus 4.6 to 4.7 .. 407

Migrating From Pegasus <4.5 to Pegasus 4.5.X ... 407
Migrating From Pegasus 3.1 to Pegasus 4.X ... 408

Move to FHS layout .. 408
Stampede Schema Upgrade Tool .. 409
Existing users running in a condor pool with a non shared filesystem setup .. 410

Migrating From Pegasus 2.X to Pegasus 3.X ... 411
PEGASUS_HOME and Setup Scripts .. 411
Changes to Schemas and Catalog Formats .. 411
Properties and Profiles Simplification .. 412
Transfers Simplification .. 413
Clients in bin directory .. 413

Best Practices For Developing Portable Code .. 413
Supported Platforms ... 414
Packaging of Software .. 414
MPI Codes .. 414
Maximum Running Time of Codes .. 414
Codes cannot specify the directory in which they should be run .. 414
No hard-coded paths .. 414
Wrapping legacy codes with a shell wrapper .. 415
Propogating back the right exitcode .. 415
Static vs. Dynamically Linked Libraries .. 415
Temporary Files .. 415
Handling of stdio .. 415
Configuration Files .. 416
Code Invocation and input data staging by Pegasus .. 416
Logical File naming in DAX ... 416

Slot Partitioning and CPU Affinity in Condor .. 416
19. Funding, citing, and anonymous usage statistics .. 418

Citing Pegasus in Academic Works .. 418
Usage Statistics Collection .. 418

Purpose .. 418
Overview ... 418
Configuration .. 418
Metrics Collected .. 418

20. Glossary .. 421
A. Tutorial VM 424

Introduction .. 424
VirtualBox ... 424

Install VirtualBox ... 424
Download VM Image ... 424
Create Virtual Machine .. 424
Terminating the VM 428

Amazon EC2 ... 428
Launching the VM 428
Logging into the VM 435
Shutting down the VM 435

viii

List of Figures
2.1. Process Workflow ... 4
2.2. Pipeline of Tasks .. 4
2.3. Split Workflow ... 5
2.4. Merge Workflow ... 5
2.5. Diamond Workflow ... 5
2.6. Split Workflow ... 6
2.7. Split DAG ... 7
2.8. Dashboard Home Page .. 8
2.9. Dashboard Workflow Page .. 10
2.10. Dashboard Job Description Page .. 12
2.11. Dashboard Invocation Page .. 14
2.12. Dashboard Statistics Page .. 15
2.13. Split Workflow ... 22
2.14. Information Catalogs used by Pegasus .. 23
2.15. Sample HPC Cluster Setup .. 24
4.1. Sample Workflow ... 31
4.2. Schema Image of the JDBCRC. .. 35
4.3. Schema Image of the Site Catalog XML4 ... 37
4.4. Schema Image of the Site Catalog XML 3 ... 39
5.1. Black Diamond DAG ... 46
5.2. Workflow Data Reuse .. 48
5.3. Workflow Site Selection .. 51
5.4. Addition of Data Transfer Nodes to the Workflow ... 52
5.5. Addition of Data Registration Nodes to the Workflow ... 53
5.6. Addition of Directory Creation and File Removal Jobs .. 54
5.7. Final Executable Workflow ... 55
5.8. Shared File System Setup .. 57
5.9. Non Shared Filesystem Setup .. 58
5.10. Condor Pool Without a Shared Filesystem ... 59
5.11. Workflow Running in NonShared Filesystem Setup with PegasusLite launching compute jobs 60
6.1. pegasus-plot index page .. 79
6.2. DAX Graph ... 80
6.3. DAG Graph ... 81
6.4. Gantt Chart . 81
6.5. Host over time chart . 82
6.6. Time chart . 83
6.7. Breakdown chart . 84
6.8. Dashboard Home Page .. 86
6.9. Dashboard Workflow Page .. 88
6.10. Dashboard Workflow Metadata .. 89
6.11. Dashboard Workflow Files .. 89
6.12. Dashboard Job Description Page .. 91
6.13. Dashboard Invocation Page .. 93
6.14. Dashboard Statistics Page .. 94
6.15. Dashboard Plots - Job Distribution .. 95
6.16. Dashboard Plots - Time Chart . 96
6.17. Dashboard Plots - Workflow Gantt Chart . 97
6.18. Workflow Database Schema ... 103
7.1. The distributed resources appear to be part of a HTCondor pool. 122
7.2. Cloud Sample Site Layout .. 125
7.3. Amazon EC2 ... 126
7.4. pyglidein overview ... 128
7.5. Grid Sample Site Layout .. 130
10.1. Shared File System Setup .. 157
10.2. Non Shared Filesystem Setup .. 158
10.3. Condor Pool Without a Shared Filesystem ... 159
10.4. BalancedCluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared File System ... 163

ix

Pegasus 4.8.2 User Guide

10.5. Cluster Transfer Refiner : Input Data To Workflow Specific Directory on Shared File System 164
11.1. Clustering by clusters.size .. 182
11.2. Clustering by clusters.num ... 183
11.3. Clustering by runtime ... 186
11.4. Label-based clustering .. 187
11.5. Recursive clustering .. 189
11.6. Planning of a DAX Job ... 192
11.7. Planning of a DAG Job ... 193
11.8. Recursion in Hierarchal Workflows ... 196
11.9. Execution Time-line for Hierarchal Workflows ... 197
A.1. VirtualBox Welcome Screen .. 425
A.2. Create New Virtual Machine Wizard .. 426
A.3. VM Name and OS Type ... 426
A.4. Memory ... 427
A.5. Login Screen .. 428
A.6. AWS Management Console .. 429
A.7. EC2 Management Console .. 429
A.8. Locating the Tutorial VM 430
A.9. Request Instances Wizard: Step 1 .. 431
A.10. Request Instances Wizard: Step 2 .. 431
A.11. Request Instances Wizard: Step 3 .. 432
A.12. Request Instances Wizard: Step 4 .. 432
A.13. Request Instances Wizard: Step 5 .. 433
A.14. Request Instances Wizard: Step 6 .. 433
A.15. Request Instances Wizard: Step 7 .. 434
A.16. Running Instances .. 435
A.17. Terminate Instance .. 436
A.18. Yes, Terminate Instance .. 436

x

List of Tables
5.1. Key Value Pairs that are currently generated for the site selector temporary file that is generated in the
NonJavaCallout. 49
5.2. Basic Properties that need to be set . 61
5.3. Replica Catalog Properties .. 63
5.4. Site Catalog Properties .. 66
5.5. Transformation Catalog Properties .. 67
5.6. Data Configuration Properties .. 67
6.1. Workflow Statistics .. 76
6.2. Job statistics .. 77
6.3. Transformation Statistics .. 78
6.4. Invocation statistics by host per day .. 79
6.5. Invoke Element attributes and meaning. 98
7.1. Mapping of Pegasus Profiles to Job Requirements .. 134
10.1. Property Variations for pegasus.transfer.*.remote.sites .. 160
10.2. Pegasus Profile Keys For the Cluster Transfer Refiner .. 162
10.3. Transfer Clients interfaced to by pegasus-transfer .. 164
10.4. Transformation Mappers Supported in Pegasus .. 166
11.1. Pegasus Profiles that can be associated with jobs in the DAX for PMC ... 190
11.2. Options inherited from parent workflow ... 193
11.3. Default Category names associated by Pegasus .. 197
11.4. Useful dagman Commands that can be specified in the properties file. 198
11.5. Default Category names associated by Pegasus .. 199
11.6. Useful HTCondor Job Throttling Configuration Parameters .. 199
11.7. Pegasus Job Types To Condor Concurrency Limits .. 201
12.1. Pegasus Service Configuration Options .. 202
13.1. Useful Environment Settings .. 210
13.2. Useful Globus RSL Instructions .. 210
13.3. RSL Instructions that are not permissible .. 211
13.4. Useful Condor Commands .. 212
13.5. Condor commands prohibited in condor profiles .. 213
13.6. Useful dagman Commands that can be associated at a per job basis .. 214
13.7. Useful dagman Commands that can be specified in the properties file. 215
13.8. Useful pegasus Profiles. 216
13.9. Task Resource Requirement Profiles. 220
13.10. Table mapping translation of Pegasus Task Requirements to corresponding execution environment
keys. 221
13.11. Useful Hints Profile Keys .. 221
13.12. Local Directories Related Properties .. 222
13.13. Site Directories Related Properties .. 223
13.14. Schema File Location Properties .. 226
13.15. Database Driver Properties .. 227
13.16. Replica Catalog Properties .. 229
13.17. Site Catalog Properties .. 234
13.18. Transformation Catalog Properties .. 234
13.19. Replica Selection Properties .. 235
13.20. Site Selection Properties .. 237
13.21. Data Configuration Properties .. 241
13.22. Transfer Configuration Properties .. 243
13.23. Monitoring Properties .. 247
13.24. Job Clustering Properties .. 249
13.25. Logging Properties .. 250
13.26. Cleanup Properties .. 252
13.27. Miscellaneous Properties .. 254
14.1. The job lifecycle when executed as part of the workflow ... 262
14.2. Information Captured in Braindump File .. 263
16.1. Root element attributes .. 270
16.2. executable element attributes .. 273

xi

Pegasus 4.8.2 User Guide

16.3. invoke element attributes .. 275
16.4. invoke/executable environment variables .. 275
16.5. Options .. 290
16.6. Returns .. 290
16.7. Returns .. 291
16.8. Options .. 291
16.9. Returns .. 291
16.10. Returns .. 291
16.11. Options .. 291
16.12. Returns .. 291
16.13. Options .. 292
16.14. Returns .. 292
16.15. Options .. 292
16.16. Returns .. 292
16.17. Options .. 293
16.18. Returns .. 293
16.19. Returns .. 293
16.20. Options .. 293
16.21. Returns .. 293
16.22. Returns .. 294
16.23. Options .. 294
16.24. Returns .. 294
16.25. Options .. 294
16.26. Returns .. 294
16.27. Returns .. 295
16.28. Options .. 295
16.29. Returns .. 295
16.30. Returns .. 295
16.31. Options .. 295
16.32. Returns .. 296
16.33. Options .. 296
16.34. Returns .. 296
16.35. Returns .. 296
16.36. Options .. 296
16.37. Returns .. 297
16.38. Options .. 297
16.39. Returns .. 297
16.40. Returns .. 298
16.41. Options .. 298
16.42. Returns .. 298
16.43. Query Prefix .. 299
18.1. Property Keys removed and their Profile based replacement .. 412
18.2. Old and New Names For Job Clustering Profile Keys .. 412
18.3. Old and New Names For Transfer Bundling Profile Keys .. 413
18.4. Old Client Names and their New Names .. 413
19.1. Common Data Sent By Pegasus WMS Clients .. 419
19.2. Metrics Data Sent by pegasus-plan .. 419
19.3. Error Message sent by pegasus-plan .. 420

xii

Chapter 1. Introduction
Overview and Features

Pegasus WMS [http://pegasus.isi.edu] is a configurable system for mapping and executing abstract application work-
flows over a wide range of execution environments including a laptop, a campus cluster, a Grid, or a commercial or
academic cloud. Today, Pegasus runs workflows on Amazon EC2, Nimbus, Open Science Grid, the TeraGrid, and
many campus clusters. One workflow can run on a single system or across a heterogeneous set of resources. Pegasus
can run workflows ranging from just a few computational tasks up to 1 million.

Pegasus WMS bridges the scientific domain and the execution environment by automatically mapping high-level
workflow descriptions onto distributed resources. It automatically locates the necessary input data and computation-
al resources necessary for workflow execution. Pegasus enables scientists to construct workflows in abstract terms
without worrying about the details of the underlying execution environment or the particulars of the low-level spec-
ifications required by the middleware (Condor, Globus, or Amazon EC2). Pegasus WMS also bridges the current
cyberinfrastructure by effectively coordinating multiple distributed resources. The input to Pegasus is a description
of the abstract workflow in XML format.

Pegasus allows researchers to translate complex computational tasks into workflows that link and manage ensembles
of dependent tasks and related data files. Pegasus automatically chains dependent tasks together, so that a single
scientist can complete complex computations that once required many different people. New users are encouraged to
explore the tutorial chapter to become familiar with how to operate Pegasus for their own workflows. Users create
and run a sample project to demonstrate Pegasus capabilities. Users can also browse the Useful Tips chapter to aid
them in designing their workflows.

Pegasus has a number of features that contribute to its useability and effectiveness.

• Portability / Reuse

User created workflows can easily be run in different environments without alteration. Pegasus currently runs work-
flows on top of Condor, Grid infrastrucutures such as Open Science Grid and TeraGrid, Amazon EC2, Nimbus, and
many campus clusters. The same workflow can run on a single system or across a heterogeneous set of resources.

• Performance

The Pegasus mapper can reorder, group, and prioritize tasks in order to increase the overall workflow performance.

• Scalability

Pegasus can easily scale both the size of the workflow, and the resources that the workflow is distributed over.
Pegasus runs workflows ranging from just a few computational tasks up to 1 million. The number of resources
involved in executing a workflow can scale as needed without any impediments to performance.

• Provenance

By default, all jobs in Pegasus are launched via the kickstart process that captures runtime provenance of the job
and helps in debugging. The provenance data is collected in a database, and the data can be summarised with tools
such as pegasus-statistics, pegasus-plots, or directly with SQL queries.

• Data Management

Pegasus handles replica selection, data transfers and output registrations in data catalogs. These tasks are added to
a workflow as auxilliary jobs by the Pegasus planner.

• Reliability

Jobs and data transfers are automatically retried in case of failures. Debugging tools such as pegasus-analyzer
helps the user to debug the workflow in case of non-recoverable failures.

• Error Recovery

1

http://pegasus.isi.edu
http://pegasus.isi.edu

Introduction

When errors occur, Pegasus tries to recover when possible by retrying tasks, by retrying the entire workflow, by
providing workflow-level checkpointing, by re-mapping portions of the workflow, by trying alternative data sources
for staging data, and, when all else fails, by providing a rescue workflow containing a description of only the work
that remains to be done. It cleans up storage as the workflow is executed so that data-intensive workflows have
enough space to execute on storage-constrained resource. Pegasus keeps track of what has been done (provenance)
including the locations of data used and produced, and which software was used with which parameters.

• Operating Environments

Pegasus workflows can be deployed across a variety of environments:

• Local Execution

Pegasus can run a workflow on a single computer with Internet access. Running in a local environment is quicker
to deploy as the user does not need to gain access to muliple resources in order to execute a workfow.

• Condor Pools and Glideins

Condor is a specialized workload management system for compute-intensive jobs. Condor queues workflows,
schedules, and monitors the execution of each workflow. Condor Pools and Glideins are tools for submitting
and executing the Condor daemons on a Globus resource. As long as the daemons continue to run, the remote
machine running them appears as part of your Condor pool. For a more complete description of Condor, see the
Condor Project Pages [http://www.cs.wisc.edu/condor/description.html]

• Grids

Pegasus WMS is entirely compatible with Grid computing. Grid computing relies on the concept of distributed
computations. Pegasus apportions pieces of a workflow to run on distributed resources.

• Clouds

Cloud computing uses a network as a means to connect a Pegasus end user to distributed resources that are based
in the cloud.

Workflow Gallery
Pegasus is curently being used in a broad range of applications. To review example workflows, see the Example
Workflows chapter. To see additional details about the workflows of the applications see the Gallery of Workflows
[http://pegasus.isi.edu/workflow_gallery/].

We are always looking for new applications willing to leverage our workflow technologies. If you are interested please
contact us at pegasus at isi dot edu.

About this Document
This document is designed to acquaint new users with the capabilities of the Pegasus Workflow Management System
(WMS) and to demonstrate how WMS can efficiently provide a variety of ways to execute complex workflows on
distributed resources. Readers are encouraged to take the tutorial to acquaint themselves with the components of the
Pegasus System. Readers may also want to navigate through the chapters to acquaint themselves with the components
on a deeper level to understand how to integrate Pegasus with your own data resources to resolve your individual
computational challenges.

Document Formats (Web, PDF)
The main version of this document is intended to be viewed online at the Pegasus website [https://pegasus.isi.edu/doc-
umentation/]. For offline viewing, a PDF version [https://pegasus.isi.edu/documentation/pegasus-user-guide.pdf] is
also provided.

2

http://www.cs.wisc.edu/condor/description.html
http://www.cs.wisc.edu/condor/description.html
http://pegasus.isi.edu/workflow_gallery/
http://pegasus.isi.edu/workflow_gallery/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/
https://pegasus.isi.edu/documentation/pegasus-user-guide.pdf
https://pegasus.isi.edu/documentation/pegasus-user-guide.pdf

Chapter 2. Tutorial
Introduction

This tutorial will take you through the steps of running simple workflows using Pegasus Workflow Management
System. Pegasus allows scientists to

1. Automate their scientific computational work, as portable workflows. Pegasus enables scientists to construct work-
flows in abstract terms without worrying about the details of the underlying execution environment or the particu-
lars of the low-level specifications required by the middleware (Condor, Globus, or Amazon EC2). It automatically
locates the necessary input data and computational resources necessary for workflow execution. It cleans up storage
as the workflow is executed so that data-intensive workflows have enough space to execute on storage-constrained
resources.

2. Recover from failures at runtime. When errors occur, Pegasus tries to recover when possible by retrying tasks, and
when all else fails, provides a rescue workflow containing a description of only the work that remains to be done.
It also enables users to move computations from one resource to another. Pegasus keeps track of what has been
done (provenance) including the locations of data used and produced, and which software was used with which
parameters.

3. Debug failures in their computations using a set of system provided debugging tools and an online workflow
monitoring dashboard.

This tutorial is intended for new users who want to get a quick overview of Pegasus concepts and usage. The accom-
panying tutorial VM comes pre-configured to run the example workflows. The instructions listed here refer mainly
to the simple split workflow example. The tutorial covers

• submission of an already generated example workflow with Pegasus.

• how to use the Pegasus Workflow Dashboard for monitoring workflows.

• the command line tools for monitoring, debugging and generating statistics.

• recovery from failures

• creation of workflow using system provided API

• information catalogs configuration.

More information about the topics covered in this tutorial can be found in later chapters of this user's guide.

All of the steps in this tutorial are performed on the command-line. The convention we will use for command-line
input and output is to put things that you should type in bold, monospace font, and to put the output you should get
in a normal weight, monospace font, like this:

[user@host dir]$ you type this
you get this

Where [user@host dir]$ is the terminal prompt, the text you should type is “you type this”, and the
output you should get is "you get this". The terminal prompt will be abbreviated as $. Because some of the
outputs are long, we don’t always include everything. Where the output is truncated we will add an ellipsis '...' to
indicate the omitted output.

If you are having trouble with this tutorial, or anything else related to Pegasus, you can contact the Pegasus
Users mailing list at <pegasus-users@isi.edu> to get help. You can also contact us on our support cha-
troom [https://pegasus.isi.edu/support] on HipChat.

Getting Started
Easiest way to start the tutorial is to connect to a hosted service using SSH as shown below.

3

https://pegasus.isi.edu/support
https://pegasus.isi.edu/support
https://pegasus.isi.edu/support

Tutorial

$ ssh tutorial@pegasus-tutorial.isi.edu
tutorial@pegasus-tutorial.isi.edu's password: pegasus123

Note

The workflow dashboard is not run in the hosted service. To try out the workflow dashboard use the virtual
machines provided below.

OR

We have provided several virtual machines that contain all of the software required for this tutorial. Virtual machine
images are provided for VirtualBox and Amazon EC2. Information about deploying the tutorial VM on these platforms
is in the appendix. If you want to use the tutorial VM, please go to the appendix for the platform you are using and
follow the instructions for starting the VM found there before continuing with this tutorial.

If you have already installed Pegasus and Condor on your own machine, then you don't need to use the VM for the
tutorial. You can use the pegasus-init command to generate the example workflow in any directory on your
machine. Just be aware that you will have to modify the paths referenced in this tutorial to match the directory where
you generated the example workflow.

The remainder of this tutorial will assume that you have a terminal open with Pegasus on your PATH.

What are Scientific Workflows
Scientific workflows allow users to easily express multi-step computational tasks, for example retrieve data from an
instrument or a database, reformat the data, and run an analysis. A scientific workflow describes the dependencies
between the tasks and in most cases the workflow is described as a directed acyclic graph (DAG), where the nodes are
tasks and the edges denote the task dependencies. A defining property for a scientific workflow is that it manages data
flow. The tasks in a scientific workflow can be everything from short serial tasks to very large parallel tasks (MPI for
example) surrounded by a large number of small, serial tasks used for pre- and post-processing.

Workflows can vary from simple to complex. Below are some examples. In the figures below, the task are designated
by circles/ellipses while the files created by the tasks are indicated by rectangles. Arrows indicate task dependencies.

Process Workflow

It consists of a single task that runs the ls command and generates a listing of the files in the `/` directory.

Figure 2.1. Process Workflow

Pipeline of Tasks

The pipeline workflow consists of two tasks linked together in a pipeline. The first job runs the `curl` command to
fetch the Pegasus home page and store it as an HTML file. The result is passed to the `wc` command, which counts
the number of lines in the HTML file.

Figure 2.2. Pipeline of Tasks

Split Workflow

The split workflow downloads the Pegasus home page using the `curl` command, then uses the `split` command to
divide it into 4 pieces. The result is passed to the `wc` command to count the number of lines in each piece.

4

Tutorial

Figure 2.3. Split Workflow

Merge Workflow

The merge workflow runs the `ls` command on several */bin directories and passes the results to the `cat` command,
which merges the files into a single listing. The merge workflow is an example of a parameter sweep over arguments.

Figure 2.4. Merge Workflow

Diamond Workflow

The diamond workflow runs combines the split and merge workflow patterns to create a more complex workflow.

Figure 2.5. Diamond Workflow

Complex Workflows

The above examples can be used as building blocks for much complex workflows. Some of these are showcased on
the Pegasus Applications page [https://pegasus.isi.edu/applications].

Submitting an Example Workflow
All of the example workflows described in the previous section can be generated with the pegasus-init command.
For this tutorial we will be using the split workflow, which can be created like this:

$ cd /home/tutorial
$ pegasus-init split
Do you want to generate a tutorial workflow? (y/n) [n]: y
1: Process
2: Pipeline
3: Split
4: Merge
5: Diamond
What tutorial workflow do you want? (1-5) [1]: 3
$ cd split
$ ls
README.md input plan_dax.sh tc.txt
daxgen.py output rc.txt
generate_dax.sh pegasus.properties sites.xml

5

https://pegasus.isi.edu/applications
https://pegasus.isi.edu/applications

Tutorial

Tip

The pegasus-init tool can be used to generate workflow skeletons from templates by asking the user
questions. It is easier to use pegasus-init than to start a new workflow from scratch.

The split workflow looks like this:

Figure 2.6. Split Workflow

The input workflow description for Pegasus is called the DAX. It can be generated by running the gener-
ate_dax.sh script from the split directory, like this:

$./generate_dax.sh split.dax
Generated dax split.dax

This script will run a small Python program (daxgen.py) that generates a file with a .dax extension using the Pegasus
Python API. We will cover the details of creating a DAX programmatically later in the tutorial. Pegasus reads the
DAX and generates an executable HTCondor workflow that is run on an execution site.

The pegasus-plan command is used to submit the workflow through Pegasus. The pegasus-plan command reads
the input workflow (DAX file specified by --dax option), maps the abstract DAX to one or more execution sites,
and submits the generated executable workflow to HTCondor. Among other things, the options to pegasus-plan tell
Pegasus

• the workflow to run

• where (what site) to run the workflow

• the input directory where the inputs are placed

• the output directory where the outputs are placed

By default, the workflow is setup to run on the compute sites (i.e sites with handle other than "local") defined in the
sites.xml file. In our example, the workflow will run on a site named "condorpool" in the sites.xml file.

Note

If there are multiple compute sites specified in your sites.xml, and you want to choose a specific site, use
the --sites option to pegasus-plan

To plan the split workflow invoke the pegasus-plan command using the plan_dax.sh wrapper script as follows:

$./plan_dax.sh split.dax
2015.10.22 19:12:10.402 PDT:
2015.10.22 19:12:10.409 PDT:

2015.10.22 19:12:10.414 PDT: File for submitting this DAG to Condor :
 split-0.dag.condor.sub
2015.10.22 19:12:10.420 PDT: Log of DAGMan debugging messages :
 split-0.dag.dagman.out
2015.10.22 19:12:10.426 PDT: Log of Condor library output :
 split-0.dag.lib.out
2015.10.22 19:12:10.431 PDT: Log of Condor library error messages :
 split-0.dag.lib.err
2015.10.22 19:12:10.436 PDT: Log of the life of condor_dagman itself :
 split-0.dag.dagman.log
2015.10.22 19:12:10.442 PDT:

6

Tutorial

2015.10.22 19:12:10.458 PDT:

2015.10.22 19:12:14.292 PDT: Your database is compatible with Pegasus version: 4.5.3
2015.10.22 19:12:15.198 PDT: Submitting to condor split-0.dag.condor.sub
2015.10.22 19:12:15.997 PDT: Submitting job(s).
2015.10.22 19:12:16.003 PDT: 1 job(s) submitted to cluster 111.
2015.10.22 19:12:16.035 PDT:
2015.10.22 19:12:16.055 PDT: Your workflow has been started and is running in the base directory:
2015.10.22 19:12:16.061 PDT:
2015.10.22 19:12:16.071 PDT: /home/tutorial/split/submit/tutorial/pegasus/split/run0001
2015.10.22 19:12:16.078 PDT:
2015.10.22 19:12:16.084 PDT: *** To monitor the workflow you can run ***
2015.10.22 19:12:16.090 PDT:
2015.10.22 19:12:16.098 PDT: pegasus-status -l /home/tutorial/split/submit/tutorial/pegasus/
split/run0001
2015.10.22 19:12:16.114 PDT:
2015.10.22 19:12:16.119 PDT: *** To remove your workflow run ***
2015.10.22 19:12:16.125 PDT:
2015.10.22 19:12:16.131 PDT: pegasus-remove /home/tutorial/split/submit/tutorial/pegasus/split/
run0001
2015.10.22 19:12:16.137 PDT:
2015.10.22 19:12:17.630 PDT: Time taken to execute is 1.918 seconds

Note

The line in the output that starts with pegasus-status, contains the command you can use to monitor
the status of the workflow. The path it contains is the path to the submit directory where all of the files
required to submit and monitor the workflow are stored.

This is what the split workflow looks like after Pegasus has finished planning the DAX:

Figure 2.7. Split DAG

For this workflow the only jobs Pegasus needs to add are a directory creation job, a stage-in job (for pegasus.html), and
stage-out jobs (for wc count outputs). The cleanup jobs remove data that is no longer required as workflow executes.

Workflow Dashboard for Monitoring and Debugging
The Pegasus Dashboard is a web interface for monitoring and debugging workflows. We will use the web dashboard
to monitor the status of the split workflow.

If you are doing the tutorial using the tutorial VM, then the dashboard will start when the VM boots. If you are using
your own machine, then you will need to start the dashboard by running:

$ pegasus-service

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service.

Access the dashboard by navigating your browser to https://localhost:5000. If you are using the EC2 VM you will
need to replace 'localhost' with the IP address of your EC2 instance.

When the webpage loads up, it will ask you for a username and a password. If you are using the tutorial VM, then
log in as user "tutorial" with password "pegasus". If you are running the dashboard on your own machine, then use
your UNIX username and password to log in.

The Dashboard's home page lists all workflows, which have been run by the current-user. The home page shows the
status of each workflow i.e. Running/Successful/Failed/Failing. The home page lists only the top level workflows
(Pegasus supports hierarchical workflows i.e. workflows within a workflow). The rows in the table are color coded

7

Tutorial

• Green: indicates workflow finished successfully.

• Red: indicates workflow finished with a failure.

• Blue: indicates a workflow is currently running.

• Gray: indicates a workflow that was archived.

Figure 2.8. Dashboard Home Page

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, etc.
The details page also displays pie charts showing the distribution of jobs based on status.

8

Tutorial

In addition, the details page displays a tab listing all sub-workflows and their statuses. Additional tabs exist which list
information for all running, failed, successful, and failing jobs.

The information displayed for a job depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

9

Tutorial

Figure 2.9. Dashboard Workflow Page

10

Tutorial

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

The job instance section of the job details page lists all attempts made to run the job i.e. if a job failed in its first
attempt due to transient errors, but ran successfully when retried, the job instance section shows two entries; one for
each attempt to run the job.

The job details page also shows tab's for failed, and successful task invocations (Pegasus allows users to group multiple
smaller task's into a single job i.e. a job may consist of one or more tasks)

11

Tutorial

Figure 2.10. Dashboard Job Description Page

12

Tutorial

The task invocation details page provides task specific information like task name, exit code, duration etc. Task details
differ from job details, as they are more granular in nature.

13

Tutorial

Figure 2.11. Dashboard Invocation Page

14

Tutorial

The dashboard also has web pages for workflow statistics and workflow charts, which graphically renders information
provided by the pegasus-statistics and pegasus-plots command respectively.

The Statistics page shows the following statistics.

1. Workflow level statistics

2. Job breakdown statistics

3. Job specific statistics

Figure 2.12. Dashboard Statistics Page

15

Tutorial

Command line tools for Monitoring and Debugging
Pegasus also comes with a series of command line tools that users can use to monitor and debug their workflows.

• pegasus-status : monitor the status of the workflow

• pegasus-analyzer : debug a failed workflow

• pegasus-statistics : generate statistics from a workflow run.

pegasus-status - monitoring the workflow
After the workflow has been submitted you can monitor it using the pegasus-status command:

$ pegasus-status -l submit/tutorial/pegasus/split/run0001
STAT IN_STATE JOB
Run 00:39 split-0 (/home/tutorial/split/submit/tutorial/pegasus/split/run0001)
Idle 00:03 ##split_ID0000001
Summary: 2 Condor jobs total (I:1 R:1)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 14 0 0 1 0 2 0 11.8 Running *split-0.dag

This command shows the workflow (split-0) and the running jobs (in the above output it shows the two findrange
jobs). It also gives statistics on the number of jobs in each state and the percentage of the jobs in the workflow that
have finished successfully.

Use the watch option to continuously monitor the workflow:

$ pegasus-status -w submit/tutorial/pegasus/split/run0001
...

You should see all of the jobs in the workflow run one after the other. After a few minutes you will see:

(no matching jobs found in Condor Q)
UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 0 0 0 0 0 15 0 100.0 Success *split-0.dag

That means the workflow is finished successfully.

If the workflow finished successfully you should see the output count files in the output directory.

$ ls output/
count.txt.a count.txt.b count.txt.c count.txt.d

pegasus-analyzer - debug a failed workflow
In the case that one or more jobs fails, then the output of the pegasus-status command above will have a non-
zero value in the FAILURE column.

You can debug the failure using the pegasus-analyzer command. This command will identify the jobs that failed
and show their output. Because the workflow succeeded, pegasus-analyzer will only show some basic statistics
about the number of successful jobs:

$ pegasus-analyzer submit/tutorial/pegasus/split/run0001
pegasus-analyzer: initializing...

****************************Summary***************************

 Total jobs : 11 (100.00%)
 # jobs succeeded : 11 (100.00%)
 # jobs failed : 0 (0.00%)
 # jobs unsubmitted : 0 (0.00%)

If the workflow had failed you would see something like this:

$ pegasus-analyzer submit/tutorial/pegasus/split/run0002

************************************Summary*************************************

 Submit Directory : submit/tutorial/pegasus/split/run0002

16

Tutorial

 Total jobs : 15 (100.00%)
 # jobs succeeded : 1 (5.88%)
 # jobs failed : 1 (5.88%)
 # jobs unsubmitted : 15 (88.24%)

******************************Failed jobs' details******************************

==========================stage_in_local_PegasusVM_0_0==========================

 last state: POST_SCRIPT_FAILED
 site: local
submit file: stage_in_local_PegasusVM_0_0.sub
output file: stage_in_local_PegasusVM_0_0.out.001
 error file: stage_in_local_PegasusVM_0_0.err.001

-------------------------------Task #1 - Summary--------------------------------

site : local
hostname : unknown
executable : /usr/bin/pegasus-transfer
arguments : --threads 2
exitcode : 1
working dir : /home/tutorial/split/submit/tutorial/pegasus/split/run0002

------------------Task #1 - pegasus::transfer - None - stdout-------------------

2015-10-22 21:13:50,970 INFO: Reading URL pairs from stdin
2015-10-22 21:13:50,970 INFO: PATH=/usr/bin:/bin
2015-10-22 21:13:50,970 INFO: LD_LIBRARY_PATH=
2015-10-22 21:13:50,972 INFO: 1 transfers loaded
2015-10-22 21:13:50,972 INFO: Sorting the tranfers based on transfer type and source/destination
2015-10-22 21:13:50,972 INFO:
 --
2015-10-22 21:13:50,972 INFO: Starting transfers - attempt 1
2015-10-22 21:13:50,972 INFO: Using 1 threads for this round of transfers
2015-10-22 21:13:53,845 ERROR: Command exited with non-zero exit code (1): /usr/bin/scp -r -B -
o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -i /home/tutorial/.ssh/id_rsa -P 22 '/
home/tutorial/examples/split/input/pegasus.html' 'tutorial@127.0.0.1:/home/tutorial/work/tutorial/
pegasus/split/run0002/pegasus.html'
2015-10-22 21:15:55,911 INFO:
 --
2015-10-22 21:15:55,912 INFO: Starting transfers - attempt 2
2015-10-22 21:15:55,912 INFO: Using 1 threads for this round of transfers
2015-10-22 21:15:58,446 ERROR: Command exited with non-zero exit code (1): /usr/bin/scp -r -B -
o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -i /home/tutorial/.ssh/id_rsa -P 22 '/
home/tutorial/examples/split/input/pegasus.html' 'tutorial@127.0.0.1:/home/tutorial/work/tutorial/
pegasus/split/run0002/pegasus.html'
2015-10-22 21:16:40,468 INFO:
 --
2015-10-22 21:16:40,469 INFO: Starting transfers - attempt 3
2015-10-22 21:16:40,469 INFO: Using 1 threads for this round of transfers
2015-10-22 21:16:43,168 ERROR: Command exited with non-zero exit code (1): /usr/bin/scp -r -B -
o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -i /home/tutorial/.ssh/id_rsa -P 22 '/
home/tutorial/examples/split/input/pegasus.html' 'tutorial@127.0.0.1:/home/tutorial/work/tutorial/
pegasus/split/run0002/pegasus.html'
2015-10-22 21:16:43,173 INFO:
 --
2015-10-22 21:16:43,173 INFO: Stats: no local files in the transfer set
2015-10-22 21:16:43,173 CRITICAL: Some transfers failed! See above, and possibly stderr.

-------------Task #1 - pegasus::transfer - None - Kickstart stderr--------------

Warning: Permanently added '127.0.0.1' (RSA) to the list of known hosts.
/home/tutorial/split/input/pegasus.html: No such file or directory
..
/home/tutorial/split/input/pegasus.html: No such file or directory

In this example, we removed one of the input files. We will cover this in more detail in the recovery section. The
output of pegasus-analyzer indicates that pegasus.html file could not be found.

pegasus-statistics - collect statistics about a workflow run
The pegasus-statistics command can be used to gather statistics about the runtime of the workflow and its
jobs. The -s all argument tells the program to generate all statistics it knows how to calculate:

17

Tutorial

$ pegasus-statistics –s all submit/tutorial/pegasus/split/run0001

#
Pegasus Workflow Management System - http://pegasus.isi.edu
#
Workflow summary:
Summary of the workflow execution. It shows total
tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total+Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.
Workflow wall time:
The wall time from the start of the workflow execution to the end as
reported by the DAGMAN.In case of rescue dag the value is the
cumulative of all retries.
Workflow cumulative job wall time:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Workflow cumulative job badput wall time:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job badput wall time as seen from submit side:
The sum of the wall time of all failed jobs as reported by DAGMan.
This is similar to the regular cumulative job badput wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 5 0 0 5 0 5
Jobs 15 0 0 15 0 15
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 2 mins, 6 secs
Workflow cumulative job wall time : 38 secs
Cumulative job wall time as seen from submit side : 42 secs
Workflow cumulative job badput wall time :
Cumulative job badput wall time as seen from submit side :

Summary : submit/tutorial/pegasus/split/run0001/statistics/summary.txt
Workflow execution statistics : submit/tutorial/pegasus/split/run0001/statistics/workflow.txt
Job instance statistics : submit/tutorial/pegasus/split/run0001/statistics/jobs.txt
Transformation statistics : submit/tutorial/pegasus/split/run0001/statistics/breakdown.txt
Time statistics : submit/tutorial/pegasus/split/run0001/statistics/time.txt

18

Tutorial

The output of pegasus-statistics contains many definitions to help users understand what all of the values
reported mean. Among these are the total wall time of the workflow, which is the time from when the workflow was
submitted until it finished, and the total cumulative job wall time, which is the sum of the runtimes of all the jobs.

The pegasus-statistics command also writes out several reports in the statistics subdirectory of the
workflow submit directory:

$ ls submit/tutorial/pegasus/split/run0001/statistics/
jobs.txt summary.txt time.txt breakdown.txt workflow.txt

The file breakdown.txt, for example, has min, max, and mean runtimes for each transformation:

$ more submit/tutorial/pegasus/split/run0001/statistics/breakdown.txt
legends
Transformation - name of the transformation.
Count - the number of times the invocations corresponding to
the transformation was executed.
Succeeded - the count of the succeeded invocations corresponding
to the transformation.
Failed - the count of the failed invocations corresponding to
the transformation.
Min(sec) - the minimum invocation runtime value corresponding to
the transformation.
Max(sec) - the maximum invocation runtime value corresponding to
the transformation.
Mean(sec) - the mean of the invocation runtime corresponding to
the transformation.
Total(sec) - the cumulative of invocation runtime corresponding to
the transformation.

773d8fa3-8bff-4f75-8e2b-38e2c904f803 (split)
Transformation Count Succeeded Failed Min Max Mean Total
dagman::post 15 15 0 5.0 6.0 5.412 92.0
pegasus::cleanup 6 6 0 1.474 3.178 2.001 12.008
pegasus::dirmanager 1 1 0 2.405 2.405 2.405 2.405
pegasus::rc-client 2 2 0 2.382 7.406 4.894 9.788
pegasus::transfer 3 3 0 3.951 5.21 4.786 14.358
split 1 1 0 0.009 0.009 0.009 0.009
wc 4 4 0 0.005 0.029 0.012 0.047

All (All)
Transformation Count Succeeded Failed Min Max Mean Total
dagman::post 15 15 0 5.0 6.0 5.412 92.0
pegasus::cleanup 6 6 0 1.474 3.178 2.001 12.008
pegasus::dirmanager 1 1 0 2.405 2.405 2.405 2.405
pegasus::rc-client 2 2 0 2.382 7.406 4.894 9.788
pegasus::transfer 3 3 0 3.951 5.21 4.786 14.358
split 1 1 0 0.009 0.009 0.009 0.009
wc 4 4 0 0.005 0.029 0.012 0.047

In this case, because the example transformation sleeps for 30 seconds, the min, mean, and max runtimes for each of
the analyze, findrange, and preprocess transformations are all close to 30.

Recovery from Failures
Executing workflows in a distributed environment can lead to failures. Often, they are a result of the underlying
infrastructure being temporarily unavailable, or errors in workflow setup such as incorrect executables specified, or
input files being unavailable.

In case of transient infrastructure failures such as a node being temporarily down in a cluster, Pegasus will automati-
cally retry jobs in case of failure. After a set number of retries (usually once), a hard failure occurs, because of which
workflow will eventually fail.

In most of the cases, these errors are correctable (either the resource comes back online or application errors are fixed).
Once the errors are fixed, you may not want to start a new workflow but instead start from the point of failure. In order
to do this, you can submit the rescue workflows automatically created in case of failures. A rescue workflow contains
only a description of only the work that remains to be done.

19

Tutorial

Submitting Rescue Workflows
In this example, we will take our previously run workflow and introduce errors such that workflow we just executed
fails at runtime.

First we will "hide" the input file to cause a failure by renaming it:

$ mv input/pegasus.html input/pegasus.html.bak

Now submit the workflow again:

$./plan_dax.sh split.dax
2015.10.22 20:20:08.299 PDT:
2015.10.22 20:20:08.307 PDT:

2015.10.22 20:20:08.312 PDT: File for submitting this DAG to Condor :
 split-0.dag.condor.sub
2015.10.22 20:20:08.323 PDT: Log of DAGMan debugging messages :
 split-0.dag.dagman.out
2015.10.22 20:20:08.330 PDT: Log of Condor library output :
 split-0.dag.lib.out
2015.10.22 20:20:08.339 PDT: Log of Condor library error messages :
 split-0.dag.lib.err
2015.10.22 20:20:08.346 PDT: Log of the life of condor_dagman itself :
 split-0.dag.dagman.log
2015.10.22 20:20:08.352 PDT:
2015.10.22 20:20:08.368 PDT:

2015.10.22 20:20:12.331 PDT: Your database is compatible with Pegasus version: 4.5.3
2015.10.22 20:20:13.326 PDT: Submitting to condor split-0.dag.condor.sub
2015.10.22 20:20:14.224 PDT: Submitting job(s).
2015.10.22 20:20:14.254 PDT: 1 job(s) submitted to cluster 168.
2015.10.22 20:20:14.288 PDT:
2015.10.22 20:20:14.297 PDT: Your workflow has been started and is running in the base directory:
2015.10.22 20:20:14.303 PDT:
2015.10.22 20:20:14.309 PDT: /home/tutorial/split/submit/tutorial/pegasus/split/run0002
2015.10.22 20:20:14.315 PDT:
2015.10.22 20:20:14.321 PDT: *** To monitor the workflow you can run ***
2015.10.22 20:20:14.326 PDT:
2015.10.22 20:20:14.332 PDT: pegasus-status -l /home/tutorial/split/submit/tutorial/pegasus/
split/run0002
2015.10.22 20:20:14.351 PDT:
2015.10.22 20:20:14.369 PDT: *** To remove your workflow run ***
2015.10.22 20:20:14.376 PDT:
2015.10.22 20:20:14.388 PDT: pegasus-remove /home/tutorial/split/submit/tutorial/pegasus/split/
run0002
2015.10.22 20:20:14.397 PDT:
2015.10.22 20:20:16.146 PDT: Time taken to execute is 10.292 seconds

We will now monitor the workflow using the pegasus-status command till it fails. We will add -w option to pega-
sus-status to watch automatically till the workflow finishes:

$ pegasus-status -w submit/tutorial/pegasus/split/run0002
(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 8 0 0 0 0 2 1 18.2
Summary: 1 DAG total (Failure:1)

Now we can use the pegasus-analyzer command to determine what went wrong:

$ pegasus-analyzer submit/tutorial/pegasus/split/run0002

************************************Summary*************************************

 Submit Directory : submit/tutorial/pegasus/split/run0002
 Total jobs : 11 (100.00%)
 # jobs succeeded : 2 (18.18%)
 # jobs failed : 1 (9.09%)
 # jobs unsubmitted : 8 (72.73%)

******************************Failed jobs' details******************************

===========================stage_in_remote_local_0_0============================

20

Tutorial

 last state: POST_SCRIPT_FAILED
 site: local
submit file: stage_in_remote_local_0_0.sub
output file: stage_in_remote_local_0_0.out.001
 error file: stage_in_remote_local_0_0.err.001

-------------------------------Task #1 - Summary--------------------------------

site : local
hostname : unknown
executable : /usr/local/bin/pegasus-transfer
arguments : --threads 2
exitcode : 1
working dir : /home/tutorial/split/submit/tutorial/pegasus/split/run0002

------------------Task #1 - pegasus::transfer - None - stdout-------------------

2016-02-18 11:52:58,189 INFO: Reading URL pairs from stdin
2016-02-18 11:52:58,189 INFO: PATH=/usr/local/bin:/usr/bin:/bin
2016-02-18 11:52:58,189 INFO: LD_LIBRARY_PATH=
2016-02-18 11:52:58,189 INFO: 1 transfers loaded
2016-02-18 11:52:58,189 INFO: Sorting the tranfers based on transfer type and source/destination
2016-02-18 11:52:58,190 INFO:
 --
2016-02-18 11:52:58,190 INFO: Starting transfers - attempt 1
2016-02-18 11:52:58,190 INFO: Using 1 threads for this round of transfers
2016-02-18 11:53:00,205 ERROR: Command exited with non-zero exit code (1): /bin/cp -f -R -L
 '/home/tutorial/split/input/pegasus.html' '/home/tutorial/split/scratch/tutorial/pegasus/split/
run0002/pegasus.html'
2016-02-18 11:54:46,205 INFO:
 --
2016-02-18 11:54:46,205 INFO: Starting transfers - attempt 2
2016-02-18 11:54:46,205 INFO: Using 1 threads for this round of transfers
2016-02-18 11:54:48,220 ERROR: Command exited with non-zero exit code (1): /bin/cp -f -R -L
 '/home/tutorial/split/input/pegasus.html' '/home/tutorial/split/scratch/tutorial/pegasus/split/
run0002/pegasus.html'
2016-02-18 11:55:24,224 INFO:
 --
2016-02-18 11:55:24,224 INFO: Starting transfers - attempt 3
2016-02-18 11:55:24,224 INFO: Using 1 threads for this round of transfers
2016-02-18 11:55:26,240 ERROR: Command exited with non-zero exit code (1): /bin/cp -f -R -L
 '/home/tutorial/split/input/pegasus.html' '/home/tutorial/split/scratch/tutorial/pegasus/split/
run0002/pegasus.html'
2016-02-18 11:55:26,240 INFO:
 --
2016-02-18 11:55:26,240 INFO: Stats: no local files in the transfer set
2016-02-18 11:55:26,240 CRITICAL: Some transfers failed! See above, and possibly stderr.

-------------Task #1 - pegasus::transfer - None - Kickstart stderr--------------

cp: /home/tutorial/split/input/pegasus.html: No such file or directory
cp: /home/tutorial/split/input/pegasus.html: No such file or directory
cp: /home/tutorial/split/input/pegasus.html: No such file or directory

The above listing indicates that it could not transfer pegasus.html. Let's correct that error by restoring the pegasus.html
file:

$ mv input/pegasus.html.bak input/pegasus.html

Now in order to start the workflow from where we left off, instead of executing pegasus-plan we will use the command
pegasus-run on the directory from our previous failed workflow run:

$ pegasus-run submit/tutorial/pegasus/split/run0002/
Rescued /home/tutorial/split/submit/tutorial/pegasus/split/run0002/split-0.log as /home/tutorial/
split/submit/tutorial/pegasus/split/run0002/split-0.log.000
Submitting to condor split-0.dag.condor.sub
Submitting job(s).
1 job(s) submitted to cluster 181.

Your workflow has been started and is running in the base directory:

 submit/tutorial/pegasus/split/run0002/

21

Tutorial

*** To monitor the workflow you can run ***

 pegasus-status -l submit/tutorial/pegasus/split/run0002/

*** To remove your workflow run ***

 pegasus-remove submit/tutorial/pegasus/split/run0002/

The workflow will now run to completion and succeed.

$ pegasus-status -l submit/tutorial/pegasus/split/run0002/
(no matching jobs found in Condor Q)
UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 0 0 0 0 0 11 0 100.0 Success *split-0.dag
Summary: 1 DAG total (Success:1)

Generating the Workflow
The example that you ran earlier already had the workflow description (split.dax) generated. Pegasus reads workflow
descriptions from DAX files. The term "DAX" is short for "Directed Acyclic Graph in XML". DAX is an XML file
format that has syntax for expressing jobs, arguments, files, and dependencies. We now will be creating the split
workflow that we just ran using the Pegasus provided DAX API:

Figure 2.13. Split Workflow

In this diagram, the ovals represent computational jobs, the dog-eared squares are files, and the arrows are dependen-
cies.

In order to create a DAX it is necessary to write code for a DAX generator. Pegasus comes with Perl, Java, and Python
libraries for writing DAX generators. In this tutorial we will show how to use the Python library.

The DAX generator for the split workflow is in the file daxgen.py. Look at the file by typing:

$ more daxgen.py
...

Tip

We will be using the more command to inspect several files in this tutorial. more is a pager application,
meaning that it splits text files into pages and displays the pages one at a time. You can view the next page
of a file by pressing the spacebar. Type 'h' to get help on using more. When you are done, you can type
'q' to close the file.

The code has 3 main sections:

1. A new ADAG object is created. This is the main object to which jobs and dependencies are added.

Create a abstract dag
dax = ADAG("split")
...

2. Jobs and files are added. The 5 jobs in the diagram above are added and 9 files are referenced. Arguments are defined
using strings and File objects. The input and output files are defined for each job. This is an important step, as it
allows Pegasus to track the files, and stage the data if necessary. Workflow outputs are tagged with "transfer=true".

the split job that splits the webpage into smaller chunks
webpage = File("pegasus.html")

22

Tutorial

split = Job("split")
split.addArguments("-l","100","-a","1",webpage,"part.")
split.uses(webpage, link=Link.INPUT)
dax.addJob(split)

...

3. Dependencies are added. These are shown as arrows in the diagram above. They define the parent/child relation-
ships between the jobs. When the workflow is executing, the order in which the jobs will be run is determined by
the dependencies between them.

Add control-flow dependencies
dax.depends(wc, split)

Generate a DAX file named split.dax by typing:

$./generate_dax.sh split.dax
Generated dax split.dax

The split.dax file should contain an XML representation of the split workflow. You can inspect it by typing:

$ more split.dax
...

Information Catalogs
The workflow description (DAX) that you specify to Pegasus is portable, and usually does not contain any locations to
physical input files, executables or cluster end points where jobs are executed. Pegasus uses three information catalogs
during the planning process.

Figure 2.14. Information Catalogs used by Pegasus

The Site Catalog
The site catalog describes the sites where the workflow jobs are to be executed. In this tutorial we assume that you
have a Personal Condor pool running on localhost. If you are using one of the tutorial VMs this has already been setup
for you. The site catalog for the tutorial examples is in sites.xml:

$ more sites.xml
...
 <!-- The local site contains information about the submit host -->
 <!-- The arch and os keywords are used to match binaries in the transformation catalog -->
 <site handle="local" arch="x86_64" os="LINUX">

 <!-- These are the paths on the submit host were Pegasus stores data -->
 <!-- Scratch is where temporary files go -->
 <directory type="shared-scratch" path="/home/tutorial/scratch">
 <file-server operation="all" url="file:///home/tutorial/scratch"/>
 </directory>

 <!-- Storage is where pegasus stores output files -->
 <directory type="local-storage" path="/home/tutorial/output">
 <file-server operation="all" url="file:///home/tutorial/output"/>
 </directory>
 </site>

...

23

Tutorial

Note

By default (unless specified in properties), Pegasus picks ups the site catalog from a XML file named
sites.xml in the current working directory from where pegasus-plan is invoked.

There are two sites defined in the site catalog: "local" and "condorpool". The "local" site is used by Pegasus to learn
about the submit host where the workflow management system runs. The "condorpool" site is the Condor pool con-
figured on your submit machine. In the case of the tutorial VM, the local site and the condorpool site refer to the same
machine, but they are logically separate as far as Pegasus is concerned.

1. The local site is configured with a "storage" file system that is mounted on the submit host (indicated by the file://
URL). This file system is where the output data from the workflow will be stored. When the workflow is planned
we will tell Pegasus that the output site is "local".

2. The condorpool site is also configured with a "scratch" file system. This file system is where the working directory
will be created. When we plan the workflow we will tell Pegasus that the execution site is "condorpool".

Pegasus supports many different file transfer protocols. In this case the Pegasus configuration is set up so that input and
output files are transferred to/from the condorpool site by Condor. This is done by setting pegasus.data.con-
figuration = condorio in the properties file. In a normal Condor pool, this will cause job input/output files
to be transferred from/to the submit host to/from the worker node. In the case of the tutorial VM, this configuration is
just a fancy way to copy files from the workflow scratch directory to the job scratch directory.

Finally, the condorpool site is configured with two profiles that tell Pegasus that it is a plain Condor pool. Pegasus
supports many ways of submitting tasks to a remote cluster. In this configuration it will submit vanilla Condor jobs.

HPC Clusters

Typically the sites in the site catalog describe remote clusters, such as PBS clusters or Condor pools.

Usually, a typical deployment of an HPC cluster is illustrated below. The site catalog, captures for each cluster (site)

• directories that can be used for executing jobs

• whether a shared file system is available

• file servers to use for staging input data and staging out output data

• headnode of the cluster to which jobs can be submitted.

Figure 2.15. Sample HPC Cluster Setup

24

Tutorial

Below is a sample site catalog entry for HPC cluster at SDSC that is part of XSEDE

<site handle="sdsc-gordon" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="gordon-ln4.sdsc.xsede.org:2119/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <grid type="gt5" contact="gordon-ln4.sdsc.xsede.org:2119/jobmanager-pbs"
 scheduler="unknown" jobtype="compute"/>

 <!-- the base directory where workflow jobs will execute for the site -->
 <directory type="shared-scratch" path="/oasis/scratch/ux454281/temp_project">
 <file-server operation="all" url="gsiftp://oasis-dm.sdsc.xsede.org:2811/oasis/scratch/
ux454281/temp_project"/>
 </directory>

 <profile namespace="globus" key="project">TG-STA110014S</profile>
 <profile namespace="env" key="PEGASUS_HOME">/home/ux454281/software/pegasus/pegasus-4.5.0</
profile>
 </site>

The Transformation Catalog
The transformation catalog describes all of the executables (called "transformations") used by the workflow. This
description includes the site(s) where they are located, the architecture and operating system they are compiled for,
and any other information required to properly transfer them to the execution site and run them.

For this tutorial, the transformation catalog is in the file tc.txt:

$ more tc.txt
tr wc {
 site condorpool {
 pfn "/usr/bin/wc"
 arch "x86_64"
 os "linux"
 type "INSTALLED"
 }
}
...

Note

By default (unless specified in properties), Pegasus picks up the transformation catalog from a text file
named tc.txt in the current working directory from where pegasus-plan is invoked.

The tc.txt file contains information about two transformations: wc, and split. These two transformations are refer-
enced in the split DAX. The transformation catalog indicates that both transformations are installed on the condorpool
site, and are compiled for x86_64 Linux.

The Replica Catalog
Note: Replica Catalog configuration is not required for the tutorial setup. It is only required if you want to refer to
input files on external servers.

The example that you ran, was configured with the inputs already present on the submit host (where Pegasus is in-
stalled) in a directory. If you have inputs at external servers, then you can specify the URLs to the input files in the
Replica Catalog. This catalog tells Pegasus where to find each of the input files for the workflow.

All files in a Pegasus workflow are referred to in the DAX using their Logical File Name (LFN). These LFNs are
mapped to Physical File Names (PFNs) when Pegasus plans the workflow. This level of indirection enables Pegasus
to map abstract DAXes to different execution sites and plan out the required file transfers automatically.

The Replica Catalog for the diamond workflow is in the rc.txt file:

$ more rc.txt
This is the replica catalog. It lists information about each of the
input files used by the workflow. You can use this to specify locations to input files present on
 external servers.

The format is:

25

Tutorial

LFN PFN pool="SITE"
#
For example:
#data.txt file:///tmp/data.txt site="local"
#data.txt http://example.org/data.txt site="example"
pegasus.html file:///home/tutorial/split/input/pegasus.html site="local"

Note

By default (unless specified in properties), Pegasus picks ups the transformation catalog from a text file
named tc.txt in the current working directory from where pegasus-plan is invoked. In our tutorial, input files
are on the submit host and we used the --input dir option to pegasus-plan to specify where they are located.

This replica catalog contains only one entry for the split workflow’s only input file. This entry has an LFN of "pega-
sus.html" with a PFN of "file:///home/tutorial/split/input/pegasus.html" and the file is stored on the local site, which
implies that it will need to be transferred to the condorpool site when the workflow runs.

Configuring Pegasus
In addition to the information catalogs, Pegasus takes a configuration file that specifies settings that control how it
plans the workflow.

For the diamond workflow, the Pegasus configuration file is relatively simple. It only contains settings to help Pegasus
find the information catalogs. These settings are in the pegasus.properties file:

$ more pegasus.properties
This tells Pegasus where to find the Site Catalog
pegasus.catalog.site.file=sites.xml

This tells Pegasus where to find the Replica Catalog
pegasus.catalog.replica=File
pegasus.catalog.replica.file=rc.txt

This tells Pegasus where to find the Transformation Catalog
pegasus.catalog.transformation=Text
pegasus.catalog.transformation.file=tc.txt

Use condor to transfer workflow data
pegasus.data.configuration=condorio

This is the name of the application for analytics
pegasus.metrics.app=pegasus-tutorial

Conclusion
Congratulations! You have completed the tutorial.

If you used Amazon EC2 for this tutorial make sure to terminate your VM. Refer to the appendix for more information
about how to do this.

Refer to the other chapters in this guide for more information about creating, planning, and executing workflows with
Pegasus.

Please contact the Pegasus Users Mailing list at <pegasus-users@isi.edu> if you need help.

26

Chapter 3. Installation
The preferred way to install Pegasus is with native (RPM/DEB) packages. It is recommended that you also install HT-
Condor (formerly Condor) (yum [http://research.cs.wisc.edu/htcondor/yum/], debian [http://research.cs.wisc.edu/ht-
condor/debian/]) from native packages.

Prerequisites
Pegasus has a few dependencies:

• Java 1.6 or higher. Check with:

java -version
java version "1.6.0_07"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.6.0_07-164)
Java HotSpot(TM) Client VM (build 1.6.0_07-87, mixed mode, sharing)

• Python 2.6 or higher. Check with:

python -v
Python 2.6.2

Non-standard Python installation: Pegasus will use the system Python by default. If you want to override this
behavior, please set the PEGASUS_PYTHON environment variable during the build. This environment variable
is only for build time configuration. Once built, Pegasus will continue to use the build time specified Python install.

• HTCondor (formerly Condor) 8.4 or higher. See http://www.cs.wisc.edu/htcondor/ for more information. You
should be able to run condor_q and condor_status.

Optional Software
• Globus 5.0 or higher. Globus is only needed if you want to run against grid sites or use GridFTP for data transfers.

See http://www.globus.org/ for more information.

• psycopg2. Python module for PostgreSQL access. Only needed if you want to store the runtime database in Post-
greSQL (default is SQLite)

Environment
To use Pegasus, you need to have the pegasus-* tools in your PATH. If you have installed Pegasus from RPM/DEB
packages. the tools will be in the default PATH, in /usr/bin. If you have installed Pegasus from binary tarballs or
source, add the bin/ directory to your PATH.

Example for bourne shells:

 $ export PATH=/some/install/pegasus-4.8.0/bin:$PATH

Note

Pegasus 4.x is different from previous versions of Pegasus in that it does not require PEGASUS_HOME to
be set or sourcing of any environment setup scripts.

If you want to use the DAX APIs, you might also need to set your PYTHONPATH, PERL5LIB, or CLASSPATH.
The right setting can be found by using pegasus-config:

$ export PYTHONPATH=`pegasus-config --python`
$ export PERL5LIB=`pegasus-config --perl`
$ export CLASSPATH=`pegasus-config --classpath`

27

http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/yum/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://research.cs.wisc.edu/htcondor/debian/
http://www.cs.wisc.edu/htcondor/
http://www.globus.org/

Installation

RHEL / CentOS / Scientific Linux
Binary packages provided for: RHEL 6 x86_64, RHEL 7 x86_64 (and OSes derived from RHEL: CentOS, SL)

Add the Pegasus repository to yum downloading the Pegasus repos file and adding it to /etc/yum.repos.d/.
For RHEL 7 based systemes:

wget -O /etc/yum.repos.d/pegasus.repo http://download.pegasus.isi.edu/pegasus/rhel/7/pegasus.repo

For RHEL 6 based systems:

wget -O /etc/yum.repos.d/pegasus.repo http://download.pegasus.isi.edu/pegasus/rhel/6/pegasus.repo

Search for, and install Pegasus:

yum search pegasus
pegasus.x86_64 : Workflow management system for Condor, grids, and clouds
yum install pegasus
Running Transaction
Installing : pegasus

Installed:
pegasus

Complete!

Ubuntu
Binary packages provided for: 14.04 LTS (Trusty Tahr) x86_64, 16.04 (Xenial Xerus) x86_64

To be able to install and upgrade from the Pegasus apt repository, you will have to trust the repository key. You only
need to add the repository key once:

wget -O - http://download.pegasus.isi.edu/pegasus/gpg.txt | apt-key add -

Create repository file, update and install Pegasus (currently available releases are precise and trusty):

echo 'deb http://download.pegasus.isi.edu/pegasus/ubuntu trusty main' >/etc/apt/sources.list.d/
pegasus.list
apt-get update
apt-get install pegasus

Debian
Binary packages provided for: 7 (Wheezy) x86_64, 8 (Jessie) x86_64, 9 (Stretch) x86_64

To be able to install and upgrade from the Pegasus apt repository, you will have to trust the repository key. You only
need to add the repository key once:

wget -O - http://download.pegasus.isi.edu/pegasus/gpg.txt | apt-key add -

Create repository file, update and install Pegasus (currently available releases are jessie (8) and stretch (9)):

echo 'deb http://download.pegasus.isi.edu/pegasus/debian stretch main' >/etc/apt/sources.list.d/
pegasus.list
apt-get update
apt-get install pegasus

Mac OS X
The easiest way to install Pegasus on Mac OS is to use Homebrew. You will need to install XCode and the XCode
command-line tools, as well as Homebrew. Then you just need to tap the Pegasus tools repository and install Pegasus
and HTCondor like this:

$ brew tap pegasus-isi/tools
$ brew install pegasus htcondor

28

Installation

Once the installation is complete, you need to start the HTCondor service. The easiest way to do that is to use the
Homebrew services tap:

$ brew tap homebrew/services
$ brew services list
$ brew services start htcondor

You can also stop HTCondor like this:

$ brew services stop htcondor

And you can uninstall Pegasus and HTCondor using brew rm like this:

$ brew rm pegasus htcondor

Note

It is also possible to install the latest development versions of Pegasus using the --devel and --HEAD
arguments to brew install, like this: $ brew install --devel pegasus

Pegasus from Tarballs
The Pegasus prebuild tarballs can be downloaded from the Pegasus Download Page [https://pegasus.isi.edu/down-
loads].

Use these tarballs if you already have HTCondor installed or prefer to keep the HTCondor installation separate from
the Pegasus installation.

• Untar the tarball

tar zxf pegasus-*.tar.gz

• include the Pegasus bin directory in your PATH

export PATH=/path/to/pegasus-install/bin:$PATH

29

https://pegasus.isi.edu/downloads
https://pegasus.isi.edu/downloads
https://pegasus.isi.edu/downloads

Chapter 4. Creating Workflows
Abstract Workflows (DAX)

The DAX is a description of an abstract workflow in XML format that is used as the primary input into Pegasus. The
DAX schema is described in dax-3.4.xsd [schemas/dax-3.4/dax-3.4.xsd] The documentation of the schema and its
elements can be found in dax-3.4.html [schemas/dax-3.4/dax-3.4.html].

A DAX can be created by all users with the DAX generating API in Java, Perl, or Python format

Note
We highly recommend using the DAX API.

Advanced users who can read XML schema definitions can generate a DAX directly from a script

The sample workflow below incorporates some of the elementary graph structures used in all abstract workflows.

• fan-out, scatter, and diverge all describe the fact that multiple siblings are dependent on fewer parents.

The example shows how the Job 2 and 3 nodes depend on Job 1 node.

• fan-in, gather, join, and converge describe how multiple siblings are merged into fewer dependent child nodes.

The example shows how the Job 4 node depends on both Job 2 and Job 3 nodes.

• serial execution implies that nodes are dependent on one another, like pearls on a string.

• parallel execution implies that nodes can be executed in parallel

30

schemas/dax-3.4/dax-3.4.xsd
schemas/dax-3.4/dax-3.4.xsd
schemas/dax-3.4/dax-3.4.html
schemas/dax-3.4/dax-3.4.html

Creating Workflows

Figure 4.1. Sample Workflow

The example diamond workflow consists of four nodes representing jobs, and are linked by six files.

• Required input files must be registered with the Replica catalog in order for Pegasus to find it and integrate it into
the workflow.

• Leaf files are a product or output of a workflow. Output files can be collected at a location.

• The remaining files all have lines leading to them and originating from them. These files are products of some
job steps (lines leading to them), and consumed by other job steps (lines leading out of them). Often, these files
represent intermediary results that can be cleaned.

There are two main ways of generating DAX's

1. Using a DAX generating API in Java, Perl or Python.

Note: We recommend this option.

2. Generating XML directly from your script.

Note: This option should only be considered by advanced users who can also read XML schema definitions.

One example for a DAX representing the example workflow can look like the following:

<?xml version="1.0" encoding="UTF-8"?>

31

Creating Workflows

<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

<!-- Section 1: Metadata attributes for the workflow (can be empty) -->

 <metadata key="name">diamond</metadata>
 <metadata key="createdBy">Karan Vahi</metadata>

<!-- Section 2: Invokes - Adds notifications for a workflow (can be empty) -->

 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>

<!-- Section 3: Files - Acts as a Replica Catalog (can be empty) -->

 <file name="f.a">
 <metadata key="size">1024</metadata>
 <pfn url="file:///Volumes/Work/lfs1/work/pegasus-features/PM-902/f.a" site="local"/>
 </file>

<!-- Section 4: Executables - Acts as a Transformaton Catalog (can be empty) -->

 <executable namespace="pegasus" name="preprocess" version="4.0" installed="true" arch="x86"
 os="linux">
 <metadata key="size">2048</metadata>
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>
 <executable namespace="pegasus" name="findrange" version="4.0" installed="true" arch="x86"
 os="linux">
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>
 <executable namespace="pegasus" name="analyze" version="4.0" installed="true" arch="x86"
 os="linux">
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>

<!-- Section 5: Transformations - Aggregates executables and Files (can be empty) -->

<!-- Section 6: Job's, DAX's or Dag's - Defines a JOB or DAX or DAG (Atleast 1 required) -->

 <job id="j1" namespace="pegasus" name="preprocess" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a preprocess -T 60 -i <file name="f.a"/> -o <file name="f.b1"/> <file
 name="f.b2"/></argument>
 <uses name="f.a" link="input">
 <metadata key="size">1024</metadata>
 </uses>
 <uses name="f.b1" link="output" transfer="true" register="true"/>
 <uses name="f.b2" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>
 <job id="j2" namespace="pegasus" name="findrange" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a findrange -T 60 -i <file name="f.b1"/> -o <file name="f.c1"/></argument>
 <uses name="f.b1" link="input"/>
 <uses name="f.c1" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>
 <job id="j3" namespace="pegasus" name="findrange" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a findrange -T 60 -i <file name="f.b2"/> -o <file name="f.c2"/></argument>
 <uses name="f.b2" link="input"/>
 <uses name="f.c2" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>
 <job id="j4" namespace="pegasus" name="analyze" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a analyze -T 60 -i <file name="f.c1"/> <file name="f.c2"/> -o <file name="f.d"/
></argument>
 <uses name="f.c1" link="input"/>

32

Creating Workflows

 <uses name="f.c2" link="input"/>
 <uses name="f.d" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>

<!-- Section 7: Dependencies - Parent Child relationships (can be empty) -->

 <child ref="j2">
 <parent ref="j1"/>
 </child>
 <child ref="j3">
 <parent ref="j1"/>
 </child>
 <child ref="j4">
 <parent ref="j2"/>
 <parent ref="j3"/>
 </child>
</adag>

The example workflow representation in form of a DAX requires external catalogs, such as transformation catalog
(TC) to resolve the logical job names (such as diamond::preprocess:2.0), and a replica catalog (RC) to resolve the
input file f.a. The above workflow defines the four jobs just like the example picture, and the files that flow between
the jobs. The intermediary files are neither registered nor staged out, and can be considered transient. Only the final
result file f.d is staged out.

Data Discovery (Replica Catalog)
The Replica Catalog keeps mappings of logical file ids/names (LFN's) to physical file ids/names (PFN's). A single
LFN can map to several PFN's. A PFN consists of a URL with protocol, host and port information and a path to a file.
Along with the PFN one can also store additional key/value attributes to be associated with a PFN.

Pegasus supports the following implementations of the Replica Catalog.

1. File(Default)

2. Regex

3. Directory

4. Database via JDBC

5. MRC

File
In this mode, Pegasus queries a file based replica catalog. The file format is a simple multicolumn format. It is neither
transactionally safe, nor advised to use for production purposes in any way. Multiple concurrent instances will conflict
with each other. The site attribute should be specified whenever possible. The attribute key for the site attribute is
"site".

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

The LFN may or may not be quoted. If it contains linear whitespace, quotes, backslash or an equal sign, it must be
quoted and escaped. The same conditions apply for the PFN. The attribute key-value pairs are separated by an equality
sign without any whitespaces. The value may be quoted. The LFN sentiments about quoting apply.

The file mode is the Default mode. In order to use the File mode you have to set the following properties

1. pegasus.catalog.replica=File

2. pegasus.catalog.replica.file=<path to the replica catalog file>

33

Creating Workflows

Regex
In this mode, Pegasus queries a file based replica catalog. The file format is a simple multicolumn format. It is neither
transactionally safe purposes in any way. Multiple concurrent instances will conflict with each other. The site attribute
should be specified whenever possible. The attribute key for the site attribute is "site".

In addition users can specifiy regular expression based LFN's. A regular expression based entry should be qualified
with an attribute named 'regex'. The attribute regex when set to true identifies the catalog entry as a regular expression
based entry. Regular expressions should follow Java regular expression syntax.

For example, consider a replica catalog as shown below.

Entry 1 refers to an entry which does not use a regular expressions. This entry would only match a file named 'f.a',
and nothing else.

Entry 2 referes to an entry which uses a regular expression. In this entry f.a referes to files having name as f<any-
character>a i.e. faa, f.a, f0a, etc.

#1
f.a file:///Volumes/data/input/f.a site="local"
#2
f.a file:///Volumes/data/input/f.a site="local" regex="true"

Regular expression based entries also support substitutions. For example, consider the regular expression based entry
shown below.

Entry 3 will match files with name alpha.csv, alpha.txt, alpha.xml. In addition, values matched in the expression can
be used to generate a PFN.

For the entry below if the file being looked up is alpha.csv, the PFN for the file would be generated as file:///Vol-
umes/data/input/csv/alpha.csv. Similary if the file being lookedup was alpha.csv, the PFN for the file would be gen-
erated as file:///Volumes/data/input/xml/alpha.xml i.e. The section [0], [1] will be replaced. Section [0] refers to the
entire string i.e. alpha.csv. Section [1] refers to a partial match in the input i.e. csv, or txt, or xml. Users can utilize
as many sections as they wish.

#3
alpha\.(csv|txt|xml) file:///Volumes/data/input/[1]/[0] site="local" regex="true"

In case of a LFN name matching multiple entries in the file, the implementation picks up the first matching regex as
it appears in the file. If you want to specify a default location for all LFN's that don't match any regex expression, you
can have this entry as the last entry in your file.

#4 all unmatched LFN's reside in the same input directory.

.* file:///Volumes/data/input/[0] site="local" regex="true"

Directory
In this mode, Pegasus does a directory listing on an input directory to create the LFN to PFN mappings. The directory
listing is performed recursively, resulting in deep LFN mappings. For example, if an input directory $input is specified
with the following structure

$input
$input/f.1
$input/f.2
$input/D1
$input/D1/f.3

Pegasus will create the mappings the following LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D1/f.3 site="local"

Users can optionally specify additional properties to configure the behavior of this implementation.

1. pegasus.catalog.replica.directory to specify the path to the directory where the files exist.

34

Creating Workflows

2. pegasus.catalog.replica.directory.site to specify a site attribute other than local to associate with the mappings.

3. pegasus.catalog.replica.directory.flat.lfn to specify whether you want deep LFN's to be constructed or not. If not
specified, value defaults to false i.e. deep lfn's are constructed for the mappings.

4. pegasus.catalog.replica.directory.url.prefix to associate a URL prefix for the PFN's constructed. If not specified,
the URL defaults to file://

Tip

pegasus-plan has --input-dir option that can be used to specify an input directory on the command line.
This allows you to specify a separate replica catalog to catalog the locations of output files.

JDBCRC
In this mode, Pegasus queries a SQL based replica catalog that is accessed via JDBC. To create the schema for
JDBCRC use the pegasus-db-admin command line tool.

Note

A site attribute was added to the SQL schema as a unique key for 4.4. To update an existing database schema,
use pegasus-db-admin tool.

Figure 4.2. Schema Image of the JDBCRC.

To use JDBCRC, the user additionally needs to set the following properties

1. pegasus.catalog.replica JDBCRC

2. pegasus.catalog.replica.db.driver mysql | postgres |sqlite

3. pegasus.catalog.replica.db.url=<jdbc url to the database> e.g jdbc:mysql://data-
base-host.isi.edu/database-name | jdbc:sqlite:/shared/jdbcrc.db

4. pegasus.catalog.replica.db.user=<database user>

5. pegasus.catalog.replica.db.password=<database password>

Users can use the command line client pegasus-rc-client to interface to query, insert and remove entries from the
JDBCRC backend. Starting 4.5 release, there is also support for sqlite databases. Specify the jdbc url to refer to a
sqlite database.

MRC
In this mode, Pegasus queries multiple replica catalogs to discover the file locations on the grid.

To use it set

35

Creating Workflows

1. pegasus.catalog.replica=MRC

Each associated replica catalog can be configured via properties as follows.

The user associates a variable name referred to as [value] for each of the catalogs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For each associated replica catalogs the user specifies the following properties

• pegasus.catalog.replica.mrc.[value] - specifies the type of replica catalog.

• pegasus.catalog.replica.mrc.[value].key - specifies a property name key for a particular catalog

For example, to query a File catalog and JDBCRC at the same time specify the following:

• pegasus.catalog.replica=MRC

• pegasus.catalog.replica.mrc.jdbcrc=JDBCRC

• pegasus.catalog.replica.mrc.jdbcrc.url=<jdbc url >

• pegasus.catalog.replica.mrc.file1=File

• pegasus.catalog.replica.mrc.file1.url=<path to file based replica catalog>

In the above example, jdbcrc and file1 are any valid identifier names and url is the property key that needed to be
specified.

Another example is to use MRC with multiple input directories. Sample properties for that configuration are listed
below

• pegasus.catalog.replica=MRC

• pegasus.catalog.replica.mrc.directory1=Directory

• pegasus.catalog.replica.mrc.directory1.directory=/path/to/dir1

• pegasus.catalog.replica.mrc.directory1.directory.site=obelix

• pegasus.catalog.replica.mrc.directory2=Directory

• pegasus.catalog.replica.mrc.directory2.directory=/path/to/dir2

• pegasus.catalog.replica.mrc.directory2.directory.site=corbusier

Replica Catalog Client pegasus-rc-client

The client used to interact with the Replica Catalogs is pegasus-rc-client. The implementation that the client talks to
is configured using Pegasus properties.

Lets assume we create a file f.a in your home directory as shown below.

$ date > $HOME/f.a

We now need to register this file in the File replica catalog located in $HOME/rc using the pegasus-rc-client. Replace
the gsiftp://url with the appropriate parameters for your grid site.

$ pegasus-rc-client -Dpegasus.catalog.replica=File -Dpegasus.catalog.replica.file=$HOME/rc insert \
 f.a gsiftp://somehost:port/path/to/file/f.a site=local

You may first want to verify that the file registeration is in the replica catalog. Since we are using a File catalog we
can look at the file $HOME/rc to view entries.

$ cat $HOME/rc

file-based replica catalog: 2010-11-10T17:52:53.405-07:00
f.a gsiftp://somehost:port/path/to/file/f.a site=local

36

Creating Workflows

The above line shows that entry for file f.a was made correctly.

You can also use the pegasus-rc-client to look for entries.

$ pegasus-rc-client -Dpegasus.catalog.replica=File -Dpegasus.catalog.replica.file=$HOME/rc lookup
 LFN f.a

f.a gsiftp://somehost:port/path/to/file/f.a site=local

Resource Discovery (Site Catalog)
The Site Catalog describes the compute resources (which are often clusters) that we intend to run the workflow up-
on. A site is a homogeneous part of a cluster that has at least a single GRAM gatekeeper with a jobmanager-fork
andjobmanager-<scheduler> interface and at least one gridftp server along with a shared file system. The GRAM
gatekeeper can be either WS GRAM or Pre-WS GRAM. A site can also be a condor pool or glidein pool with a shared
file system.

The Site Catalog can be described as an XML . Pegasus currently supports two schemas for the Site Catalog:

1. XML4(Default) Corresponds to the schema described here [schemas/sc-4.0/sc-4.0.html].

2. XML3(Deprecated) Corresponds to the schema described here [schemas/sc-3.0/sc-3.0.html]

XML4
This is the default format for Pegasus 4.2. This format allows defining filesystem of shared as well as local type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.3. Schema Image of the Site Catalog XML4

Below is an example of the XML4 site catalog

<?xml version="1.0" encoding="UTF-8"?>

37

schemas/sc-4.0/sc-4.0.html
schemas/sc-4.0/sc-4.0.html
schemas/sc-3.0/sc-3.0.html
schemas/sc-3.0/sc-3.0.html

Creating Workflows

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/workflows/scratch">
 <file-server operation="all" url="file:///tmp/workflows/scratch"/>
 </directory>
 <directory type="local-storage" path="/tmp/workflows/outputs">
 <file-server operation="all" url="file:///tmp/workflows/outputs"/>
 </directory>
 </site>

 <site handle="condor_pool" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="auxillary"/>
 <grid type="gt5" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="compute"/>
 <directory type="shared-scratch" path="/lustre">
 <file-server operation="all" url="gsiftp://smarty.isi.edu/lustre"/>
 </directory>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu"/>
 </site>

 <site handle="staging_site" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/data">
 <file-server operation="put" url="scp://obelix.isi.edu/data"/>
 <file-server operation="get" url="http://obelix.isi.edu/data"/>
 </directory>
 </site>

</sitecatalog>

Described below are some of the entries in the site catalog.

1. site - A site identifier.

2. Directory - Info about filesystems Pegasus can use for storing temporary and long-term files. There are several
configurations:

• shared-scratch - This describe a scratch file systems. Pegasus will use this to store intermediate data between
jobs and other temporary files.

• local-storage - This describes the storage file systems (long term). This is the directory Pegasus will stage output
files to.

• local-scratch - This describe the scratch file systems available locally on a compute node. This parameter is not
commonly used and can be left unset in most cases.

For each of the directories, you can specify access methods. Allowed methods are put, get, and all which means
both put and get. For each mehod, specify a URL including the protocol. For example, if you want share data via
http using the /var/www/staging directory, you can use scp://hostname/var/www for the put element and http://
hostname/staging for the get element.

3. arch,os,osrelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optional

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AIX, PPC.

OS can have one of the following values LINUX,SUNOS,MACOSX. The default value for sysinfo if none specified
is X86::LINUX

4. replica-catalog - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation
of the RC. This is optional and support for RLS has been dropped in Pegasus 4.5.0 release.

5. Profiles - One or many profiles can be attached to a site.

One example is the environments to be set on a remote site.

38

Creating Workflows

To use this site catalog the follow properties need to be set:

1. pegasus.catalog.site.file=<path to the site catalog file>

XML3

Warning

This format is now deprecated in favor of the XML4 format. If you are still using the File format you should
convert it to XML4 format using the client pegasus-sc-converter

This is the default format for Pegasus 3.0. This format allows defining filesystem of shared as well as local type on
the head node of the remote cluster as well as on the backend nodes

Figure 4.4. Schema Image of the Site Catalog XML 3

Below is an example of the XML3 site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="isi" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="auxillary"/
>
 <grid type="gt2" contact="smarty.isi.edu/jobmanager-pbs" scheduler="PBS" jobtype="compute"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
 mount-point="/nfs/scratch01" />
 <internal-mount-point mount-point="/nfs/scratch01"/>
 </shared>
 </scratch>
 <storage>

39

Creating Workflows

 <shared>
 <file-server protocol="gsiftp" url="gsiftp://skynet-data.isi.edu"
 mount-point="/exports/storage01"/>
 <internal-mount-point mount-point="/exports/storage01"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu"/>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/vdt/pegasus</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/vdt/globus</profile>
 </site>
</sitecatalog>

Described below are some of the entries in the site catalog.

1. site - A site identifier.

2. replica-catalog - URL for a local replica catalog (LRC) to register your files in. Only used for RLS implementation
of the RC. This is optional and support for RLS has been dropped in Pegasus 4.5.0.

3. File Systems - Info about filesystems mounted on the remote clusters head node or worker nodes. It has several
configurations

• head-fs/scratch - This describe the scratch file systems (temporary for execution) available on the head node

• head-fs/storage - This describes the storage file systems (long term) available on the head node

• worker-fs/scratch - This describe the scratch file systems (temporary for execution) available on the worker
node

• worker-fs/storage - This describes the storage file systems (long term) available on the worker node

Each scratch and storage entry can contain two sub entries,

• SHARED for shared file systems like NFS, LUSTRE etc.

• LOCAL for local file systems (local to the node/machine)

Each of the filesystems are defined by used a file-server element. Protocol defines the protocol uses to access the
files, URL defines the url prefix to obtain the files from and mount-point is the mount point exposed by the file
server.

Along with this an internal-mount-point needs to defined to access the files directly from the machine without any
file servers.

4. arch,os,osrelease,osversion, glibc - The arch/os/osrelease/osversion/glibc of the site. OSRELEASE,
OSVERSION and GLIBC are optional

ARCH can have one of the following values X86, X86_64, SPARCV7, SPARCV9, AIX, PPC.

OS can have one of the following values LINUX,SUNOS,MACOSX. The default value for sysinfo if none specified
is X86::LINUX

5. Profiles - One or many profiles can be attached to a pool.

One example is the environments to be set on a remote pool.

To use this site catalog the follow properties need to be set:

1. pegasus.catalog.site.file=<path to the site catalog file>

Site Catalog Converter pegasus-sc-converter
Pegasus 4.2 by default now parses Site Catalog format conforming to the SC schema 4.0 (XML4) available here
[schemas/sc-4.0/sc-4.0.xsd] and is explained in detail in the Catalog Properties section of Running Workflows.

40

schemas/sc-4.0/sc-4.0.xsd
schemas/sc-4.0/sc-4.0.xsd

Creating Workflows

Pegasus 4.2 comes with a pegasus-sc-converter that will convert users old site catalog (XML3) to the XML4 format.
Sample usage is given below.

$ pegasus-sc-converter -i sample.sites.xml -I XML3 -o sample.sites.xml4 -O XML4

2010.11.22 12:55:14.169 PST: Written out the converted file to sample.sites.xml4

To use the converted site catalog, in the properties do the following:

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML

2. point pegasus.catalog.site.file to the converted site catalog

Executable Discovery (Transformation Catalog)
The Transformation Catalog maps logical transformations to physical executables on the system. It also provides
additional information about the transformation as to what system they are compiled for, what profiles or environment
variables need to be set when the transformation is invoked etc.

Pegasus currently supports a Text formatted Transformation Catalog

1. Text: A multi line text based Transformation Catalog (DEFAULT)

In this guide we will look at the format of the Multiline Text based TC.

MultiLine Text based TC (Text)
The multile line text based TC is the new default TC in Pegasus. This format allows you to define the transformations

The file is read and cached in memory. Any modifications, as adding or deleting, causes an update of the memory
and hence to the file underneath. All queries are done against the memory representation. The file sample.tc.text in
the etc directory contains an example

tr example::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 profile env "HELLo" "WORLD"
 profile condor "FOO" "bar"
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "INSTALLED"
 }

 site wind {
 profile env "CPATH" "/usr/cpath"
 profile condor "universe" "condor"
 pfn "file:///path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "STAGEABLE"
 }
}

The entries in this catalog have the following meaning

1. tr tr - A transformation identifier. (Normally a Namespace::Name:Version.. The Namespace and Version are op-
tional.)

41

Creating Workflows

2. pfn - URL or file path for the location of the executable. The pfn is a file path if the transformation is of type
INSTALLED and generally a url (file:/// or http:// or gridftp://) if of type STAGEABLE

3. site - The site identifier for the site where the transformation is available

4. type - The type of transformation. Whether it is installed ("INSTALLED") on the remote site or is availabe to
stage ("STAGEABLE").

5. arch, os, osrelease, osversion - The arch/os/osrelease/osversion of the transformation. osrelease and osversion are
optional.

ARCH can have one of the following values x86, x86_64, sparcv7, sparcv9, ppc, aix. The default value for arch
is x86

OS can have one of the following values linux,sunos,macosx. The default value for OS if none specified is linux

6. Profiles - One or many profiles can be attached to a transformation for all sites or to a transformation on a particular
site.

To use this format of the Transformation Catalog you need to set the following properties

1. pegasus.catalog.transformation=Text

2. pegasus.catalog.transformation.file=<path to the transformation catalog file>

Containerized Applications in the Transformation Catalog

Users can specify what container they want to use for running their application in the Transformation Catalog using
the multi line text based format described in this section. Users can specify an optional attribute named container that
refers to the container to be used for the application.

tr example::keg:1.0 {

 #specify profiles that apply for all the sites for the transformation
 #in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 # environment to be set when the job is run in the container
 # overrides env profiles specified in the container
 profile env "HELLo" "WORLD"
 profile env "JAVA_HOME" "/bin/java.1.6"

 profile condor "FOO" "bar"

 pfn "/path/to/keg
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"

 # INSTALLED means pfn refers to path in the container.
 # STAGEABLE means the executable can be staged into the container
 type "INSTALLED"

 #optional attribute to specify the container to use
 container "centos-pegasus"
 }
}

cont centos-pegasus{
 # can be either docker or singularity
 type "docker"

 # URL to image in a docker|singularity hub OR
 # URL to an existing docker image exported as a tar file or singularity image
 image "docker:///rynge/montage:latest"

 # optional site attribute to tell pegasus which site tar file

42

Creating Workflows

 # exists. useful for handling file URL's correctly
 image_site "optional site"

 # environment to be set when the job is run in the container
 # only env profiles are supported
 profile env "JAVA_HOME" "/opt/java/1.6"
}

The container itself is defined using the cont entry. Multiple transformations can refer to the same container.

1. cont cont - A container identifier.

2. image - URL to image in a docker|singularity hub or URL to an existing docker image exported as a tar file or
singularity image. Example of a docker hub URL is docker:///rynge/montage:latest, while for singularity shub://
pegasus-isi/fedora-montage

3. image_site - The site identifier for the site where the container is available

4. Profiles - One or many profiles can be attached to a transformation for all sites or to a transformation on a particular
site. For containers, only env profiles are supported.

Note

Containerized Applications can only be specified in the transformation catalog, not via the DAX API.

TC Client pegasus-tc-client
We need to map our declared transformations (preprocess, findrange, and analyze) from the example DAX above to
a simple "mock application" name "keg" ("canonical example for the grid") which reads input files designated by
arguments, writes them back onto output files, and produces on STDOUT a summary of where and when it was run.
Keg ships with Pegasus in the bin directory. Run keg on the command line to see how it works.

$ keg -o /dev/fd/1

Timestamp Today: 20040624T054607-05:00 (1088073967.418;0.022)
Applicationname: keg @ 10.10.0.11 (VPN)
Current Workdir: /home/unique-name
Systemenvironm.: i686-Linux 2.4.18-3
Processor Info.: 1 x Pentium III (Coppermine) @ 797.425
Output Filename: /dev/fd/1

Now we need to map all 3 transformations onto the "keg" executable. We place these mappings in our File transfor-
mation catalog for site clus1.

Note

In earlier version of Pegasus users had to define entries for Pegasus executables such as transfer, replica
client, dirmanager, etc on each site as well as site "local". This is no longer required. Pegasus versions 2.0
and later automatically pick up the paths for these binaries from the environment profile PEGASUS_HOME
set in the site catalog for each site.

A single entry needs to be on one line. The above example is just formatted for convenience.

Alternatively you can also use the pegasus-tc-client to add entries to any implementation of the transformation catalog.
The following example shows the addiition the last entry in the File based transformation catalog.

$ pegasus-tc-client -Dpegasus.catalog.transformation=Text \
-Dpegasus.catalog.transformation.file=$HOME/tc -a -r clus1 -l black::analyze:1.0 \
-p gsiftp://clus1.com/opt/nfs/vdt/pegasus/bin/keg -t STAGEABLE -s INTEL32::LINUX \
-e ENV::KEY3="VALUE3"

2007.07.11 16:12:03.712 PDT: [INFO] Added tc entry sucessfully

To verify if the entry was correctly added to the transformation catalog you can use the pegasus-tc-client to query.

$ pegasus-tc-client -Dpegasus.catalog.transformation=File \
-Dpegasus.catalog.transformation.file=$HOME/tc -q -P -l black::analyze:1.0

43

Creating Workflows

#RESID LTX PFN TYPE SYSINFO

clus1 black::analyze:1.0 gsiftp://clus1.com/opt/nfs/vdt/pegasus/bin/keg
 STAGEABLE INTEL32::LINUX

Note

pegasus-tc-client is no longer actively developed and is deprecated.

TC Converter Client pegasus-tc-converter
Pegasus 3.0 by default now parses a file based multi line textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sample.tc.data -I File -o sample.tc.text -O Text

2010.11.22 12:53:16.661 PST: Successfully converted Transformation Catalog from File to Text
2010.11.22 12:53:16.666 PST: The output transfomation catalog is in file sample.tc.text

To use the converted transformation catalog, in the properties do the following:

1. unset pegasus.catalog.transformation or set pegasus.catalog.transformation to Text

2. point pegasus.catalog.transformation.file to the converted transformation catalog

Variable Expansion
Pegasus Planner supports notion of variable expansions in the DAX and the catalog files along the same lines as bash
variable expansion works. This is often useful, when you want paths in your catalogs or profile values in the DAX to
be picked up from the environment. An error is thrown if a variable cannot be expanded.

To specify a variable that needs to be expanded, the syntax is ${VARIABLE_NAME} , similar to BASH variable
expansion. An important thing to note is that the variable names need to be enclosed in curly braces. For example

 ${FOO} - will be expanded by Pegasus
 $FOO - will NOT be expanded by Pegasus.

Also variable names are case sensitive.

Some examples of variable expansion are illustrated below:

• DAX

A job in the DAX file needs to have a globus profile key project associated and the value has to be picked up (per
user) from user environment.

<profile namespace="globus" key="project">${PROJECT}</profile>

• Site Catalog

In the site catalog, the site catalog entries are templated, where paths are resolved on the basis of values of envi-
ronment variables. For example, below is a templated entry for a local site where $PWD is the working directory
from where pegasus-plan is invoked.

<site handle="local" arch="x86_64" os="LINUX" osrelease="" osversion="" glibc="">
 <directory path="${PWD}/LOCAL/shared-scratch" type="shared-scratch" free-size="" total-
size="">
 <file-server operation="all" url="file:///${PWD}/LOCAL/shared-scratch">
 </file-server>
 </directory>
 <directory path="${PWD}/LOCAL/shared-storage" type="shared-storage" free-size="" total-
size="">

44

Creating Workflows

 <file-server operation="all" url="file:///${PWD}/LOCAL/shared-storage">
 </file-server>
 </directory>
 <profile namespace="env" key="PEGASUS_HOME">/usr</profile>
 <profile namespace="pegasus" key="clusters.num" >1</profile>
</site>

• Replica Catalog

The input file locations in the Replica Catalog can be resolved based on values of environment variables.

File Based Replica Catalog
production_200.conf file://$PWD/production_200.conf site="local"

Note

Variable expansion is only supported for File based Replica Catalog, not Regex or other file based formats.

• Transformation Catalog

Similarly paths in the transformation catalog or profile values can be picked up from the environment i.e environ-
ment variables OS , ARCH and PROJECT are defined in user environment when launching pegasus-plan.

Snippet from a Text Based Transformation Catalog
tr pegasus::keg{
 site obelix {
 profile globus "project" "${PROJECT}"
 pfn "/usr/bin/pegasus-keg"
 arch "${ARCH}"
 os "${OS}"
 type "INSTALLED"
 }
}

45

Chapter 5. Running Workflows
Executable Workflows (DAG)

The DAG is an executable (concrete) workflow that can be executed over a variety of resources. When the workflow
tasks are mapped to multiple resources that do not share a file system, explicit nodes are added to the workflow for
orchestrating data. transfer between the tasks.

When you take the DAX workflow created in Creating Workflows, and plan it for a single remote grid execution, here
a site with handle hpcc, and plan the workflow without clean-up nodes, the following concrete workflow is built:

Figure 5.1. Black Diamond DAG

Planning augments the original abstract workflow with ancillary tasks to facility the proper execution of the workflow.
These tasks include:

• the creation of remote working directories. These directories typically have name that seeks to avoid conflicts with
other simultaneously running similar workflows. Such tasks use a job prefix of create_dir.

• the stage-in of input files before any task which requires these files. Any file consumed by a task needs to be staged
to the task, if it does not already exist on that site. Such tasks use a job prefix of stage_in.If multiple files from
various sources need to be transferred, multiple stage-in jobs will be created. Additional advanced options permit
to control the size and number of these jobs, and whether multiple compute tasks can share stage-in jobs.

• the original DAX job is concretized into a compute task in the DAG. Compute jobs are a concatination of the job's
name and id attribute from the DAX file.

• the stage-out of data products to a collecting site. Data products with their transfer flag set to false will not be
staged to the output site. However, they may still be eligible for staging to other, dependent tasks. Stage-out tasks
use a job prefix of stage_out.

46

Running Workflows

• If compute jobs run at different sites, an intermediary staging task with prefix stage_inter is inserted between
the compute jobs in the workflow, ensuring that the data products of the parent are available to the child job.

• the registration of data products in a replica catalog. Data products with their register flag set to false will not
be registered.

• the clean-up of transient files and working directories. These steps can be omitted with the --no-cleanup option
to the planner.

The Data Management chapter details more about when and how staging nodes are inserted into the workflow.

The DAG will be found in file diamond-0.dag, constructed from the name and index attributes found in the root
element of the DAX file.

##
PEGASUS WMS GENERATED DAG FILE
DAG diamond
Index = 0, Count = 1
##

JOB create_dir_diamond_0_hpcc create_dir_diamond_0_hpcc.sub
SCRIPT POST create_dir_diamond_0_hpcc /opt/pegasus/default/bin/pegasus-exitcode
 create_dir_diamond_0_hpcc.out

JOB stage_in_local_hpcc_0 stage_in_local_hpcc_0.sub
SCRIPT POST stage_in_local_hpcc_0 /opt/pegasus/default/bin/pegasus-exitcode
 stage_in_local_hpcc_0.out

JOB preprocess_ID000001 preprocess_ID000001.sub
SCRIPT POST preprocess_ID000001 /opt/pegasus/default/bin/pegasus-exitcode preprocess_ID000001.out

JOB findrange_ID000002 findrange_ID000002.sub
SCRIPT POST findrange_ID000002 /opt/pegasus/default/bin/pegasus-exitcode findrange_ID000002.out

JOB findrange_ID000003 findrange_ID000003.sub
SCRIPT POST findrange_ID000003 /opt/pegasus/default/bin/pegasus-exitcode findrange_ID000003.out

JOB analyze_ID000004 analyze_ID000004.sub
SCRIPT POST analyze_ID000004 /opt/pegasus/default/bin/pegasus-exitcode analyze_ID000004.out

JOB stage_out_local_hpcc_2_0 stage_out_local_hpcc_2_0.sub
SCRIPT POST stage_out_local_hpcc_2_0 /opt/pegasus/default/bin/pegasus-exitcode
 stage_out_local_hpcc_2_0.out

PARENT findrange_ID000002 CHILD analyze_ID000004
PARENT findrange_ID000003 CHILD analyze_ID000004
PARENT preprocess_ID000001 CHILD findrange_ID000002
PARENT preprocess_ID000001 CHILD findrange_ID000003
PARENT analyze_ID000004 CHILD stage_out_local_hpcc_2_0
PARENT stage_in_local_hpcc_0 CHILD preprocess_ID000001
PARENT create_dir_diamond_0_hpcc CHILD findrange_ID000002
PARENT create_dir_diamond_0_hpcc CHILD findrange_ID000003
PARENT create_dir_diamond_0_hpcc CHILD preprocess_ID000001
PARENT create_dir_diamond_0_hpcc CHILD analyze_ID000004
PARENT create_dir_diamond_0_hpcc CHILD stage_in_local_hpcc_0
##
End of DAG
##

The DAG file declares all jobs and links them to a Condor submit file that describes the planned, concrete job. In the
same directory as the DAG file are all Condor submit files for the jobs from the picture plus a number of additional
helper files.

The various instructions that can be put into a DAG file are described in Condor's DAGMAN documentation [http://
www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html].The constituents of the submit directory
are described in the "Submit Directory Details"chapter

Mapping Refinement Steps
During the mapping process, the abstract workflow undergoes a series of refinement steps that converts it to an exe-
cutable form.

47

http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v7.5/2_10DAGMan_Applications.html

Running Workflows

Data Reuse
The abstract workflow after parsing is optionally handed over to the Data Reuse Module. The Data Reuse Algorithm
in Pegasus attempts to prune all the nodes in the abstract workflow for which the output files exist in the Replica
Catalog. It also attempts to cascade the deletion to the parents of the deleted node for e.g if the output files for the
leaf nodes are specified, Pegasus will prune out all the workflow as the output files in which a user is interested in
already exist in the Replica Catalog.

The Data Reuse Algorithm works in two passes

First Pass - Determine all the jobs whose output files exist in the Replica Catalog. An output file with the transfer
flag set to false is treated equivalent to the file existing in the Replica Catalog , if the output file is not an input to
any of the children of the job X.

Second Pass - The algorithm removes the job whose output files exist in the Replica Catalog and tries to cascade the
deletion upwards to the parent jobs. We start the breadth first traversal of the workflow bottom up.

(It is already marked for deletion in Pass 1
 OR
 (ALL of it's children have been marked for deletion
 AND
 (Node's output files have transfer flags set to false
 OR
 Node's output files with transfer flag as true have locations recorded in the Replica
 Catalog
)
)
)

Tip

The Data Reuse Algorithm can be disabled by passing the --force option to pegasus-plan.

Figure 5.2. Workflow Data Reuse

48

Running Workflows

Site Selection

The abstract workflow is then handed over to the Site Selector module where the abstract jobs in the pruned workflow
are mapped to the various sites passed by a user. The target sites for planning are specified on the command line using
the --sites option to pegasus-plan. If not specified, then Pegasus picks up all the sites in the Site Catalog as candidate
sites. Pegasus will map a compute job to a site only if Pegasus can

• find an INSTALLED executable on the site

• OR find a STAGEABLE executable that can be staged to the site as part of the workflow execution.

Pegasus supports variety of site selectors with Random being the default

• Random

The jobs will be randomly distributed among the sites that can execute them.

• RoundRobin

The jobs will be assigned in a round robin manner amongst the sites that can execute them. Since each site cannot
execute every type of job, the round robin scheduling is done per level on a sorted list. The sorting is on the basis
of the number of jobs a particular site has been assigned in that level so far. If a job cannot be run on the first
site in the queue (due to no matching entry in the transformation catalog for the transformation referred to by the
job), it goes to the next one and so on. This implementation defaults to classic round robin in the case where all
the jobs in the workflow can run on all the sites.

• Group

Group of jobs will be assigned to the same site that can execute them. The use of the PEGASUS profile key
group in the DAX, associates a job with a particular group. The jobs that do not have the profile key associated
with them, will be put in the default group. The jobs in the default group are handed over to the "Random" Site
Selector for scheduling.

• Heft

A version of the HEFT processor scheduling algorithm is used to schedule jobs in the workflow to multiple grid
sites. The implementation assumes default data communication costs when jobs are not scheduled on to the same
site. Later on this may be made more configurable.

The runtime for the jobs is specified in the transformation catalog by associating the pegasus profile key runtime
with the entries.

The number of processors in a site is picked up from the attribute idle-nodes associated with the vanilla jobman-
ager of the site in the site catalog.

• NonJavaCallout

Pegasus will callout to an external site selector.In this mode a temporary file is prepared containing the job
information that is passed to the site selector as an argument while invoking it. The path to the site selector is
specified by setting the property pegasus.site.selector.path. The environment variables that need to be set to run
the site selector can be specified using the properties with a pegasus.site.selector.env. prefix. The temporary file
contains information about the job that needs to be scheduled. It contains key value pairs with each key value
pair being on a new line and separated by a =.

The following pairs are currently generated for the site selector temporary file that is generated in the NonJava-
Callout.

Table 5.1. Key Value Pairs that are currently generated for the site selector temporary
file that is generated in the NonJavaCallout.

Key Value
49

Running Workflows

version is the version of the site selector api,currently 2.0.

transformation is the fully-qualified definition identifier for the trans-
formation (TR) namespace::name:version.

derivation is the fully qualified definition identifier for the deriva-
tion (DV), namespace::name:version.

job.level is the job's depth in the tree of the workflow DAG.

job.id is the job's ID, as used in the DAX file.

resource.id is a pool handle, followed by whitespace, followed by a
gridftp server. Typically, each gridftp server is enumer-
ated once, so you may have multiple occurances of the
same site. There can be multiple occurances of this key.

input.lfn is an input LFN, optionally followed by a whitespace
and file size. There can be multiple occurances of this
key,one for each input LFN required by the job.

wf.name label of the dax, as found in the DAX's root element.
wf.index is the DAX index, that is incremented for each
partition in case of deferred planning.

wf.time is the mtime of the workflow.

wf.manager is the name of the workflow manager being used .e.g
condor

vo.name is the name of the virtual organization that is running
this workflow. It is currently set to NONE

vo.group unused at present and is set to NONE.

Tip

The site selector to use for site selection can be specified by setting the property pegasus.selector.site

50

Running Workflows

Figure 5.3. Workflow Site Selection

Job Clustering
After site selection, the workflow is optionally handed for to the job clustering module, which clusters jobs that are
scheduled to the same site. Clustering is usually done on short running jobs in order to reduce the remote execution
overheads associated with a job. Clustering is described in detail in the optimization chapter.

Tip

The job clustering is turned on by passing the --cluster option to pegasus-plan.

Addition of Data Transfer and Registration Nodes
After job clustering, the workflow is handed to the Data Transfer module that adds data stage-in , inter site and stage-
out nodes to the workflow. Data Stage-in Nodes transfer input data required by the workflow from the locations
specified in the Replica Catalog to a directory on the staging site associated with the job. The staging site for a job is
the execution site if running in a sharedfs mode, else it is the one specified by --staging-site option to the planner. In
case, multiple locations are specified for the same input file, the location from where to stage the data is selected using
a Replica Selector . Replica Selection is described in detail in the Replica Selection section of the Data Management
chapter. More details about staging site can be found in the data staging configuration chapter.

The process of adding the data stage-in and data stage-out nodes is handled by Transfer Refiners. All data transfer
jobs in Pegasus are executed using pegasus-transfer . The pegasus-transfer client is a python based wrapper around
various transfer clients like globus-url-copy, s3cmd, irods-transfer, scp, wget, cp, ln . It looks at source and destination

51

Running Workflows

url and figures out automatically which underlying client to use. pegasus-transfer is distributed with the PEGASUS
and can be found in the bin subdirectory . Pegasus Transfer Refiners are are described in the detail in the Transfers
section of the Data Management chapter. The default transfer refiner that is used in Pegasus is the BalancedCluster
Transfer Refiner, that clusters data stage-in nodes and data stage-out nodes per level of the workflow, on the basis of
certain pegasus profile keys associated with the workflow.

Figure 5.4. Addition of Data Transfer Nodes to the Workflow

Data Registration Nodes may also be added to the final executable workflow to register the location of the output files
on the final output site back in the Replica Catalog . An output file is registered in the Replica Catalog if the register
flag for the file is set to true in the DAX.

52

Running Workflows

Figure 5.5. Addition of Data Registration Nodes to the Workflow

The data staged-in and staged-out from a directory that is created on the head node by a create dir job in the workflow.
In the vanilla case, the directory is visible to all the worker nodes and compute jobs are launched in this directory
on the shared filesystem. In the case where there is no shared filesystem, users can turn on worker node execution,
where the data is staged from the head node directory to a directory on the worker node filesystem. This feature will
be refined further for Pegasus 3.1. To use it with Pegasus 3.0 send email to pegasus-support at isi.edu.

Tip

The replica selector to use for replica selection can be specified by setting the property pegasus.selec-
tor.replica

Addition of Create Dir and Cleanup Jobs

After the data transfer nodes have been added to the workflow, Pegasus adds a create dir jobs to the workflow. Pegasus
usually , creates one workflow specific directory per compute site , that is on the staging site associated with the job.
In the case of shared shared filesystem setup, it is a directory on the shared filesystem of the compute site. In case
of shared filesystem setup, this directory is visible to all the worker nodes and that is where the data is staged-in by
the data stage-in jobs.

The staging site for a job is the execution site if running in a sharedfs mode, else it is the one specified by --staging-site
option to the planner. More details about staging site can be found in the data staging configuration chapter.

After addition of the create dir jobs, the workflow is optionally handed to the cleanup module. The cleanup module
adds cleanup nodes to the workflow that remove data from the directory on the shared filesystem when it is no longer
required by the workflow. This is useful in reducing the peak storage requirements of the workflow.

53

Running Workflows

Tip

The addition of the cleanup nodes to the workflow can be disabled by passing the --nocleanup option to
pegasus-plan.

Figure 5.6. Addition of Directory Creation and File Removal Jobs

Tip

Users can specify the maximum number of cleanup jobs added per level by specifying the property pega-
sus.file.cleanup.clusters.num in the properties.

Code Generation

The last step of refinement process, is the code generation where Pegasus writes out the executable workflow in a
form understandable by the underlying workflow executor. At present Pegasus supports the following code generators

1. Condor

This is the default code generator for Pegasus . This generator generates the executable workflow as a Condor DAG
file and associated job submit files. The Condor DAG file is passed as input to Condor DAGMan for job execution.

2. Shell

This Code Generator generates the executable workflow as a shell script that can be executed on the submit host.
While using this code generator, all the jobs should be mapped to site local i.e specify --sites local to pegasus-plan.

54

Running Workflows

Tip

To use the Shell code Generator set the property pegasus.code.generator Shell

3. PMC

This Code Generator generates the executable workflow as a PMC task workflow. This is useful to run on platforms
where it not feasible to run Condor such as the new XSEDE machines such as Blue Waters. In this mode, Pegasus
will generate the executable workflow as a PMC task workflow and a sample PBS submit script that submits this
workflow. Note that the generated PBS file needs to be manually updated before it can be submitted.

Tip

To use the Shell code Generator set the property pegasus.code.generator PMC

Figure 5.7. Final Executable Workflow

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations

• Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in a directory on the shared filesystem.

• NonShared FileSystem

55

Running Workflows

This setup applies to where the head node and the worker nodes of a cluster don't share a filesystem. Compute jobs
in the workflow run in a local directory on the worker node

• Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File IO is used.

For the purposes of data configuration various sites, and directories are defined below.

1. Submit Host

The host from where the workflows are submitted . This is where Pegasus and Condor DAGMan are installed. This
is referred to as the "local" site in the site catalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site

A site to which the separate transfer jobs in the executable workflow (jobs with stage_in , stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the pool attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

This is the directory created by the create dir jobs in the executable workflow on the Staging Site. This is a directory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

This is the directory created on the worker nodes per job usually by the job wrapper that launches the job.

You can specifiy the data configuration to use either in

1. properties - Specify the global property pegasus.data.configuration .

2. site catalog - Starting 4.5.0 release, you can specify pegasus profile key named data.configuration and associate
that with your compute sites in the site catalog.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

56

Running Workflows

Figure 5.8. Shared File System Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on a worker node in the workflow execution directory. Accesses the input data using Posix IO

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
IO

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip

Set pegasus.data.configuration to sharedfs to run in this configuration.

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be a file server on the head node of a cluster or can be on a separate machine.

Setup

• compute and staging site are the different

• head node and worker nodes of compute site don't share a filesystem

57

Running Workflows

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 5.9. Non Shared Filesystem Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
a workflow specific execution directory on the staging site.

2. Compute Job starts on a worker node in a local execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to a local directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. Output Data is pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to nonsharedfs to run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

58

Running Workflows

Condor Pool Without a Shared Filesystem
This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

Setup

• Submit Host and staging site are same

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 5.10. Condor Pool Without a Shared Filesystem

The data flow is as follows in this case

1. Stagein Job executes on the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on a worker node in a local execution directory. Before the compute job starts, Condor transfers
the input data for the job from the workflow execution directory on the submit host to the local execution directory
on the worker node.

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

59

Running Workflows

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set pegasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

PegasusLite
Starting Pegasus 4.0 , all compute jobs (single or clustered jobs) that are executed in a non shared filesystem setup,
are executed using lightweight job wrapper called PegasusLite.

Figure 5.11. Workflow Running in NonShared Filesystem Setup with PegasusLite launching
compute jobs

When PegasusLite starts on a remote worker node to run a compute job , it performs the following actions:

1. Discovers the best run-time directory based on space requirements and create the directory on the local filesystem
of the worker node to execute the job.

2. Prepare the node for executing the unit of work. This involves discovering whether the pegasus worker tools are
already installed on the node or need to be brought in.

3. Use pegasus-transfer to stage in the input data to the runtime directory (created in step 1) on the remote worker node.

4. Launch the compute job.

60

Running Workflows

5. Use pegasus-transfer to stage out the output data to the data coordination site.

6. Remove the directory created in Step 1.

Pegasus-Plan
pegasus-plan is the main executable that takes in the abstract workflow (DAX) and generates an executable workflow
(usually a Condor DAG) by querying various catalogs and performing several refinement steps. Before users can
run pegasus plan the following needs to be done:

1. Populate the various catalogs

a. Replica Catalog

The Replica Catalog needs to be catalogued with the locations of the input files required by the workflows. This
can be done by using pegasus-rc-client (See the Replica section of Creating Workflows).

b. Transformation Catalog

The Transformation Catalog needs to be catalogued with the locations of the executables that the workflows
will use. This can be done by using pegasus-tc-client (See the Transformation section of Creating Workflows).

c. Site Catalog

The Site Catalog needs to be catalogued with the site layout of the various sites that the workflows can execute
on. A site catalog can be generated for OSG by using the client pegasus-sc-client (See the Site section of the
Creating Workflows).

2. Configure Properties

After the catalogs have been configured, the user properties file need to be updated with the types and locations
of the catalogs to use. These properties are described in the basic.properties files in the etc sub directory (see the
Properties section of the Configuration chapter.

The basic properties that need to be set usually are listed below:

Table 5.2. Basic Properties that need to be set

pegasus.catalog.replica

pegasus.catalog.replica.file | pegasus.catalog.replica.url

pegasus.catalog.transformation

pegasus.catalog.transformation.file

pegasus.catalog.site.file

To execute pegasus-plan user usually requires to specify the following options:

1. --dax the path to the DAX file that needs to be mapped.

2. --dir the base directory where the executable workflow is generated

3. --sites comma separated list of execution sites.

4. --output the output site where to transfer the materialized output files.

5. --submit boolean value whether to submit the planned workflow for execution after planning is done.

Basic Properties
Properties are primarily used to configure the behavior of the Pegasus Workflow Planner at a global level. The prop-
erties file is actually a java properties file and follows the same conventions as that to specify the properties.

61

Running Workflows

Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the pe-
gasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

pegasus.home

Systems: all

Type: directory location string

Default: "$PEGASUS_HOME"

The property pegasus.home cannot be set in the property file. This property is automatically set up by the pegasus
clients internally by determining the installation directory of pegasus. Knowledge about this property is important for
developers who want to invoke PEGASUS JAVA classes without the shell wrappers.

Catalog Related Properties

62

Running Workflows

Table 5.3. Replica Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.replica
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : File

Pegasus queries a Replica Catalog to discover the physi-
cal filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Cata-
logs. This property specifies which type of Replica Cata-
log to use during the planning process.

JDBCRC In this mode, Pegasus queries a SQL
based replica catalog that is accessed via
JDBC. The sql schema's for this catalog
can be found at $PEGASUS_HOME/sql
directory. To use JDBCRC, the user addi-
tionally needs to set the following prop-
erties

1. pegasus.catalog.replica.db.driver =
mysql

2. pegasus.catalog.replica.db.url = jdbc
url to database e.g jdbc:mysql://data-
base-host.isi.edu/database-name

3. pegasus.catalog.replica.db.user =
database-user

4. pegasus.catalog.replica.db.password
= database-password

File In this mode, Pegasus queries a file based
replica catalog. It is neither transaction-
ally safe, nor advised to use for produc-
tion purposes in any way. Multiple con-
current instances will clobber each oth-
er!. The site attribute should be specified
whenever possible. The attribute key for
the site attribute is "site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Regex In this mode, Pegasus queries a file based
replica catalog. It is neither transactional-
ly safe, nor advised to use for production

63

Running Workflows

purposes in any way. Multiple concurrent
access to the File will end up clobbering
the contents of the file. The site attribute
should be specified whenever possible.
The attribute key for the site attribute is
"site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

In addition users can specifiy regular ex-
pression based LFN's. A regular expres-
sion based entry should be qualified with
an attribute named 'regex'. The attribute
regex when set to true identifies the cat-
alog entry as a regular expression based
entry. Regular expressions should follow
Java regular expression syntax.

For example, consider a replica catalog as
shown below.

Entry 1 refers to an entry which does
not use a resular expressions. This entry
would only match a file named 'f.a', and
nothing else. Entry 2 referes to an entry
which uses a regular expression. In this
entry f.a referes to files having name as
f[any-character]a i.e. faa, f.a, f0a, etc.

f.a file:///Vol/input/f.a
 site="local"
f.a file:///Vol/input/f.a
 site="local" regex="true"

Regular expression based entries also
support substitutions. For example, con-
sider the regular expression based entry
shown below.

Entry 3 will match files with name al-
pha.csv, alpha.txt, alpha.xml. In addition,
values matched in the expression can be
used to generate a PFN.

For the entry below if the file being
looked up is alpha.csv, the PFN for
the file would be generated as file:///
Volumes/data/input/csv/alpha.csv. Simi-
lary if the file being lookedup was al-
pha.csv, the PFN for the file would
be generated as file:///Volumes/data/in-
put/xml/alpha.xml i.e. The section [0], [1]
will be replaced. Section [0] refers to the
entire string i.e. alpha.csv. Section [1]

64

Running Workflows

refers to a partial match in the input i.e.
csv, or txt, or xml. Users can utilize as
many sections as they wish.

alpha\.(csv|txt|xml) file:///
Vol/input/[1]/[0] site="local"
 regex="true"

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Directory In this mode, Pegasus does a directory
listing on an input directory to create the
LFN to PFN mappings. The directory list-
ing is performed recursively, resulting in
deep LFN mappings. For example, if an
input directory $input is specified with
the following structure

$input
$input/f.1
$input/f.2
$input/D1
$input/D1/f.3

Pegasus will create the mappings the fol-
lowing LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D2/f.3
 site="local"

If you don't want the deep lfn's to be
created then, you can set pegasus.cata-
log.replica.directory.flat.lfn to true In that
case, for the previous example, Pegasus
will create the following LFN PFN map-
pings internally.

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
f.3 file://$input/D2/f.3
 site="local"

pegasus-plan has --input-dir option that
can be used to specify an input directory.

Users can optionally specify additional
properties to configure the behvavior of
this implementation.

pegasus.catalog.replica.directory.site to
specify a site attribute other than local to
associate with the mappings.

pegasus.catalog.replica.directory.url.pre-
fix to associate a URL prefix for the
PFN's constructed. If not specified, the
URL defaults to file://

65

Running Workflows

MRC In this mode, Pegasus queries multiple
replica catalogs to discover the file loca-
tions on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be
configured via properties as follows.

The user associates a variable name re-
ferred to as [value] for each of the cata-
logs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For
each associated replica catalogs the user
specifies the following properties.

pegasus.catalog.replica.mrc.[value]
 specifies the type of \

 replica catalog.
pegasus.catalog.replica.mrc.
[value].key specifies a property
 name\

 key for a particular catalog

pegasus.catalog.replica.mrc.directory1
 LRC
pegasus.catalog.replica.mrc.directory1.url /
input/dir1
pegasus.catalog.replica.mrc.directory2
 LRC
pegasus.catalog.replica.mrc.directory2.url /
input/dir2

In the above example, directory1, direc-
tory2 are any valid identifier names and
url is the property key that needed to be
specified.

Property Key: pegasus.catalog.replica.url
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)

When using the modern RLS replica catalog, the URI to
the Replica catalog must be provided to Pegasus to enable
it to look up filenames. There is no default.

Table 5.4. Site Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.site
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : XML

Pegasus supports two different types of site catalogs in
XML format conforming to sc-3.0.xsd and sc-4.0.xsd. Pe-
gasus is able to auto-detect what schema a user site cata-
log refers to. Hence, this property may no longer be set.

Property Key: pegasus.catalog.site.file
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : ${pegasus.home.sysconfdir}/sites.xml

The path to the site catalog file, that describes the various
sites and their layouts to Pegasus.

66

Running Workflows

Table 5.5. Transformation Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.transformation
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : Text

The only recommended and supported version of Trans-
formation Catalog for Pegasus is Text. For the old File
based formats, users should use pegasus-tc-converter to
convert File format to Text Format.

Text In this mode, a multiline file based format is un-
derstood. The file is read and cached in memory.
Any modifications, as adding or deleting, causes
an update of the memory and hence to the file un-
derneath. All queries are done against the mem-
ory representation.

The file sample.tc.text in the etc directory con-
tains an example

Here is a sample textual format for transfoma-
tion catalog containing one transformation on
two sites

tr example::keg:1.0 {
#specify profiles that apply for all the
 sites for the transformation
#in each site entry the profile can be
 overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "STAGEABLE"

Property Key: pegasus.catalog.transformation
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : ${pegasus.home.sysconfdir}/tc.text

The path to the transformation catalog file, that describes
the locations of the executables.

Data Staging Configuration Properties

Table 5.6. Data Configuration Properties

Key Attributes Description

Property Key: pegasus.data.configuration
Profile Key: N/A
Scope : Properties
Since : 4.0.0
Values : sharedfs|nonsharedfs|condorio

This property sets up Pegasus to run in different environ-
ments.

sharedfs If this is set, Pegasus will be setup to
execute jobs on the shared filesystem

67

Running Workflows

Default : sharedfs
See Also : pegasus.transfer.bypass.input.staging

on the execution site. This assumes,
that the head node of a cluster and the
worker nodes share a filesystem. The
staging site in this case is the same
as the execution site. Pegasus adds a
create dir job to the executable work-
flow that creates a workflow specif-
ic directory on the shared filesystem .
The data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this di-
rectory.The compute jobs in the exe-
cutable workflow are launched in the
directory on the shared filesystem. In-
ternally, if this is set the following
properties are set.

pegasus.execute.*.filesystem.local
 false

condorio If this is set, Pegasus will be setup to
run jobs in a pure condor pool, with the
nodes not sharing a filesystem. Data is
staged to the compute nodes from the
submit host using Condor File IO. The
planner is automatically setup to use
the submit host (site local) as the stag-
ing site. All the auxillary jobs added by
the planner to the executable workflow
(create dir, data stagein and stage-out,
cleanup) jobs refer to the workflow
specific directory on the local site. The
data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this di-
rectory. When the compute jobs start,
the input data for each job is shipped
from the workflow specific directory
on the submit host to compute/worker
node using Condor file IO. The output
data for each job is similarly shipped
back to the submit host from the com-
pute/worker node. This setup is par-
ticularly helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.transfer.lite.*.impl
 Condor
pegasus.execute.*.filesystem.local
 true
pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

nonsharedfs If this is set, Pegasus will be setup to
execute jobs on an execution site with-

68

Running Workflows

out relying on a shared filesystem be-
tween the head node and the work-
er nodes. You can specify staging site
(using --staging-site option to pega-
sus-plan) to indicate the site to use as
a central storage location for a work-
flow. The staging site is independant
of the execution sites on which a work-
flow executes. All the auxillary jobs
added by the planner to the executable
workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to
the workflow specific directory on the
staging site. The data transfer jobs in
the executable workflow (stage_in_ ,
stage_inter_ , stage_out_) transfer
the data to this directory. When the
compute jobs start, the input data for
each job is shipped from the workflow
specific directory on the submit host
to compute/worker node using pega-
sus-transfer. The output data for each
job is similarly shipped back to the
submit host from the compute/work-
er node. The protocols supported are
at this time SRM, GridFTP, iRods,
S3. This setup is particularly help-
ful when running workflows on OSG
where most of the execution sites don't
have enough data storage. Only a few
sites have large amounts of data stor-
age exposed that can be used to place
data during a workflow run. This set-
up is also helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.execute.*.filesystem.local
 true
pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

69

Chapter 6. Monitoring, Debugging and
Statistics

Pegasus comes bundled with useful tools that help users debug workflows and generate useful statistics and plots
about their workflow runs. Most of the tools query a runtime workflow database (usually a sqllite in the workflow
submit directory) populated at runtime by pegasus-monitord. With the exception of pegasus-monitord (see below),
all tools take in the submit directory as an argument. Users can invoke the tools listed in this chapter as follows:

$ pegasus-[toolname] <path to the submit directory>

Workflow Status
As the number of jobs and tasks in workflows increase, the ability to track the progress and quickly debug a workflow
becomes more and more important. Pegasus comes with a series of utilities that can be used to monitor and debug
workflows both in real-time as well as after execution is already completed.

pegasus-status
To monitor the execution of the workflow run the pegasus-status command as suggested by the output of the pega-
sus-run command. pegasus-status shows the current status of the Condor Q as pertaining to the master workflow
from the workflow directory you are pointing it to. In a second section, it will show a summary of the state of all jobs
in the workflow and all of its sub-workflows.

The details of pegasus-status are described in its respective manual page. There are many options to help you gather
the most out of this tool, including a watch-mode to repeatedly draw information, various modes to add more infor-
mation, and legends if you are new to it, or need to present it.

$ pegasus-status /Workflow/dags/directory
STAT IN_STATE JOB
Run 05:08 level-3-0
Run 04:32 |-sleep_ID000005
Run 04:27 _subdax_level-2_ID000004
Run 03:51 |-sleep_ID000003
Run 03:46 _subdax_level-1_ID000002
Run 03:10 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 6 0 3 0 33.3
Summary: 3 DAGs total (Running:3)

Without the -l option, the only a summary of the workflow statistics is shown under the current queue status. However,
with the -l option, it will show each sub-workflow separately:

$ pegasus-status -l /Workflow/dags/directory
STAT IN_STATE JOB
Run 07:01 level-3-0
Run 06:25 |-sleep_ID000005
Run 06:20 _subdax_level-2_ID000004
Run 05:44 |-sleep_ID000003
Run 05:39 _subdax_level-1_ID000002
Run 05:03 _sleep_ID000001
Summary: 6 Condor jobs total (R:6)

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME
 0 0 0 1 0 1 0 50.0 Running level-2_ID000004/level-1_ID000002/
level-1-0.dag
 0 0 0 2 0 1 0 33.3 Running level-2_ID000004/level-2-0.dag
 0 0 0 3 0 1 0 25.0 Running *level-3-0.dag
 0 0 0 6 0 3 0 33.3 TOTALS (9 jobs)
Summary: 3 DAGs total (Running:3)

The following output shows a successful workflow of workflow summary after it has finished.

$ pegasus-status work/2011080514

70

Monitoring, Debugging and Statistics

(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 0 0 0 0 0 7,137 0 100.0
Summary: 44 DAGs total (Success:44)

Warning

For large workflows with many jobs, please note that pegasus-status will take time to compile state from all
workflow files. This typically affects the initial run, and sub-sequent runs are faster due to the file system's
buffer cache. However, on a low-RAM machine, thrashing is a possibility.

The following output show a failed workflow after no more jobs from it exist. Please note how no active jobs are
shown, and the failure status of the total workflow.

$ pegasus-status work/submit
(no matching jobs found in Condor Q)
UNREADY READY PRE QUEUED POST SUCCESS FAILURE %DONE
 20 0 0 0 0 0 2 0.0
Summary: 1 DAG total (Failure:1)

pegasus-analyzer
Pegasus-analyzer is a command-line utility for parsing several files in the workflow directory and summarizing useful
information to the user. It should be used after the workflow has already finished execution. pegasus-analyzer quickly
goes through the jobstate.log file, and isolates jobs that did not complete successfully. It then parses their submit,
and kickstart output files, printing to the user detailed information for helping the user debug what happened to his/
her workflow.

The simplest way to invoke pegasus-analyzer is to simply give it a workflow run directory, like in the example below:

$ pegasus-analyzer /home/user/run0004
pegasus-analyzer: initializing...

************************************Summary*************************************

 Total jobs : 26 (100.00%)
 # jobs succeeded : 25 (96.15%)
 # jobs failed : 1 (3.84%)
 # jobs held : 1 (3.84%)
 # jobs unsubmitted : 0 (0.00%)

*******************************Held jobs' details*******************************

================================sleep_ID0000001=================================

 submit file : sleep_ID0000001.sub
 last_job_instance_id : 7
 reason : Error from slot1@corbusier.isi.edu:
 STARTER at 128.9.64.188 failed to
 send file(s) to
 <128.9.64.188:62639>: error reading from
 /opt/condor/8.4.8/local.corbusier/execute/dir_76205/f.out:
 (errno 2) No such file or directory;
 SHADOW failed to receive file(s) from <128.9.64.188:62653>

******************************Failed jobs' details******************************

============================register_viz_glidein_7_0============================

 last state: POST_SCRIPT_FAILURE
 site: local
submit file: /home/user/run0004/register_viz_glidein_7_0.sub
output file: /home/user/run0004/register_viz_glidein_7_0.out.002
 error file: /home/user/run0004/register_viz_glidein_7_0.err.002

-------------------------------Task #1 - Summary--------------------------------

site : local
executable : /lfs1/software/install/pegasus/default/bin/rc-client
arguments : -Dpegasus.user.properties=/lfs1/work/pegasus/run0004/pegasus.15181.properties \
-Dpegasus.catalog.replica.url=rlsn://smarty.isi.edu --insert register_viz_glidein_7_0.in
exitcode : 1

71

Monitoring, Debugging and Statistics

working dir : /lfs1/work/pegasus/run0004

---------Task #1 - pegasus::rc-client - pegasus::rc-client:1.0 - stdout---------

2009-02-20 16:25:13.467 ERROR [root] You need to specify the pegasus.catalog.replica property
2009-02-20 16:25:13.468 WARN [root] non-zero exit-code 1

In the case above, pegasus-analyzer's output contains a brief summary section, showing how many jobs have succeeded
and how many have failed. If there are any held jobs, pegasus-analyzer will report the name of the job that was held,
and the reason why , as determined from the dagman.out file for the workflow. The last_job_instance_id is the database
id for the job in the job instance table of the monitoring database. After that, pegasus-analyzer will print information
about each job that failed, showing its last known state, along with the location of its submit, output, and error files.
pegasus-analyzer will also display any stdout and stderr from the job, as recorded in its kickstart record. Please consult
pegasus-analyzer's man page for more examples and a detailed description of its various command-line options.

Note

Starting with 4.0 release, by default pegasus analyzer queries the database to debug the workflow. If you
want it to use files in the submit directory , use the --files option.

pegasus-remove
If you want to abort your workflow for any reason you can use the pegasus-remove command listed in the output of
pegasus-run invocation or by specifying the Dag directory for the workflow you want to terminate.

$ pegasus-remove /PATH/To/WORKFLOW DIRECTORY

Resubmitting failed workflows
Pegasus will remove the DAGMan and all the jobs related to the DAGMan from the condor queue. A rescue DAG
will be generated in case you want to resubmit the same workflow and continue execution from where it last stopped.
A rescue DAG only skips jobs that have completely finished. It does not continue a partially running job unless the
executable supports checkpointing.

To resubmit an aborted or failed workflow with the same submit files and rescue Dag just rerun the pegasus-run
command

$ pegasus-run /Path/To/Workflow/Directory

Plotting and Statistics
Pegasus plotting and statistics tools queries the Stampede database created by pegasus-monitord for generating the
output.The stampede scheme can be found here.

The statistics and plotting tools use the following terminology for defining tasks, jobs etc. Pegasus takes in a DAX
which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that consists of Jobs. In
case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable workflow. When
DAGMan executes a job, a job instance is populated . Job instances capture information as seen by DAGMan. In case
DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan finds a job instance has
finished , an invocation is associated with job instance. In case of clustered job, multiple invocations will be associated
with a single job instance. If a Pre script or Post Script is associated with a job instance, then invocations are populated
in the database for the corresponding job instance.

pegasus-statistics
Pegasus statistics can compute statistics over one or more than one workflow run.

Command to generate statistics over a single run is as shown below.

$ pegasus-statistics /scratch/grid-setup/run0001/ -s all

72

Monitoring, Debugging and Statistics

#
Pegasus Workflow Management System - http://pegasus.isi.edu
#
Workflow summary:
Summary of the workflow execution. It shows total
tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total+Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.
Workflow wall time:
The wall time from the start of the workflow execution to the end as
reported by the DAGMAN.In case of rescue dag the value is the
cumulative of all retries.
Workflow cumulative job wall time:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Workflow cumulative job badput wall time:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job badput wall time as seen from submit side:
The sum of the wall time of all failed jobs as reported by DAGMan.
This is similar to the regular cumulative job badput wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 4 0 0 4 0 4
Jobs 17 0 0 17 0 17
Sub-Workflows 0 0 0 0 0 0
--

Workflow wall time : 5 mins, 18 secs
Workflow cumulative job wall time : 4 mins, 2 secs
Cumulative job wall time as seen from submit side : 4 mins, 10 secs
Workflow cumulative job badput wall time : 0
Cumulative job badput wall time as seen from submit side : 0

By default the output gets generated to a statistics folder inside the submit directory. The output that is generated
by pegasus-statistics is based on the value set for command line option 's'(statistics_level). In the sample run the
command line option 's' is set to 'all' to generate all the statistics information for the workflow run. Please consult the
pegasus-statistics man page to find a detailed description of various command line options.

73

Monitoring, Debugging and Statistics

Note

In case of hierarchal workflows, the metrics that are displayed on stdout take into account all the jobs/tasks/
sub workflows that make up the workflow by recursively iterating through each sub workflow.

Command to generate statistics over all workflow runs populated in a single database is as shown below.

$ pegasus-statistics -Dpegasus.monitord.output='mysql://s_user:s_user123@127.0.0.1:3306/stampede' -
o /scratch/workflow_1_2/statistics -s all --multiple-wf

#
Pegasus Workflow Management System - http://pegasus.isi.edu
#
Workflow summary:
Summary of the workflow execution. It shows total
tasks/jobs/sub workflows run, how many succeeded/failed etc.
In case of hierarchical workflow the calculation shows the
statistics across all the sub workflows.It shows the following
statistics about tasks, jobs and sub workflows.
* Succeeded - total count of succeeded tasks/jobs/sub workflows.
* Failed - total count of failed tasks/jobs/sub workflows.
* Incomplete - total count of tasks/jobs/sub workflows that are
not in succeeded or failed state. This includes all the jobs
that are not submitted, submitted but not completed etc. This
is calculated as difference between 'total' count and sum of
'succeeded' and 'failed' count.
* Total - total count of tasks/jobs/sub workflows.
* Retries - total retry count of tasks/jobs/sub workflows.
* Total+Retries - total count of tasks/jobs/sub workflows executed
during workflow run. This is the cumulative of retries,
succeeded and failed count.
Workflow wall time:
The wall time from the start of the workflow execution to the end as
reported by the DAGMAN.In case of rescue dag the value is the
cumulative of all retries.
Workflow cumulative job wall time:
The sum of the wall time of all jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job wall time as seen from submit side:
The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.
Workflow cumulative job badput wall time:
The sum of the wall time of all failed jobs as reported by kickstart.
In case of job retries the value is the cumulative of all retries.
For workflows having sub workflow jobs (i.e SUBDAG and SUBDAX jobs),
the wall time value includes jobs from the sub workflows as well.
Cumulative job badput wall time as seen from submit side:
The sum of the wall time of all failed jobs as reported by DAGMan.
This is similar to the regular cumulative job badput wall time, but includes
job management overhead and delays. In case of job retries the value
is the cumulative of all retries. For workflows having sub workflow
jobs (i.e SUBDAG and SUBDAX jobs), the wall time value includes jobs
from the sub workflows as well.

--
Type Succeeded Failed Incomplete Total Retries Total+Retries
Tasks 8 0 0 8 0 8
Jobs 34 0 0 34 0 34
Sub-Workflows 0 0 0 0 0 0
--

Workflow cumulative job wall time : 8 mins, 5 secs
Cumulative job wall time as seen from submit side : 8 mins, 35 secs
Workflow cumulative job badput wall time : 0
Cumulative job badput wall time as seen from submit side : 0

74

Monitoring, Debugging and Statistics

Note

When computing statistics over multiple workflows, please note,

1. All workflow run information should be populated in a single STAMPEDE database.

2. The --output argument must be specified.

3. Job statistics information is not computed.

4. Workflow wall time information is not computed.

Pegasus statistics can also compute statistics over a few specified workflow runs, by specifying the either the submit
directories, or the workflow UUIDs.

pegasus-statistics -Dpegasus.monitord.output='<DB_URL>' -o <OUTPUT_DIR> <SUBMIT_DIR_1>
 <SUBMIT_DIR_2> .. <SUBMIT_DIR_n>

OR

pegasus-statistics -Dpegasus.monitord.output='<DB_URL>' -o <OUTPUT_DIR> --isuuid <UUID_1>
 <UUID_2> .. <UUID_n>

pegasus-statistics summary which is printed on the stdout contains the following information.

• Workflow summary - Summary of the workflow execution. In case of hierarchical workflow the calculation shows
the statistics across all the sub workflows.It shows the following statistics about tasks, jobs and sub workflows.

• Succeeded - total count of succeeded tasks/jobs/sub workflows.

• Failed - total count of failed tasks/jobs/sub workflows.

• Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. This includes all
the jobs that are not submitted, submitted but not completed etc. This is calculated as difference between 'total'
count and sum of 'succeeded' and 'failed' count.

• Total - total count of tasks/jobs/sub workflows.

• Retries - total retry count of tasks/jobs/sub workflows.

• Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of
total retries, succeeded and failed count.

• Workflow wall time - The wall time from the start of the workflow execution to the end as reported by the DAG-
MAN.In case of rescue dag the value is the cumulative of all retries.

• Workflow cummulate job wall time - The sum of the wall time of all jobs as reported by kickstart. In case of
job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG and
SUBDAX jobs), the wall time value includes jobs from the sub workflows as well. This value is multiplied by the
multiplier_factor in the job instance table.

• Cumulative job wall time as seen from submit side - The sum of the wall time of all jobs as reported by DAGMan.
This is similar to the regular cumulative job wall time, but includes job management overhead and delays. In case
of job retries the value is the cumulative of all retries. For workflows having sub workflow jobs (i.e SUBDAG
and SUBDAX jobs), the wall time value includes jobs from the sub workflows. This value is multiplied by the
multiplier_factor in the job instance table.

pegasus-statistics generates the following statistics files based on the command line options set.

Workflow statistics file per workflow [workflow.txt]

Workflow statistics file per workflow contains the following information about each workflow run. In case of hierar-
chal workflows, the file contains a table for each sub workflow. The file also contains a 'Total' table at the bottom
which is the cumulative of all the individual statistics details.

75

Monitoring, Debugging and Statistics

A sample table is shown below. It shows the following statistics about tasks, jobs and sub workflows.

• Workflow retries - number of times a workflow was retried.

• Succeeded - total count of succeeded tasks/jobs/sub workflows.

• Failed - total count of failed tasks/jobs/sub workflows.

• Incomplete - total count of tasks/jobs/sub workflows that are not in succeeded or failed state. This includes all the
jobs that are not submitted, submitted but not completed etc. This is calculated as difference between 'total' count
and sum of 'succeeded' and 'failed' count.

• Total - total count of tasks/jobs/sub workflows.

• Retries - total retry count of tasks/jobs/sub workflows.

• Total Run - total count of tasks/jobs/sub workflows executed during workflow run. This is the cumulative of total
retries, succeeded and failed count.

Table 6.1. Workflow Statistics

Type Succeeded Failed Incom-
plete

Total Retries Total Run Workflow
Retries

2a6d-
f11b-9972-4ba0-b4ba-4fd39c357af4

 0

 Tasks 4 0 0 4 0 4

 Jobs 13 0 0 13 0 13

 Sub Work-
flows

0 0 0 0 0 0

Job statistics file per workflow [jobs.txt]

Job statistics file per workflow contains the following details about the job instances in each workflow. A sample
file is shown below.

• Job - the name of the job instance

• Try - the number representing the job instance run count.

• Site - the site where the job instance ran.

• Kickstart(sec.) - the actual duration of the job instance in seconds on the remote compute node.

• Mult - multiplier factor from the job instance table for the job.

• Kickstart_Mult - value of the Kickstart column multiplied by Mult.

• CPU-Time - remote CPU time computed as the stime + utime (when Kickstart is not used, this is empty).

• Post(sec.) - the postscript time as reported by DAGMan.

• CondorQTime(sec.) - the time between submission by DAGMan and the remote Grid submission. It is an estimate
of the time spent in the condor q on the submit node .

• Resource(sec.) - the time between the remote Grid submission and start of remote execution . It is an estimate of
the time job instance spent in the remote queue .

• Runtime(sec.) - the time spent on the resource as seen by Condor DAGMan . Is always >=kickstart .

76

Monitoring, Debugging and Statistics

• Seqexec(sec.) - the time taken for the completion of a clustered job instance .

• Seqexec-Delay(sec.) - the time difference between the time for the completion of a clustered job instance and sum
of all the individual tasks kickstart time .

Table 6.2. Job statistics

Job Try Site Kick-
start

Mult Kick-
start_Mult

CPU-
Time

Post Con-
dorQ-
Time

Re-
source

Run-
time

Se-
qexec

Seqex-
ec-De-

lay

ana-
lyze_ID0000004

1 local 60.002 1 60.002 59.843 5.0 0.0 - 62.0 - -

cre-
ate_dir_di-

a-
mond_0_lo-

cal

1 local 0.027 1 0.027 0.003 5.0 5.0 - 0.0 - -

find-
range_ID0000002

1 local 60.001 10 600.01 59.921 5.0 0.0 - 60.0 - -

find-
range_ID0000003

1 local 60.002 10 600.02 59.912 5.0 10.0 - 61.0 - -

pre-
process_ID0000001

1 local 60.002 1 60.002 59.898 5.0 5.0 - 60.0 - -

regis-
ter_lo-
cal_1_0

1 local 0.459 1 0.459 0.432 6.0 5.0 - 0.0 - -

regis-
ter_lo-
cal_1_1

1 local 0.338 1 0.338 0.331 5.0 5.0 - 0.0 - -

regis-
ter_lo-
cal_2_0

1 local 0.348 1 0.348 0.342 5.0 5.0 - 0.0 - -

stage_in_lo-
cal_lo-
cal_0

1 local 0.39 1 0.39 0.032 5.0 5.0 - 0.0 - -

stage_out_lo-
cal_lo-
cal_0_0

1 local 0.165 1 0.165 0.108 5.0 10.0 - 0.0 - -

stage_out_lo-
cal_lo-
cal_1_0

1 local 0.147 1 0.147 0.098 7.0 5.0 - 0.0 - -

stage_out_lo-
cal_lo-
cal_1_1

1 local 0.139 1 0.139 0.089 5.0 6.0 - 0.0 - -

stage_out_lo-
cal_lo-
cal_2_0

1 local 0.145 1 0.145 0.101 5.0 5.0 - 0.0 - -

Transformation statistics file per workflow [breakdown.txt]

Transformation statistics file per workflow contains information about the invocations in each workflow grouped by
transformation name. A sample file is shown below.

• Transformation - name of the transformation.

77

Monitoring, Debugging and Statistics

• Count - the number of times invocations with a given transformation name was executed.

• Succeeded - the count of succeeded invocations with a given logical transformation name .

• Failed - the count of failed invocations with a given logical transformation name .

• Min (sec.) - the minimum runtime value of invocations with a given logical transformation name times the multi-
pler_factor.

• Max (sec.) - the minimum runtime value of invocations with a given logical transformation name times the mul-
tiplier_factor.

• Mean (sec.) - the mean of the invocation runtimes with a given logical transformation name times the multipli-
er_factor.

• Total (sec.) - the cumulative of runtime value of invocations with a given logical transformation name times the
multiplier_factor.

Table 6.3. Transformation Statistics

Transfor-
mation

Count Succeeded Failed Min Max Mean Total

dag-
man::post

13 13 0 5.0 7.0 5.231 68.0

diamond::an-
alyze

1 1 0 60.002 60.002 60.002 60.002

dia-
mond::find-

range

2 2 0 600.01 600.02 600.02 1200.03

dia-
mond::pre-

process

1 1 0 60.002 60.002 60.002 60.002

pega-
sus::dirman-

ager

1 1 0 0.027 0.027 0.027 0.027

pega-
sus::pega-

sus-transfer

5 5 0 0.139 0.39 0.197 0.986

pega-
sus::rc-client

3 3 0 0.338 0.459 0.382 1.145

Time statistics file [time.txt]

Time statistics file contains job instance and invocation statistics information grouped by time and host. The time
grouping can be on day/hour. The file contains the following tables Job instance statistics per day/hour, Invocation
statistics per day/hour, Job instance statistics by host per day/hour and Invocation by host per day/hour. A sample
Invocation statistics by host per day table is shown below.

• Job instance statistics per day/hour - the number of job instances run, total runtime sorted by day/hour.

• Invocation statistics per day/hour - the number of invocations , total runtime sorted by day/hour.

• Job instance statistics by host per day/hour - the number of job instances run, total runtime on each host sorted
by day/hour.

• Invocation statistics by host per day/hour - the number of invocations , total runtime on each host sorted by
day/hour.

78

Monitoring, Debugging and Statistics

Table 6.4. Invocation statistics by host per day

Date [YYYY-MM-DD] Host Count Runtime (Sec.)

2011-07-15 butterfly.isi.edu 54 625.094

pegasus-plots

Pegasus-plots generates graphs and charts to visualize workflow execution. To generate graphs and charts run the
command as shown below.

$ pegasus-plots -p all /scratch/grid-setup/run0001/

...

** SUMMARY **

Graphs and charts generated by pegasus-plots can be viewed by opening the generated html file in the
 web browser :
/scratch/grid-setup/run0001/plots/index.html

**

By default the output gets generated to plots folder inside the submit directory. The output that is generated by pega-
sus-plots is based on the value set for command line option 'p'(plotting_level).In the sample run the command line
option 'p' is set to 'all' to generate all the charts and graphs for the workflow run. Please consult the pegasus-plots man
page to find a detailed description of various command line options. pegasus-plots generates an index.html file which
provides links to all the generated charts and plots. A sample index.html page is shown below.

Figure 6.1. pegasus-plot index page

pegasus-plots generates the following plots and charts.

Dax Graph

Graph representation of the DAX file. A sample page is shown below.

79

Monitoring, Debugging and Statistics

Figure 6.2. DAX Graph

Dag Graph

Graph representation of the DAG file. A sample page is shown below.

80

Monitoring, Debugging and Statistics

Figure 6.3. DAG Graph

Gantt workflow execution chart

Gantt chart of the workflow execution run. A sample page is shown below.

Figure 6.4. Gantt Chart

81

Monitoring, Debugging and Statistics

The toolbar at the top provides zoom in/out , pan left/right/top/bottom and show/hide job name functionality.The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Host over time chart

Host over time chart of the workflow execution run. A sample page is shown below.

Figure 6.5. Host over time chart

The toolbar at the top provides zoom in/out , pan left/right/top/bottom and show/hide host name functionality.The
toolbar at the bottom can be used to show/hide job states. Failed job instances are shown in red border in the chart.
Clicking on a sub workflow job instance will take you to the corresponding sub workflow chart.

Time chart

Time chart shows job instance/invocation count and runtime of the workflow run over time. A sample page is shown
below.

82

Monitoring, Debugging and Statistics

Figure 6.6. Time chart

The toolbar at the top provides zoom in/out and pan left/right/top/bottom functionality. The toolbar at the bottom can
be used to switch between job instances/ invocations and day/hour filtering.

Breakdown chart

Breakdown chart shows invocation count and runtime of the workflow run grouped by transformation name. A sample
page is shown below.

83

Monitoring, Debugging and Statistics

Figure 6.7. Breakdown chart

The toolbar at the bottom can be used to switch between invocation count and runtime filtering. Legends can be clicked
to get more details.

Dashboard
As the number of jobs and tasks in workflows increase, the ability to track the progress and quickly debug a workflow
becomes more and more important. The dashboard provides users with a tool to monitor and debug workflows both
in real-time as well as after execution is already completed, through a browser.

Workflow Dashboard
Pegasus Workflow Dashboard is bundled with Pegasus. The pegasus-service is developed in Python and uses the Flask
framework to implement the web interface.The users can then connect to this server using a browser to monitor/debug
workflows.

Note

the workflow dashboard can only monitor workflows which have been executed using Pegasus 4.2.0 and
above.

To start the Pegasus Dashboard execute the following command

$ pegasus-service --host 127.0.0.1 --port 5000

SSL is not configured: Using self-signed certificate
2015-04-13 16:14:23,074:Pegasus.service.server:79: WARNING: SSL is not configured: Using self-signed
 certificate

84

Monitoring, Debugging and Statistics

Service not running as root: Will not be able to switch users
2015-04-13 16:14:23,074:Pegasus.service.server:86: WARNING: Service not running as root: Will not be
 able to switch users

By default, the server is configured to listen only on localhost/127.0.0.1 on port 5000. A user can view the dashboard
on https://localhost:5000/

To make the Pegasus Dashboard listen on all network interfaces OR on a different port, users can pass different values
to the --host and/or --port options.

By default, the dashboard server can only monitor workflows run by the current user i.e. the user who is running the
pegasus-service.

The Dashboard's home page lists all workflows, which have been run by the current-user. The home page shows
the status of each of the workflow i.e. Running/Successful/Failed/Failing. The home page lists only the top level
workflows (Pegasus supports hierarchical workflows i.e. workflows within a workflow). The rows in the table are
color coded

• Green: indicates workflow finished successfully.

• Red: indicates workflow finished with a failure.

• Blue: indicates a workflow is currently running.

• Gray: indicates a workflow that was archived.

85

Monitoring, Debugging and Statistics

Figure 6.8. Dashboard Home Page

To view details specific to a workflow, the user can click on corresponding workflow label. The workflow details
page lists workflow specific information like workflow label, workflow status, location of the submit directory, files,
and metadata associated with the workflow etc. The details page also displays pie charts showing the distribution of
jobs based on status.

In addition, the details page displays a tab listing all sub-workflows and their statuses. Additional tabs exist which list
information for all running, failed, successful, and failing jobs.

86

Monitoring, Debugging and Statistics

Note

Failing jobs are currently running jobs (visible in Running tab), which have failed in previous attempts to
execute them.

The information displayed for a job depends on it's status. For example, the failed jobs tab displays the job name, exit
code, links to available standard output, and standard error contents.

87

Monitoring, Debugging and Statistics

Figure 6.9. Dashboard Workflow Page

88

Monitoring, Debugging and Statistics

Figure 6.10. Dashboard Workflow Metadata

Figure 6.11. Dashboard Workflow Files

To view details specific to a job the user can click on the corresponding job's job label. The job details page lists
information relevant to a specific job. For example, the page lists information like job name, exit code, run time, etc.

89

Monitoring, Debugging and Statistics

The job instance section of the job details page lists all attempts made to run the job i.e. if a job failed in its first
attempt due to transient errors, but ran successfully when retried, the job instance section shows two entries; one for
each attempt to run the job.

The job details page also shows tab's for failed, and successful task invocations (Pegasus allows users to group multiple
smaller task's into a single job i.e. a job may consist of one or more tasks)

90

Monitoring, Debugging and Statistics

Figure 6.12. Dashboard Job Description Page

91

Monitoring, Debugging and Statistics

The task invocation details page provides task specific information like task name, exit code, duration, metadata
associated with the task, etc. Task details differ from job details, as they are more granular in nature.

92

Monitoring, Debugging and Statistics

Figure 6.13. Dashboard Invocation Page

93

Monitoring, Debugging and Statistics

The dashboard also has web pages for workflow statistics and workflow charts, which graphically renders information
provided by the pegasus-statistics and pegasus-plots command respectively.

The Statistics page shows the following statistics.

1. Workflow level statistics

2. Job breakdown statistics

3. Job specific statistics

Figure 6.14. Dashboard Statistics Page

The Charts page shows the following charts.

94

Monitoring, Debugging and Statistics

1. Job Distribution by Count/Time

2. Time Chart by Job/Invocation

3. Workflow Execution Gantt Chart

The chart below shows the invocation distribution by count or time.

Figure 6.15. Dashboard Plots - Job Distribution

The time chart shown below shows the number of jobs/invocations in the workflow and their total runtime

95

Monitoring, Debugging and Statistics

Figure 6.16. Dashboard Plots - Time Chart

The workflow gantt chart lays out the execution of the jobs in the workflow over time.

96

Monitoring, Debugging and Statistics

Figure 6.17. Dashboard Plots - Workflow Gantt Chart

Notifications
The Pegasus Workflow Mapper now supports job and workflow level notifications. You can specify in the DAX with
the job or the workflow

• the event when the notification needs to be sent

97

Monitoring, Debugging and Statistics

• the executable that needs to be invoked.

The notifications are issued from the submit host by the pegasus-monitord daemon that monitors the Condor logs for
the workflow. When a notification is issued, pegasus-monitord while invoking the notifying executable sets certain
environment variables that contain information about the job and workflow state.

The Pegasus release comes with default notification clients that send notifications via email or jabber.

Specifying Notifications in the DAX
Currently, you can specify notifications for the jobs and the workflow by the use of invoke elements.

Invoke elements can be sub elements for the following elements in the DAX schema.

• job - to associate notifications with a compute job in the DAX.

• dax - to associate notifications with a dax job in the DAX.

• dag - to associate notifications with a dag job in the DAX.

• executable - to associate notifications with a job that uses a particular notification

The invoke element can be specified at the root element level of the DAX to indicate workflow level notifications.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set

Table 6.5. Invoke Element attributes and meaning.

Enumeration of Values for when attribute Meaning

never (default). Never notify of anything. This is useful to tem-
porarily disable an existing notifications.

start create a notification when the job is submitted.

on_error after a job finishes with failure (exitcode != 0).

on_success after a job finishes with success (exitcode == 0).

at_end after a job finishes, regardless of exitcode.

all like start and at_end combined.

You can specify multiple invoke elements corresponding to same when attribute value in the DAX. This will allow
you to have multiple notifications for the same event.

Here is an example that illustrates that.

<job id="ID000001" namespace="example" name="mDiffFit" version="1.0"
 node-label="preprocess" >
 <argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.b1"/></argument>

 <!-- profiles are optional -->
 <profile namespace="execution" key="site">isi_viz</profile>
 <profile namespace="condor" key="getenv">true</profile>

 <uses name="f.a" link="input" register="false" transfer="true" type="data" />
 <uses name="f.b" link="output" register="false" transfer="true" type="data" />

 <!-- 'WHEN' enumeration: never, start, on_error, on_success, at_end, all -->
 <invoke when="start">/path/to/notify1 arg1 arg2</invoke>
 <invoke when="start">/path/to/notify1 arg3 arg4</invoke>
 <invoke when="on_success">/path/to/notify2 arg3 arg4</invoke>
 </job>

In the above example the executable notify1 will be invoked twice when a job is submitted (when="start"), once with
arguments arg1 and arg2 and second time with arguments arg3 and arg4.

The DAX Generator API chapter has information about how to add notifications to the DAX using the DAX api's.

98

Monitoring, Debugging and Statistics

Notify File created by Pegasus in the submit directory

Pegasus while planning a workflow writes out a notify file in the submit directory that contains all the notifications
that need to be sent for the workflow. pegasus-monitord picks up this notifications file to determine what notifications
need to be sent and when.

1. ENTITY_TYPE ID NOTIFICATION_CONDITION ACTION

• ENTITY_TYPE can be either of the following keywords

• WORKFLOW - indicates workflow level notification

• JOB - indicates notifications for a job in the executable workflow

• DAXJOB - indicates notifications for a DAX Job in the executable workflow

• DAGJOB - indicates notifications for a DAG Job in the executable workflow

• ID indicates the identifier for the entity. It has different meaning depending on the entity type - -

• workflow - ID is wf_uuid

• JOB|DAXJOB|DAGJOB - ID is the job identifier in the executable workflow (DAG).

• NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification condi-
tions are enumerated in this table

• ACTION is what needs to happen when condition is satisfied. It is executable + arguments

2. INVOCATION JOB_IDENTIFIER INV.ID NOTIFICATION_CONDITION ACTION

The INVOCATION lines are only generated for clustered jobs, to specifiy the finer grained notifications for each
constitutent job/invocation .

• JOB IDENTIFIER is the job identifier in the executable workflow (DAG).

• INV.ID indicates the index of the task in the clustered job for which the notification needs to be sent.

• NOTIFICATION_CONDITION is the condition when the notification needs to be sent. The notification condi-
tions are enumerated in Table 1

• ACTION is what needs to happen when condition is satisfied. It is executable + arguments

A sample notifications file generated is listed below.

WORKFLOW d2c4f79c-8d5b-4577-8c46-5031f4d704e8 on_error /bin/date1

INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 1 on_error /bin/date_executable

INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 2 on_success /bin/date_executable
INVOCATION merge_vahi-preprocess-1.0_PID1_ID1 2 on_error /bin/date_executable

DAXJOB subdax_black_ID000003 on_error /bin/date13
JOB analyze_ID00004 on_success /bin/date

Configuring pegasus-monitord for notifications

Whenever pegasus-monitord enters a workflow (or sub-workflow) directory, it will read the notifications file generated
by Pegasus. Pegasus-monitord will match events in the running workflow against the notifications specified in the
notifications file and will initiate the script specified in a notification when that notification matches an event in the
workflow. It is important to note that there will be a delay between a certain event happening in the workflow, and
pegasus-monitord processing the log file and executing the corresponding notification script.

99

Monitoring, Debugging and Statistics

The following command line options (and properties) can change how pegasus-monitord handles notifications:

• --no-notifications (pegasus.monitord.notifications=False): Will disable notifications completely.

• --notifications-max=nn (pegasus.monitord.notifications.max=nn): Will limit the number of concurrent notification
scripts to nn. Once pegasus-monitord reaches this number, it will wait until one notification script finishes before
starting a new one. Notifications happening during this time will be queued by the system. The default number of
concurrent notification scripts for pegasus-monitord is 10.

• --notifications-timeout=nn (pegasus.monitord.notifications.timeout=nn): This setting is used to change how long
will pegasus-monitord wait for a notification script to finish. By default pegasus-monitord will wait for as long as
it takes (possibly indefinitely) until a notification script ends. With this option, pegasus-monitord will wait for at
most nn seconds before killing the notification script.

It is also important to understand that pegasus-monitord will not issue any notifications when it is executed in replay
mode.

Environment set for the notification scripts

Whenever a notification in the notifications file matches an event in the running workflow, pegasus-monitord will
run the corresponding script specified in the ACTION field of the notifications file. Pegasus-monitord will set the
following environment variables for each notification script is starts:

• PEGASUS_EVENT: The NOTIFICATION_CONDITION that caused the notification. In the case of the "all" con-
dition, pegasus-monitord will substitute it for the actual event that caused the match (e.g. "start" or "at_end").

• PEGASUS_EVENT_TIMESTAMP: Timestamp in EPOCH format for the event (better for automated processing).

• PEGASUS_EVENT_TIMESTAMP_ISO: Same as above, but in ISO format (better for human readability).

• PEGASUS_SUBMIT_DIR: The submit directory for the workflow (usually the value from "submit_dir" in the
braindump.txt file)

• PEGASUS_STDOUT: For workflow notifications, this will correspond to the dagman.out file for that workflow.
For job and invocation notifications, this field will contain the output file (stdout) for that particular job instance.

• PEGASUS_STDERR: For job and invocation notifications, this field will contain the error file (stderr) for the
particular executable job instance. This field does not exist in case of workflow notifications.

• PEGASUS_WFID: Contains the workflow id for this notification in the form of DAX_LABEL + DAX_INDEX
(from the braindump.txt file).

• PEGASUS_JOBID: For workflow notifications, this contains the worfkflow wf_uuid (from the braindump.txt file).
For job and invocation notifications, this field contains the job identifier in the executable workflow (DAG) for
the particular notification.

• PEGASUS_INVID: Contains the index of the task in the clustered job for the notification.

• PEGASUS_STATUS: For workflow notifications, this contains DAGMan's exit code. For job and invocation no-
tifications, this field contains the exit code for the particular job/task. Please note that this field is not present for
'start' notification events.

Default Notification Scripts
Pegasus ships with two reference notification scripts. These can be used as starting point when creating your own
notification scripts, or if the default one is all you need, you can use them directly in your workflows. The scripts are:

• libexec/notification/email - sends email, including the output from pegasus-status (default) or pegasus-analyzer.

$./libexec/notification/email --help
Usage: email [options]

Options:
 -h, --help show this help message and exit

100

Monitoring, Debugging and Statistics

 -t TO_ADDRESS, --to=TO_ADDRESS
 The To: email address. Defines the recipient for the
 notification.
 -f FROM_ADDRESS, --from=FROM_ADDRESS
 The From: email address. Defaults to the required To:
 address.
 -r REPORT, --report=REPORT
 Include workflow report. Valid values are: none
 pegasus-analyzer pegasus-status (default)

• libexec/notification/jabber - sends simple notifications to Jabber/GTalk. This can be useful for job failures.

$./libexec/notification/jabber --help
Usage: jabber [options]

Options:
 -h, --help show this help message and exit
 -i JABBER_ID, --jabberid=JABBER_ID
 Your jabber id. Example: user@jabberhost.com
 -p PASSWORD, --password=PASSWORD
 Your jabber password
 -s HOST, --host=HOST Jabber host, if different from the host in your jabber
 id. For Google talk, set this to talk.google.com
 -r RECIPIENT, --recipient=RECIPIENT
 Jabber id of the recipient. Not necessary if you want
 to send to your own jabber id

For example, if the DAX generator is written in Python and you want notifications on 'at_end' events (successful or
failed):

job level notifications - in this case for at_end events
job.invoke('at_end', pegasus_home + "/libexec/notifications/email --to me@somewhere.edu")

Please see the notifications example to see a full workflow using notifications.

Monitoring Database
Pegasus launches a monitoring daemon called pegasus-monitord per workflow (a single daemon is launched if a
user submits a hierarchal workflow) . pegasus-monitord parses the workflow and job logs in the submit directory
and populates to a database. This chapter gives an overview of the pegasus-monitord and describes the schema of
the runtime database.

pegasus-monitord
Pegasus-monitord is used to follow workflows, parsing the output of DAGMan's dagman.out file. In addition to gen-
erating the jobstate.log file, which contains the various states that a job goes through during the workflow execution,
pegasus-monitord can also be used to mine information from jobs' submit and output files, and either populate a
database, or write a file with NetLogger events containing this information. Pegasus-monitord can also send notifi-
cations to users in real-time as it parses the workflow execution logs.

Pegasus-monitord is automatically invoked by pegasus-run, and tracks workflows in real-time. By default, it pro-
duces the jobstate.log file, and a SQLite database, which contains all the information listed in the Stampede schema.
When a workflow fails, and is re-submitted with a rescue DAG, pegasus-monitord will automatically pick up from
where it left previously and continue to write the jobstate.log file and populate the database.

If, after the workflow has already finished, users need to re-create the jobstate.log file, or re-populate the database
from scratch, pegasus-monitord's --replay option should be used when running it manually.

Populating to different backend databases

In addition to SQLite, pegasus-monitord supports other types of databases, such as MySQL and Postgres. Users
will need to install the low-level database drivers, and can use the --dest command-line option, or the pegasus.mon-
itord.output property to select where the logs should go.

As an example, the command:

$ pegasus-monitord -r diamond-0.dag.dagman.out

101

Monitoring, Debugging and Statistics

will launch pegasus-monitord in replay mode. In this case, if a jobstate.log file already exists, it will be rotated and
a new file will be created. It will also create/use a SQLite database in the workflow's run directory, with the name
of diamond-0.stampede.db. If the database already exists, it will make sure to remove any references to the current
workflow before it populates the database. In this case, pegasus-monitord will process the workflow information
from start to finish, including any restarts that may have happened.

Users can specify an alternative database for the events, as illustrated by the following examples:

$ pegasus-monitord -r -d mysql://username:userpass@hostname/database_name diamond-0.dag.dagman.out

$ pegasus-monitord -r -d sqlite:////tmp/diamond-0.db diamond-0.dag.dagman.out

In the first example, pegasus-monitord will send the data to the database_name database located at server hostname,
using the username and userpass provided. In the second example, pegasus-monitord will store the data in the /
tmp/diamond-0.db SQLite database.

Note

For absolute paths four slashes are required when specifying an alternative database path in SQLite.

Users should also be aware that in all cases, with the exception of SQLite, the database should exist before pega-
sus-monitord is run (as it creates all needed tables but does not create the database itself).

Finally, the following example:

$ pegasus-monitord -r --dest diamond-0.bp diamond-0.dag.dagman.out

sends events to the diamond-0.bp file. (please note that in replay mode, any data on the file will be overwritten).

One important detail is that while processing a workflow, pegasus-monitord will automatically detect if/when sub-
workflows are initiated, and will automatically track those sub-workflows as well. In this case, although pegasus-mon-
itord will create a separate jobstate.log file in each workflow directory, the database at the top-level workflow will
contain the information from not only the main workflow, but also from all sub-workflows.

Monitoring related files in the workflow directory

Pegasus-monitord generates a number of files in each workflow directory:

• jobstate.log: contains a summary of workflow and job execution.

• monitord.log: contains any log messages generated by pegasus-monitord. It is not overwritten when it restarts.
This file is not generated in replay mode, as all log messages from pegasus-monitord are output to the console.
Also, when sub-workflows are involved, only the top-level workflow will have this log file. Starting with release
4.0 and 3.1.1, monitord.log file is rotated if it exists already.

• monitord.started: contains a timestamp indicating when pegasus-monitord was started. This file get overwritten
every time pegasus-monitord starts.

• monitord.done: contains a timestamp indicating when pegasus-monitord finished. This file is overwritten every
time pegasus-monitord starts.

• monitord.info: contains pegasus-monitord state information, which allows it to resume processing if a workflow
does not finish properly and a rescue dag is submitted. This file is erased when pegasus-monitord is executed in
replay mode.

• monitord.recover: contains pegasus-monitord state information that allows it to detect that a previous instance
of pegasus-monitord failed (or was killed) midway through parsing a workflow's execution logs. This file is only
present while pegasus-monitord is running, as it is deleted when it ends and the monitord.info file is generated.

• monitord.subwf.db: contains information that aids pegasus-monitord to track when sub-workflows fail and are
re-planned/re-tried. It is overwritten when pegasus-monitord is started in replay mode.

• monitord-notifications.log: contains the log file for notification-related messages. Normally, this file only includes
logs for failed notifications, but can be populated with all notification information when pegasus-monitord is run
in verbose mode via the -v command-line option.

102

Monitoring, Debugging and Statistics

Overview of the Workflow Database Schema.
Pegasus takes in a DAX which is composed of tasks. Pegasus plans it into a Condor DAG / Executable workflow that
consists of Jobs. In case of Clustering, multiple tasks in the DAX can be captured into a single job in the Executable
workflow. When DAGMan executes a job, a job instance is populated . Job instances capture information as seen by
DAGMan. In case DAGMan retires a job on detecting a failure , a new job instance is populated. When DAGMan
finds a job instance has finished , an invocation is associated with job instance. In case of clustered job, multiple
invocations will be associated with a single job instance. If a Pre script or Post Script is associated with a job instance,
then invocations are populated in the database for the corresponding job instance.

The current schema version is 4.0 that is stored in the schema_info table.

Figure 6.18. Workflow Database Schema

Stampede Schema Upgrade Tool

Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega-
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sql/schema_tool.py or /path/to/pegasus-4.x/share/pegasus/sql/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQLite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workflow/directory/with/3.x.monitord.db

Check the db version

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:29:43.330476Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:29:43.330708Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:29:43.348995Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:29:43.349133Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.

103

Monitoring, Debugging and Statistics

Convert the Database to be version 4.x compliant

/usr/share/pegasus/sql/schema_tool.py -u connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:35:35.046317Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:35:35.046554Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:35:35.064762Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:35:35.064902Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.
2012-02-29T01:35:35.065001Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.upgrade_to_4_0
 | Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:39:17.218902Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:39:17.219141Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:39:17.237492Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Current version set to: 4.0.
2012-02-29T01:39:17.237624Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Schema up to date.

For upgrading a MySQL database the steps remain the same. The only thing that changes is the
 connection String to the database
E.g.

/usr/share/pegasus/sql/schema_tool.py -u connString=mysql://username:password@server:port/dbname

After the database has been upgraded you can use either 3.x or 4.x clients to query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer.

Storing of Exitcode in the database

Kickstart records capture raw status in addition to the exitcode . The exitcode is derived from the raw status. Starting
with Pegasus 4.0 release, all exitcode columns (i.e invocation and job instance table columns) are stored with the raw
status by pegasus-monitord. If an exitcode is encountered while parsing the dagman log files , the value is converted
to the corresponding raw status before it is stored. All user tools, pegasus-analyzer and pegasus-statistics then convert
the raw status to exitcode when retrieving from the database.

Multiplier Factor

Starting with the 4.0 release, there is a multiplier factor associated with the jobs in the job_instance table. It defaults
to one, unless the user associates a Pegasus profile key named cores with the job in the DAX. The factor can be used
for getting more accurate statistics for jobs that run on multiple processors/cores or mpi jobs.

The multiplier factor is used for computing the following metrics by pegasus statistics.

• In the summary, the workflow cumulative job wall time

• In the summary, the cumulative job wall time as seen from the submit side

• In the jobs file, the multiplier factor is listed along-with the multiplied kickstart time.

• In the breakdown file, where statistics are listed per transformation the mean, min , max and average values take
into account the multiplier factor.

Stampede Workflow Events
All the events generated by the system (Pegasus planner and monitoring daemon) are formatted as Netlogger BP
events. The netlogger events that Pegasus generates are described in Yang schema file that can be found in the share/
pegasus/schema/ directory. The stampede yang schema is described below.

104

Monitoring, Debugging and Statistics

Typedefs
The following typedefs are used in the yang schema to describe the certain event attributes.

• distinguished-name

typedef distinguished-name {
 type string;
}

• uuid

typedef uuid {
 type string {
 length "36";
 pattern
 '[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}';
 }
}

• intbool

typedef intbool {
 type uint8 {
 range "0 .. 1";
 }
}

• nl_ts

typedef nl_ts {
 type string {
 pattern
 '(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|[\+\-]\d{2}:\d{2}))|(\d{1,9}(\.\d+)?)';
 }
}

• peg_inttype

typedef peg_inttype {
 type uint8 {
 range "0 .. 11";
 }
}

• peg_strtype

typedef peg_strtype {
 type enumeration {
 enum "unknown" {
 value 0;
 }
 enum "compute" {
 value 1;
 }
 enum "stage-in-tx" {
 value 2;
 }
 enum "stage-out-tx" {
 value 3;
 }
 enum "registration" {
 value 4;
 }
 enum "inter-site-tx" {
 value 5;
 }
 enum "create-dir" {
 value 6;
 }
 enum "staged-compute" {
 value 7;
 }
 enum "cleanup" {
 value 8;
 }
 enum "chmod" {

105

Monitoring, Debugging and Statistics

 value 9;
 }
 enum "dax" {
 value 10;
 }
 enum "dag" {
 value 11;
 }
 }
}

• condor_jobstates

typedef condor_jobstates {
 type enumeration {
 enum "PRE_SCRIPT_STARTED" {
 value 0;
 }
 enum "PRE_SCRIPT_TERMINATED" {
 value 1;
 }
 enum "PRE_SCRIPT_SUCCESS" {
 value 2;
 }
 enum "PRE_SCRIPT_FAILED" {
 value 3;
 }
 enum "SUBMIT" {
 value 4;
 }
 enum "GRID_SUBMIT" {
 value 5;
 }
 enum "GLOBUS_SUBMIT" {
 value 6;
 }
 enum "SUBMIT_FAILED" {
 value 7;
 }
 enum "EXECUTE" {
 value 8;
 }
 enum "REMOTE_ERROR" {
 value 9;
 }
 enum "IMAGE_SIZE" {
 value 10;
 }
 enum "JOB_TERMINATED" {
 value 11;
 }
 enum "JOB_SUCCESS" {
 value 12;
 }
 enum "JOB_FAILURE" {
 value 13;
 }
 enum "JOB_HELD" {
 value 14;
 }
 enum "JOB_EVICTED" {
 value 15;
 }
 enum "JOB_RELEASED" {
 value 16;
 }
 enum "POST_SCRIPT_STARTED" {
 value 17;
 }
 enum "POST_SCRIPT_TERMINATED" {
 value 18;
 }
 enum "POST_SCRIPT_SUCCESS" {
 value 19;
 }
 enum "POST_SCRIPT_FAILED" {
 value 20;
 }

106

Monitoring, Debugging and Statistics

 }
}

• condor_wfstates

typedef condor_wfstates {
 type enumeration {
 enum "WORKFLOW_STARTED" {
 value 0;
 }
 enum "WORKFLOW_TERMINATED" {
 value 1;
 }
 }
}

Groupings

Groupings are groups of common attributes that different type of events refer to. The following groupings are defined.

• base-event - Common components in all events
• ts - Timestamp, ISO8601 or numeric seconds since 1/1/1970"
• level - Severity level of event. Subset of NetLogger BP levels. For '*.end' events, if status is non-zero then level

should be Error."
• xwf.id - DAG workflow UUID

grouping base-event {
 description
 "Common components in all events";
 leaf ts {
 type nl_ts;
 mandatory true;
 description
 "Timestamp, ISO8601 or numeric seconds since 1/1/1970";
 }

 leaf level {
 type enumeration {
 enum "Info" {
 value 0;
 }
 enum "Error" {
 value 1;
 }
 }
 description
 "Severity level of event. "
 + "Subset of NetLogger BP levels. "
 + "For '*.end' events, if status is non-zero then level should be Error.";
 }

 leaf xwf.id {
 type uuid;
 description "DAG workflow id";
 }
 } // grouping base-event

• base-job-inst - Common components for all job instance events
• all attributes from base-event
• job_inst.id - Job instance identifier i.e the submit sequence generated by monitord.
• js.id - Jobstate identifier
• job.id - Identifier for corresponding job in the DAG

grouping base-job-inst {
 description
 "Common components for all job instance events";
 uses base-event;

 leaf job_inst.id {
 type int32;
 mandatory true;
 description
 "Job instance identifier i.e the submit sequence generated by monitord";
 }

107

Monitoring, Debugging and Statistics

 leaf js.id {
 type int32;
 description "Jobstate identifier";
 }

 leaf job.id {
 type string;
 mandatory true;
 description
 "Identifier for corresponding job in the DAG";
 }
 }

• sched-job-inst - Scheduled job instance.
• all attributes from base-job-inst
• sched.id - Identifier for job in scheduler

grouping sched-job-inst {
 description "Scheduled job instance";
 uses base-job-inst;

 leaf sched.id {
 type string;
 mandatory true;
 description
 "Identifier for job in scheduler";
 }
}

• base-metadata
• uses
• key
• value

grouping base-metadata {
 description
 "Common components for all metadata events that describe metadata for an entity.";
 uses base-event;

 leaf key {
 type string;
 mandatory true;
 description
 "Key for the metadata tuple";
 }

 leaf value {
 type string;
 description
 "Corresponding value of the key";
 }
} // grouping base-metadata

Events
The system generates following types of events, that are described below.

• stampede.wf.plan
• stampede.static.start
• stampede.static.end
• stampede.xwf.start
• stampede.xwf.end
• stampede.task.info
• stampede.task.edge
• stampede.wf.map.task_job
• stampede.xwf.map.subwf_job
• stampede.job.info
• stampede.job.edge
• stampede.job_inst.pre.start

108

Monitoring, Debugging and Statistics

• stampede.job_inst.pre.term
• stampede.job_inst.pre.end
• stampede.job_inst.submit.start
• stampede.job_inst.submit.end
• stampede.job_inst.held.start
• stampede.job_inst.held.end
• stampede.job_inst.main.start
• stampede.job_inst.main.term
• stampede.job_inst.main.end
• stampede.job_inst.post.start
• stampede.job_inst.post.term
• stampede.job_inst.post.end
• stampede.job_inst.host.info
• stampede.job_inst.image.info
• stampede.inv.start
• stampede.inv.end
• stampede.static.meta.start
• stampede.static.meta.end
• stampede.xwf.meta
• stampede.task.meta
• stampede.rc.meta
• stampede.wf.map.file

The events are described in detail below

• stampede.wf.plan

container stampede.wf.plan {
 uses base-event;

 leaf submit.hostname {
 type inet:host;
 mandatory true;
 description
 "The hostname of the Pegasus submit host";
 }

 leaf dax.label {
 type string;
 default "workflow";
 description
 "Label for abstract workflow specification";
 }

 leaf dax.index {
 type string;
 default "workflow";
 description
 "Index for the DAX";
 }

 leaf dax.version {
 type string;
 mandatory true;
 description
 "Version number for DAX";
 }

 leaf dax.file {
 type string;
 mandatory true;
 description
 "Filename for for the DAX";
 }

 leaf dag.file.name {
 type string;

109

Monitoring, Debugging and Statistics

 mandatory true;
 description
 "Filename for the DAG";
 }

 leaf planner.version {
 type string;
 mandatory true;
 description
 "Version string for Pegasus planner, e.g. 3.0.0cvs";
 }

 leaf grid_dn {
 type distinguished-name;
 description
 "Grid DN of submitter";
 }

 leaf user {
 type string;
 description
 "User name of submitter";
 }

 leaf submit.dir {
 type string;
 mandatory true;
 description
 "Directory path from which workflow was submitted";
 }

 leaf argv {
 type string;
 description
 "All arguments given to planner on command-line";
 }

 leaf parent.xwf.id {
 type uuid;
 description
 "Parent workflow in DAG, if any";
 }

 leaf root.xwf.id {
 type string;
 mandatory true;
 description
 "Root of workflow hierarchy, in DAG. "
 + "Use this workflow's UUID if it is the root";
 }
} // container stampede.wf.plan

• stampede.static.start

container stampede.static.start {
 uses base-event;
}

• stampede.static.end

container stampede.static.end {
 uses base-event;
} //

• stampede.xwf.start

container stampede.xwf.start {
 uses base-event;

 leaf restart_count {
 type uint32;
 mandatory true;
 description
 "Number of times workflow was restarted (due to failures)";
 }
} // container stampede.xwf.start

• stampede.xwf.end

container stampede.xwf.end {

110

Monitoring, Debugging and Statistics

 uses base-event;

 leaf restart_count {
 type uint32;
 mandatory true;
 description
 "Number of times workflow was restarted (due to failures)";
 }

 leaf status {
 type int16;
 mandatory true;
 description
 "Status of workflow. 0=success, -1=failure";
 }
} // container stampede.xwf.end

• stampede.task.info

container stampede.task.info {
 description
 "Information about task in DAX";
 uses base-event;

 leaf transformation {
 type string;
 mandatory true;
 description
 "Logical name of the underlying executable";
 }

 leaf argv {
 type string;
 description
 "All arguments given to transformation on command-line";
 }

 leaf type {
 type peg_inttype;
 mandatory true;
 description "Type of task";
 }

 leaf type_desc {
 type peg_strtype;
 mandatory true;
 description
 "String description of task type";
 }

 leaf task.id {
 type string;
 mandatory true;
 description
 "Identifier for this task in the DAX";
 }
 } // container stampede.task.info

• stampede.task.edge

container stampede.task.edge {
 description
 "Represents child/parent relationship between two tasks in DAX";
 uses base-event;

 leaf parent.task.id {
 type string;
 mandatory true;
 description "Parent task";
 }

 leaf child.task.id {
 type string;
 mandatory true;
 description "Child task";
 }
} // container stampede.task.edge

• stampede.wf.map.task_job

111

Monitoring, Debugging and Statistics

container stampede.wf.map.task_job {

 description
 "Relates a DAX task to a DAG job.";
 uses base-event;

 leaf task.id {
 type string;
 mandatory true;
 description
 "Identifier for the task in the DAX";
 }

 leaf job.id {
 type string;
 mandatory true;
 description
 "Identifier for corresponding job in the DAG";
 }
} // container stampede.wf.map.task_job

• stampede.xwf.map.subwf_job

container stampede.xwf.map.subwf_job {

 description
 "Relates a sub workflow to the corresponding job instance";
 uses base-event;

 leaf subwf.id {
 type string;
 mandatory true;
 description
 "Sub Workflow Identified / UUID";
 }

 leaf job.id {
 type string;
 mandatory true;
 description
 "Identifier for corresponding job in the DAG";
 }

 leaf job_inst.id {
 type int32;
 mandatory true;
 description
 "Job instance identifier i.e the submit sequence generated by monitord";
 }
} // container stampede.xwf.map.subwf_job

• stampede.job.info

container stampede.job.info {

 description
 "A description of a job in the DAG";
 uses base-event;

 leaf job.id {
 type string;
 mandatory true;
 description
 "Identifier for job in the DAG";
 }

 leaf submit_file {
 type string;
 mandatory true;
 description
 "Name of file being submitted to the scheduler";
 }

 leaf type {
 type peg_inttype;
 mandatory true;
 description "Type of task";
 }

112

Monitoring, Debugging and Statistics

 leaf type_desc {
 type peg_strtype;
 mandatory true;
 description
 "String description of task type";
 }

 leaf clustered {
 type intbool;
 mandatory true;
 description
 "Whether job is clustered or not";
 }

 leaf max_retries {
 type uint32;
 mandatory true;
 description
 "How many retries are allowed for this job before giving up";
 }

 leaf task_count {
 type uint32;
 mandatory true;
 description
 "Number of DAX tasks for this job. "
 + "Auxiliary jobs without a task in the DAX will have the value '0'";
 }

 leaf executable {
 type string;
 mandatory true;
 description
 "Program to execute";
 }

 leaf argv {
 type string;
 description
 "All arguments given to executable (on command-line)";
 }
} // container stampede.job.info

• stampede.job.edge

container stampede.job.edge {

 description
 "Parent/child relationship between two jobs in the DAG";
 uses base-event;

 leaf parent.job.id {
 type string;
 mandatory true;
 description "Parent job";
 }

 leaf child.job.id {
 type string;
 mandatory true;
 description "Child job";
 }
} // container stampede.job.edge

• stampede.job_inst.pre.start

container stampede.job_inst.pre.start {

 description
 "Start of a prescript for a job instance";
 uses base-job-inst;
} // container stampede.job_inst.pre.start

• stampede.job_inst.pre.term

container stampede.job_inst.pre.term {
 description
 "Job prescript is terminated (success or failure not yet known)";

113

Monitoring, Debugging and Statistics

} // container stampede.job_inst.pre.term

• stampede.job_inst.pre.end

container stampede.job_inst.pre.end {
 description
 "End of a prescript for a job instance";
 uses base-job-inst;

 leaf status {
 type int32;
 mandatory true;
 description
 "Status of prescript. 0 is success, -1 is error";
 }

 leaf exitcode {
 type int32;
 mandatory true;
 description
 "the exitcode with which the prescript exited";
 }
} // container stampede.job_inst.pre.end

• stampede.job_inst.submit.start

container stampede.job_inst.submit.start {
 description
 "When job instance is going to be submitted. "
 + "Scheduler job id is not yet known";
 uses sched-job-inst;
} // container stampede.job_inst.submit.start

• stampede.job_inst.submit.end

container stampede.job_inst.submit.end {
 description
 "When executable job is submitted";
 uses sched-job-inst;

 leaf status {
 type int16;
 mandatory true;
 description
 "Status of workflow. 0=success, -1=failure";
 }
} // container stampede.job_inst.submit.end

• stampede.job_inst.held.start

container stampede.job_inst.held.start {
 description
 "When Condor holds the jobs";
 uses sched-job-inst;
} // container stampede.job_inst.held.start

• stampede.job_inst.held.end

container stampede.job_inst.held.end {
 description
 "When the job is released after being held";
 uses sched-job-inst;

 leaf status {
 type int16;
 mandatory true;
 description
 "Status of workflow. 0=success, -1=failure";
 }
} // container stampede.job_inst.held.end

• stampede.job_inst.main.start

container stampede.job_inst.main.start {
 description
 "Start of execution of a scheduler job";
 uses sched-job-inst;

 leaf stdin.file {
 type string;
 description
 "Path to file containing standard input of job";

114

Monitoring, Debugging and Statistics

 }

 leaf stdout.file {
 type string;
 mandatory true;
 description
 "Path to file containing standard output of job";
 }

 leaf stderr.file {
 type string;
 mandatory true;
 description
 "Path to file containing standard error of job";
 }
} // container stampede.job_inst.main.start

• stampede.job_inst.main.term

container stampede.job_inst.main.term {
 description
 "Job is terminated (success or failure not yet known)";
 uses sched-job-inst;

 leaf status {
 type int32;
 mandatory true;
 description
 "Execution status. 0=means job terminated, -1=job was evicted, not terminated";
 }
} // container stampede.job_inst.main.term

• stampede.job_inst.main.end

container stampede.job_inst.main.end {
 description
 "End of main part of scheduler job";
 uses sched-job-inst;

 leaf stdin.file {
 type string;
 description
 "Path to file containing standard input of job";
 }

 leaf stdout.file {
 type string;
 mandatory true;
 description
 "Path to file containing standard output of job";
 }

 leaf stdout.text {
 type string;
 description
 "Text containing output of job";
 }

 leaf stderr.file {
 type string;
 mandatory true;
 description
 "Path to file containing standard error of job";
 }

 leaf stderr.text {
 type string;
 description
 "Text containing standard error of job";
 }

 leaf user {
 type string;
 description
 "Scheduler's name for user";
 }

 leaf site {

115

Monitoring, Debugging and Statistics

 type string;
 mandatory true;
 description
 "DAX name for the site at which the job ran";
 }

 leaf work_dir {
 type string;
 description
 "Path to working directory";
 }

 leaf local.dur {
 type decimal64 {
 fraction-digits 6;
 }
 units "seconds";
 description
 "Duration as seen at the local node";
 }

 leaf status {
 type int32;
 mandatory true;
 description
 "Execution status. 0=success, -1=failure";
 }

 leaf exitcode {
 type int32;
 mandatory true;
 description
 "the exitcode with which the executable exited";
 }

 leaf multiplier_factor {
 type int32;
 mandatory true;
 description
 "the multiplier factor for use in statistics";
 }

 leaf cluster.start {
 type nl_ts;
 description
 "When the enclosing cluster started";
 }

 leaf cluster.dur {
 type decimal64 {
 fraction-digits 6;
 }
 units "seconds";
 description
 "Duration of enclosing cluster";
 }
} // container stampede.job_inst.main.end

• stampede.job_inst.post.start

container stampede.job_inst.post.start {
 description
 "Start of a postscript for a job instance";
 uses sched-job-inst;
} // container stampede.job_inst.post.start

• stampede.job_inst.post.term

container stampede.job_inst.post.term {
 description
 "Job postscript is terminated (success or failure not yet known)";
 uses sched-job-inst;
} // container stampede.job_inst.post.term

• stampede.job_inst.post.end

container stampede.job_inst.post.end {
 description
 "End of a postscript for a job instance";

116

Monitoring, Debugging and Statistics

 uses sched-job-inst;

 leaf status {
 type int32;
 mandatory true;
 description
 "Status of postscript. 0 is success, -1=failure";
 }

 leaf exitcode {
 type int32;
 mandatory true;
 description
 "the exitcode with which the postscript exited";
 }
} // container stampede.job_inst.post.end

• stampede.job_inst.host.info

container stampede.job_inst.host.info {
 description
 "Host information associated with a job instance";
 uses base-job-inst;

 leaf site {
 type string;
 mandatory true;
 description "Site name";
 }

 leaf hostname {
 type inet:host;
 mandatory true;
 description "Host name";
 }

 leaf ip {
 type inet:ip-address;
 mandatory true;
 description "IP address";
 }

 leaf total_memory {
 type uint64;
 description
 "Total RAM on host";
 }

 leaf uname {
 type string;
 description
 "Operating system name";
 }
} // container stampede.job_inst.host.info

• stampede.job_inst.image.info

container stampede.job_inst.image.info {
 description
 "Image size associated with a job instance";
 uses base-job-inst;

 leaf size {
 type uint64;
 description "Image size";
 }

 leaf sched.id {
 type string;
 mandatory true;
 description
 "Identifier for job in scheduler";
 }
} // container stampede.job_inst.image.info

• stampede.inv.start

container stampede.inv.start {
 description

117

Monitoring, Debugging and Statistics

 "Start of an invocation";
 uses base-event;

 leaf job_inst.id {
 type int32;
 mandatory true;
 description
 "Job instance identifier i.e the submit sequence generated by monitord";
 }

 leaf job.id {
 type string;
 mandatory true;
 description
 "Identifier for corresponding job in the DAG";
 }

 leaf inv.id {
 type int32;
 mandatory true;
 description
 "Identifier for invocation. "
 + "Sequence number, with -1=prescript and -2=postscript";
 }
} // container stampede.inv.start

• stampede.inv.end

container stampede.inv.end {
 description
 "End of an invocation";
 uses base-event;

 leaf job_inst.id {
 type int32;
 mandatory true;
 description
 "Job instance identifier i.e the submit sequence generated by monitord";
 }

 leaf inv.id {
 type int32;
 mandatory true;
 description
 "Identifier for invocation. "
 + "Sequence number, with -1=prescript and -2=postscript";
 }

 leaf job.id {
 type string;
 mandatory true;
 description
 "Identifier for corresponding job in the DAG";
 }

 leaf start_time {
 type nl_ts;
 description
 "The start time of the event";
 }

 leaf dur {
 type decimal64 {
 fraction-digits 6;
 }
 units "seconds";
 description
 "Duration of invocation";
 }

 leaf remote_cpu_time {
 type decimal64 {
 fraction-digits 6;
 }
 units "seconds";
 description
 "remote CPU time computed as the stime + utime";
 }

118

Monitoring, Debugging and Statistics

 leaf exitcode {
 type int32;
 description
 "the exitcode with which the executable exited";
 }

 leaf transformation {
 type string;
 mandatory true;
 description
 "Transformation associated with this invocation";
 }

 leaf executable {
 type string;
 mandatory true;
 description
 "Program executed for this invocation";
 }

 leaf argv {
 type string;
 description
 "All arguments given to executable on command-line";
 }

 leaf task.id {
 type string;
 description
 "Identifier for related task in the DAX";
 }
} // container stampede.inv.end

• stampede.static.meta.start

container stampede.static.meta.start {
 uses base-event;
} // container stampede.static.meta.start

• stampede.static.meta.end

container stampede.static.meta.end {
 uses base-event;
} // container stampede.static.meta.end

• stampede.xwf.meta

container stampede.xwf.meta {
 description
 "Metadata associated with a workflow";
 uses base-metadata;
} // container stampede.xwf.meta

• stampede.task.meta

container stampede.task.meta {
 description
 "Metadata associated with a task";
 uses base-metadata;

 leaf task.id {
 type string;
 description
 "Identifier for related task in the DAX";
 }
} // container stampede.task.meta

• stampede.rc.meta

container stampede.rc.meta {
 description
 "Metadata associated with a file in the replica catalog";
 uses base-metadata;

 leaf lfn.id {
 type string;
 description
 "Logical File Identifier for the file";
 }
} // container stampede.rc.meta

119

Monitoring, Debugging and Statistics

• stampede.wf.map.file

container stampede.wf.map.file {
 description
 "Event that captures what task generates or consumes a particular file";
 uses base-event;

 leaf lfn.id {
 type string;
 description
 "Logical File Identifier for the file";
 }

 leaf task.id {
 type string;
 description
 "Identifier for related task in the DAX";
 }
} // container stampede.wf.map.file

120

Chapter 7. Execution Environments
Pegasus supports a number of execution environments. An execution environment is a setup where jobs from a work-
flow are running.

Localhost
In this configuration, Pegasus schedules the jobs to run locally on the submit host. Running locally is a good approach
for smaller workflows, testing workflows, and for demonstations such as the Pegasus tutorial. Pegasus supports two
methods of local execution: local HTCondor pool, and shell planner. The former is preferred as the latter does not
support all Pegasus' features (such as notifications).

Running on a local HTCondor pool is achieved by executing the workflow on site local (--sites local option to pega-
sus-plan). The site "local" is a reserved site in Pegasus and results in the jobs to run on the submit host in HTCondor
universe local. The site catalog can be left very simple in this case:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

</sitecatalog>

The simplest execution environment does not involve HTCondor. Pegasus is capable of planning small workflows for
local execution using a shell planner. Please refer to the share/pegasus/examples directory in your Pegasus
installation, the shell planner's documentation section, or the tutorials, for details.

Condor Pool
A HTCondor pool is a set of machines that use HTCondor for resource management. A HTCondor pool can be a
cluster of dedicated machines or a set of distributively owned machines. Pegasus can generate concrete workflows
that can be executed on a HTCondor pool.

121

Execution Environments

Figure 7.1. The distributed resources appear to be part of a HTCondor pool.

The workflow is submitted using DAGMan from one of the job submission machines in the HTCondor pool. It is the
responsibility of the Central Manager of the pool to match the task in the workflow submitted by DAGMan to the
execution machines in the pool. This matching process can be guided by including HTCondor specific attributes in
the submit files of the tasks. If the user wants to execute the workflow on the execution machines (worker nodes) in
a HTCondor pool, there should be a resource defined in the site catalog which represents these execution machines.
The universe attribute of the resource should be vanilla. There can be multiple resources associated with a single
HTCondor pool, where each resource identifies a subset of machine (worker nodes) in the pool.

When running on a HTCondor pool, the user has to decide how Pegasus should transfer data. Please see the Data
Staging Configuration for the options. The easiest is to use condorio as that mode does not require any extra setup -
HTCondor will do the transfers using the existing HTCondor daemons. For an example of this mode see the example
workflow in share/pegasus/examples/condor-blackdiamond-condorio/ . In HTCondorio mode,
the site catalog for the execution site is very simple as storage is provided by HTCondor:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

 <site handle="condorpool" arch="x86_64" os="LINUX">
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 </site>

</sitecatalog>

There is a set of HTCondor profiles which are used commonly when running Pegasus workflows. You may have to
set some or all of these depending on the setup of the HTCondor pool:

122

Execution Environments

 <!-- Change the style to HTCondor for jobs to be executed in the HTCondor Pool.
 By default, Pegasus creates jobs suitable for grid execution. -->
 <profile namespace="pegasus" key="style">condor</profile>

 <!-- Change the universe to vanilla to make the jobs go to remote compute
 nodes. The default is local which will only run jobs on the submit host -->
 <profile namespace="condor" key="universe" >vanilla</profhile>

 <!-- The requirements expression allows you to limit where your jobs go -->
 <profile namespace="condor" key="requirements">(Target.FileSystemDomain !=
 "yggdrasil.isi.edu")</profile>

 <!-- The following two profiles forces HTCondor to always transfer files. This
 has to be used if the pool does not have a shared filesystem -->
 <profile namespace="condor" key="should_transfer_files">True</profile>
 <profile namespace="condor" key="when_to_transfer_output">ON_EXIT</profile>

Glideins
In this section we describe how machines from different administrative domains and supercomputing centers can be
dynamically added to a HTCondor pool for certain timeframe. These machines join the HTCondor pool temporarily
and can be used to execute jobs in a non preemptive manner. This functionality is achieved using a HTCondor feature
called glideins (see http://cs.wisc.edu/condor/glidein [http://cs.wisc.edu/condor/glidein]) . The startd daemon is the
HTCondor daemon which provides the compute slots and runs the jobs. In the glidein case, the submit machine is
usually a static machine and the glideins are told configued to report to that submit machine. The glideins can be
submitted to any type of resource: a GRAM enabled cluster, a campus cluster, a cloud environment such as Amazon
AWS, or even another HTCondor cluster.

Tip

As glideins are usually coming from different compute resource, and/or the glideins are running in an ad-
ministrative domain different from the submit node, there is usually no shared filesystem available. Thus
the most common data staging modes are condorio and nonsharedfs .

There are many useful tools which submits and manages glideins for you:

• GlideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/] is a tool and host environ-
ment used mostly on the Open Science Grid [http://www.opensciencegrid.org/].

• CorralWMS [http://pegasus.isi.edu/projects/corralwms] is a personal frontend for GlideinWMS. CorralWMS was
developed by the Pegasus team and works very well for high throughput workflows.

• condor_glidein [http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html] is a simple glidein tool for
Globus GRAM clusters. condor_glidein is shipped with HTCondor.

• Glideins can also be created by hand or scripts. This is a useful solution for example for cluster which have no
external job submit mechanisms or do not allow outside networking.

CondorC
Using HTCondorC users can submit workflows to remote HTCondor pools. HTCondorC is a HTCondor specific
solution for remote submission that does not involve the setting up a GRAM on the headnode. To enable HTCondorC
submission to a site, user needs to associate pegasus profile key named style with value as HTCondorc. In case, the
remote HTCondor pool does not have a shared filesytem between the nodes making up the pool, users should use
pegasus in the HTCondorio data configuration. In this mode, all the data is staged to the remote node in the HTCondor
pool using HTCondor File transfers and is executed using PegasusLite.

A sample site catalog for submission to a HTCondorC enabled site is listed below

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"

123

http://cs.wisc.edu/condor/glidein
http://cs.wisc.edu/condor/glidein
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.opensciencegrid.org/
http://www.opensciencegrid.org/
http://pegasus.isi.edu/projects/corralwms
http://pegasus.isi.edu/projects/corralwms
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html
http://research.cs.wisc.edu/condor/manual/v7.6/condor_glidein.html

Execution Environments

 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

 <site handle="condorcpool" arch="x86_86" os="LINUX">
 <!-- the grid gateway entries are used to designate
 the remote schedd for the HTCondorC pool -->
 <grid type="condor" contact="ccg-condorctest.isi.edu" scheduler="Condor"
 jobtype="compute" />
 <grid type="condor" contact="ccg-condorctest.isi.edu" scheduler="Condor"
 jobtype="auxillary" />

 <!-- enable submission using HTCondorc -->
 <profile namespace="pegasus" key="style">condorc</profile>

 <!-- specify which HTCondor collector to use.
 If not specified defaults to remote schedd specified in grid gateway -->
 <profile namespace="condor" key="condor_collector">condorc-collector.isi.edu</profile>

 <profile namespace="condor" key="should_transfer_files">Yes</profile>
 <profile namespace="condor" key="when_to_transfer_output">ON_EXIT</profile>
 <profile namespace="env" key="PEGASUS_HOME" >/usr</profile>
 <profile namespace="condor" key="universe">vanilla</profile>

 </site>

</sitecatalog>

To enable PegasusLite in HTCondorIO mode, users should set the following in their properties

pegasus properties
pegasus.data.configuration condorio

124

Execution Environments

Cloud (Amazon EC2/S3, Google Cloud, ...)

Figure 7.2. Cloud Sample Site Layout

This figure shows a sample environment for executing Pegasus across multiple clouds. At this point, it is up to the
user to provision the remote resources with a proper VM image that includes a HTCondor worker that is configured
to report back to a HTCondor master, which can be located inside one of the clouds, or outside the cloud.

The submit host is the point where a user submits Pegasus workflows for execution. This site typically runs a HTCon-
dor collector to gather resource announcements, or is part of a larger HTCondor pool that collects these announce-
ments. HTCondor makes the remote resources available to the submit host's HTCondor installation.

The figure above shows the way Pegasus WMS is deployed in cloud computing resources, ignoring how these re-
sources were provisioned. The provisioning request shows multiple resources per provisioning request.

The initial stage-in and final stage-out of application data into and out of the node set is part of any Pegasus-planned
workflow. Several configuration options exist in Pegasus to deal with the dynamics of push and pull of data, and when
to stage data. In many use-cases, some form of external access to or from the shared file system that is visible to the
application workflow is required to facilitate successful data staging. However, Pegasus is prepared to deal with a
set of boundary cases.

The data server in the figure is shown at the submit host. This is not a strict requirement. The data server for consumed
data and data products may both be different and external to the submit host, or one of the object storage solution
offered by the cloud providers

125

Execution Environments

Once resources begin appearing in the pool managed by the submit machine's HTCondor collector, the application
workflow can be submitted to HTCondor. A HTCondor DAGMan will manage the application workflow execution.
Pegasus run-time tools obtain timing-, performance and provenance information as the application workflow is exe-
cuted. At this point, it is the user's responsibility to de-provision the allocated resources.

In the figure, the cloud resources on the right side are assumed to have uninhibited outside connectivity. This enables
the HTCondor I/O to communicate with the resources. The right side includes a setup where the worker nodes use all
private IP, but have out-going connectivity and a NAT router to talk to the internet. The Condor connection broker
(CCB) facilitates this setup almost effortlessly.

The left side shows a more difficult setup where the connectivity is fully firewalled without any connectivity except
to in-site nodes. In this case, a proxy server process, the generic connection broker (GCB), needs to be set up in the
DMZ of the cloud site to facilitate HTCondor I/O between the submit host and worker nodes.

If the cloud supports data storage servers, Pegasus is starting to support workflows that require staging in two steps:
Consumed data is first staged to a data server in the remote site's DMZ, and then a second staging task moves the data
from the data server to the worker node where the job runs. For staging out, data needs to be first staged from the
job's worker node to the site's data server, and possibly from there to another data server external to the site. Pegasus
is capable to plan both steps: Normal staging to the site's data server, and the worker-node staging from and to the
site's data server as part of the job.

Amazon EC2

There are many different ways to set up an execution environment in Amazon EC2. The easiest way is to use a submit
machine outside the cloud, and to provision several worker nodes and a file server node in the cloud as shown here:

Figure 7.3. Amazon EC2

The submit machine runs Pegasus and a HTCondor master (collector, schedd, negotiator). The workers run a HTCon-
dor startd. And the file server node exports an NFS file system. The startd on the workers is configured to connect to
the master running outside the cloud, and the workers also mount the NFS file system. More information on setting up
HTCondor for this environment can be found at http://www.isi.edu/~gideon/condor-ec2 [http://www.isi.edu/~gideon/
condor-ec2/].

The site catalog entry for this configuration is similar to what you would create for running on a local Condor pool
with a shared file system.

126

http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/
http://www.isi.edu/~gideon/condor-ec2/

Execution Environments

Google Cloud Platform

Using the Google Cloud Platform is just like any other cloud platform. You can choose to host the central manager /
submit host inside the cloud or outside. The compute VMs will have HTCondor installed and configured to join the
pool managed by the central manager.

Google Storage is supported using gsutil. First, create a .boto file by running:

gsutil config

Then, use a site catalog which specifies which .boto file to use. You can then use gs:// URLs in your workflow.
Example:

<?xml version="1.0" encoding="UTF-8"?>
<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-4.0.xsd" version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp">
 <file-server operation="all" url="file:///tmp"/>
 </directory>
 <profile namespace="env" key="PATH">/opt/gsutil:/usr/bin:/bin</profile>

 </site>

 <!-- compute site -->
 <site handle="condorpool" arch="x86_86" os="LINUX">
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>
 </site>

 <!-- storage sites have to be in the site catalog, just liek a compute site -->
 <site handle="google_storage" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/my-bucket/scratch">
 <file-server operation="all" url="gs://my-bucket/scratch"/>
 </directory>
 <directory type="local-storage" path="/my-bucket/outputs">
 <file-server operation="all" url="gs://my-bucket/outputs"/>
 </directory>
 <profile namespace="pegasus" key="BOTO_CONFIG">/home/myuser/.boto</profile>
 </site>

</sitecatalog>

Remote Cluster using PyGlidein
Glideins (HTCondor pilot jobs) provide an efficient solution for high-throughput workflows. The glideins are submit-
ted to the remote cluster scheduler, and once started up, makes it appear like your HTCondor pool extends into the
remote cluster. HTCondor can then schedule the jobs to the remote compute node in the same way it would schedule
jobs to local compute nodes.

Some infrastructures, such as Open Science Grid, provide infrastructure level glidein solutions, such as GlideinWMS.
Another solution is BOSCO. For some more custom setups, pyglidein [https://github.com/WIPACrepo/pyglidein]
from the IceCube [http://icecube.wisc.edu/] project provides a nice framework. The architecture consists on a server
on the submit host, which job it is to determining the demand. On the remote resource, the client can be invoked
for example via cron, and submits directly to HTCondor, SLURM and PBS schedulers. This makes pyglidein very
flexible and works well for example if the resource requires two-factor authentication.

127

https://github.com/WIPACrepo/pyglidein
https://github.com/WIPACrepo/pyglidein
http://icecube.wisc.edu/
http://icecube.wisc.edu/

Execution Environments

Figure 7.4. pyglidein overview

To get started with pyglidein, check out a copy of the Git repository on both your submit host as well as the clus-
ter you want to glidein to. Starting with the submit host, first make sure you have HTCondor configured for PASS-
WORD [http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000]
authentication. Make a copy of the HTCondor pool password file. You will need it on the cluster, and it is a binary
file, so make sure you cp instead of a copy-and-paste of the file contents. To get the server started:

./server.py --port 11001

By default, the pyglidein server will use all jobs in the system to determine if glideins are needed. If you want user
jobs to explicitly let us know they want glideins, you can pass a constraint for the server to use. For example, jobs
could have the +WantStampede2 = True attribute, and then we could start the server with:

./server.py --port 11001 --constraint "'WantStampede2 == True'"

One the server is running, you can check status by pointing a web browser to it.

Next step is to create a glidein.tar.gz file containing the HTCondor binaries, our pool password file, and a modified
job wrapper script. This can be accomplished by building HTCondor with the create_glidein_tarball.py script, but
first we need to modify glidein_template/. Start by copying your pool password file over the existing passwdfile file.

Edit user_job_wrapper.sh. We don't need most of it, so edit it to read:

#!/bin/bash

This script is started just before the user job
It is referenced by the USER_JOB_WRAPPER

export HOME=$PWD

128

http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000
http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000
http://research.cs.wisc.edu/htcondor/manual/current/3_8Security.html#SECTION00483400000000000000

Execution Environments

fix PATH and LD_LIBRARY_PATH
export PATH=$PATH:/usr/bin:/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib64:/usr/local/lib:/usr/lib64:/usr/lib:/usr/
lib/x86_64-linux-gnu:/lib64:/lib:/lib/x86_64-linux-gnu

GLIDEIN_DIR=$GLIDEIN_LOCAL_TMP_DIR
if [! -d $GLIDEIN_DIR]; then
 GLIDEIN_DIR=$PWD
fi
JOB_WRAPPER="${GLIDEIN_DIR}/job_wrapper.sh"

fall through to next/default job wrapper
if [! -e $JOB_WRAPPER]; then
 exec "$@"
else
 exec ${JOB_WRAPPER} "$@"
fi

Create the glidein.tar.gz by running:

python create_glidein_tarball.py

Once you have the glidein.tar.gz file, copy it to the Git checkout you have on the remote cluster. Then move over
there for the remaining steps. Create a configuration file for your glidein under configs/. Here is an example for TACC
Stampede2:

[Mode]
debug = True

[Glidein]
address = http://workflow.isi.edu:11001/jsonrpc
site = TACC-Stampede2
tarball = /home1/00384/rynge/git/pyglidein/glidein.tar.gz

[Cluster]
user = rynge
os = RHEL7
scheduler = slurm
submit_command = sbatch
walltime_hrs = 48
max_total_jobs = 10
max_idle_jobs = 1
limit_per_submit = 1

gpu_only = False
whole_node = True
whole_node_cpus = 1
whole_node_memory = 96000
whole_node_disk = 30000
whole_node_gpus = 0
group_jobs = False
partition = normal
running_cmd = squeue -u $USER -t RUNNING -p normal -h | wc -l
idle_cmd = squeue -u $USER -t PENDING -p normal -h | wc -l

[SubmitFile]
filename = submit.slurm
local_dir = /tmp/$SLURM_JOB_ID
custom_header = #SBATCH -A TG-ABC00001
cvmfs_job_wrapper = False

[CustomEnv]
CLUSTER = workflow.isi.edu

This configuration will obviously look different for different clusters. configs/ has a bunch of example configs, but
a few things to note:

• address is the location of the server we started earlier

• tarball is the full path to our custom glidein.tar.gz file we created above.

129

Execution Environments

• CLUSTER is the location of your HTCondor central manager. In many cases this is the same host you started
the server on. Please note that if you do not set this variable, the glideins will try to register into the IceCube
infrastructure.

At this point we can try our first glidein:

./client.py --config=$HOME/git/pyglidein/configs/stampede2.config

Once we have a seen a successful glidein, we can add the client to the crontab:

m h dom mon dow command
*/10 * * * * (cd ~/git/pyglidein/ && ./client.py --config=$HOME/git/pyglidein/configs/
stampede2.config) >~/cron-pyglidein.log 2>&1

With this setup, glideins will now appear automatically based on the demand in the local HTCondor queue.

Remote Cluster using Globus GRAM
Figure 7.5. Grid Sample Site Layout

A generic grid environment shown in the figure above. We will work from the left to the right top, then the right bottom.

On the left side, you have a submit machine where Pegasus runs, HTCondor schedules jobs, and workflows are
executed. We call it the submit host (SH), though its functionality can be assumed by a virtual machine image. In order
to properly communicate over secured channels, it is important that the submit machine has a proper notion of time,
i.e. runs an NTP daemon to keep accurate time. To be able to connect to remote clusters and receive connections from
the remote clusters, the submit host has a public IP address to facilitate this communication.

130

Execution Environments

In order to send a job request to the remote cluster, HTCondor wraps the job into Globus calls via HTCondor-G. Globus
uses GRAM to manage jobs on remote sites. In terms of a software stack, Pegasus wraps the job into HTCondor.
HTCondor wraps the job into Globus. Globus transports the job to the remote site, and unwraps the Globus component,
sending it to the remote site's resource manager (RM).

To be able to communicate using the Globus security infrastructure (GSI), the submit machine needs to have the
certificate authority (CA) certificates configured, requires a host certificate in certain circumstances, and the user a
user certificate that is enabled on the remote site. On the remote end, the remote gatekeeper node requires a host
certificate, all signing CA certificate chains and policy files, and a goot time source.

In a grid environment, there are one or more clusters accessible via grid middleware like the Globus Toolkit [http://
www.globus.org/]. In case of Globus, there is the Globus gatekeeper listening on TCP port 2119 of the remote cluster.
The port is opened to a single machine called head node (HN).The head-node is typically located in a de-militarized
zone (DMZ) of the firewall setup, as it requires limited outside connectivity and a public IP address so that it can be
contacted. Additionally, once the gatekeeper accepted a job, it passes it on to a jobmanager. Often, these jobmanagers
require a limited port range, in the example TCP ports 40000-41000, to call back to the submit machine.

For the user to be able to run jobs on the remote site, the user must have some form of an account on the remtoe site.
The user's grid identity is passed from the submit host. An entity called grid mapfile on the gatekeeper maps the user's
grid identity into a remote account. While most sites do not permit account sharing, it is possible to map multiple user
certificates to the same account.

The gatekeeper is the interface through which jobs are submitted to the remote cluster's resource manager. A resource
manager is a scheduling system like PBS, Maui, LSF, FBSNG or HTCondor that queues tasks and allocates worker
nodes. The worker nodes (WN) in the remote cluster might not have outside connectivity and often use all private IP
addresses. The Globus toolkit requires a shared filesystem to properly stage files between the head node and worker
nodes.

Note

The shared filesystem requirement is imposed by Globus. Pegasus is capable of supporting advanced site
layouts that do not require a shared filesystem. Please contact us for details, should you require such a setup.

To stage data between external sites for the job, it is recommended to enable a GridFTP server. If a shared networked
filesystem is involved, the GridFTP server should be located as close to the file-server as possible. The GridFTP server
requires TCP port 2811 for the control channel, and a limited port range for data channels, here as an example the TPC
ports from 40000 to 41000. The GridFTP server requires a host certificate, the signing CA chain and policy files, a
stable time source, and a gridmap file that maps between a user's grid identify and the user's account on the remote site.

The GridFTP server is often installed on the head node, the same as the gatekeeper, so that they can share the grid map-
file, CA certificate chains and other setups. However, for performance purposes it is recommended that the GridFTP
server has its own machine.

An example site catalog entry for a GRAM enabled site looks as follow in the site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="Trestles" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="trestles.sdsc.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <grid type="gt5" contact="trestles.sdsc.edu/jobmanager-pbs" scheduler="unknown"
 jobtype="compute"/>

 <directory type="shared-scratch" path="/oasis/projects/nsf/USERNAME">
 <file-server operation="all" url="gsiftp://trestles-dm1.sdsc.edu/oasis/projects/nsf/
USERNAME"/>
 </directory>

 <!-- specify the path to a PEGASUS WORKER INSTALL on the site -->
 <profile namespace="env" key="PEGASUS_HOME" >/path/to/PEGASUS/INSTALL</profile>
 </site>

131

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/

Execution Environments

 </sitecatalog>

Remote Cluster using CREAMCE
CREAM [https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription] is a webservices based job sub-
mission front end for remote compute clusters. It can be viewed as a replaced for Globus GRAM and is mainly popular
in Europe. It widely used in the Italian Grid.

In order to submit a workflow to compute site using the CREAMCE front end, the user needs to specify the following
for the site in their site catalog

1. pegasus profile style with value set to cream

2. grid gatewaydefined for the site with contact attribute set to CREAMCE frontend and scheduler attribute to
remote scheduler.

3. a remote queue can be optionally specified using globus profile queue with value set to queue-name

An example site catalog entry for a creamce site looks as follow in the site catalog

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="creamce" arch="x86" os="LINUX">
 <grid type="cream" contact="https://ce01-lcg.cr.cnaf.infn.it:8443/ce-cream/services/CREAM2"
 scheduler="LSF" jobtype="compute" />
 <grid type="cream" contact="https://ce01-lcg.cr.cnaf.infn.it:8443/ce-cream/services/CREAM2"
 scheduler="LSF" jobtype="auxillary" />

 <!-- Scratch directory on the cluster -->
 <directory type="shared-scratch" path="/home/virgo034">
 <file-server operation="all" url="gsiftp://ce01-lcg.cr.cnaf.infn.it/home/virgo034"/>
 </directory>

 <!-- cream is the style to use for CREAMCE submits -->

 <profile namespace="pegasus" key="style">cream</profile>

 <!-- the remote queue is picked up from globus profile -->
 <profile namespace="globus" key="queue">virgo</profile>

 <!-- Staring HTCondor 8.0 additional cream attributes
 can be passed by setting cream_attributes -->
 <profile namespace="condor" key="cream_attributes">key1=value1;key2=value2</profile>
 </site>

 </sitecatalog>

The pegasus distribution comes with creamce examples in the examples directory. They can be used as a starting point
to configure your setup.

Tip

Usually , the CREAMCE frontends accept VOMS generated user proxies using the command voms-proxy-
init . Steps on generating a VOMS proxy are listed in the CREAM User Guide here [https://wiki.italian-
grid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use] .

Local Campus Cluster Using Glite
This section describes the configuration required for Pegasus to generate an executable workflow that uses glite to
submit to a Slurm, PBS, or SGE batch system on a local cluster. This environment is referred to as the local campus
cluster, as the workflow submit node (Pegasus + HTCondor) need to be installed on a login node (or a node where
the local batch scheduler commands can be executed) of the cluster.

132

https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription
https://wiki.italiangrid.it/twiki/bin/view/CREAM/FunctionalDescription
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use
https://wiki.italiangrid.it/twiki/bin/view/CREAM/UserGuide#1_1_Before_starting_get_your_use

Execution Environments

Note
Glite is the old name for BLAH (or BLAHP). BLAH binaries are distributed with HTCondor as the
"batch_gahp". For historical reasons, we often use the term "glite", and you will see "glite" and "batch_gahp"
references in HTCondor, but all of them refer to the same thing, which has been renamed BLAH.

This guide covers Slurm, PBS, Moab, and SGE, but glite also works with other PBS-like batch systems, including
LSF, Cobalt and others. If you need help configuring Pegasus and HTCondor to work with one of these systems,
please contact pegasus-support@isi.edu. For the sake of brevity, the text below will say "PBS", but you should read
that as "PBS or PBS-like system such as SGE, Moab, LSF, and others".

This is because the glite layer communicates with the batch system running on the cluster using squeue/qsub/...
or equivalent commands. If you can submit jobs to the local scheduler from the workflow submit host, then the local
HTCondor can be used to submit jobs via glite (with some modifications described below). If you need to SSH to a
different cluster head node in order to submit jobs to the scheduler, then you can use BOSCO, which is documented
in another section.

Tip
There is also a way to do remote job submission via glite even if you cannot SSH to the head node. This
might be the case, for example, if the head node requires 2-factor authentication (e.g. RSA tokens). This
approach is called the "Reverse GAHP" and you can find out more information on the GitHub page [https://
github.com/juve/rvgahp]. All it requires is SSH from the cluster head node back to the workflow submit host.

In either case, you need to modifiy the HTCondor glite installation that will be used to submit jobs to the local sched-
uler. To do this, run the pegasus-configure-glite command. This command will install all the required scripts
to map Pegasus profiles to batch-system specific job attributes, and add support for Moab. You may need to run it as
root depending on how you installed HTCondor.

Tip
HTCondor has an issue for the Slurm configuration when running on Ubuntu systems. Since in Ubuntu, /
bin/sh does not link to bash, the Slurm script will fail when trying to run the source command. A
quick fix to this issue is to force the script to use bash. In the bls_set_up_local_and_extra_args
function of the blah_common_submit_functions.sh script, which is located in the same folder
as the installation above, only add bash before $bls_opt_tmp_req_file >> $bls_tmp_file
2> /dev/null command line.

In order to configure a workflow to use glite you need to create an entry in your site catalog for the cluster and set
the following profiles:

1. pegasus profile style with value set to glite.

2. condor profile grid_resource with value set to batch slurm, batch pbs, batch sge or batch moab.

An example site catalog entry for a local glite PBS site looks like this:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86" os="LINUX">
 <directory type="shared-scratch" path="/lfs/shared-scratch/glite-sharedfs-example/work">
 <file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-example/
work"/>
 </directory>
 <directory type="local-storage" path="/shared-scratch//glite-sharedfs-example/outputs">
 <file-server operation="all" url="file:///lfs/local-scratch/glite-sharedfs-example/
outputs"/>
 </directory>
 </site>

 <site handle="local-slurm" arch="x86" os="LINUX">

133

https://github.com/juve/rvgahp
https://github.com/juve/rvgahp
https://github.com/juve/rvgahp

Execution Environments

 <!-- the following is a shared directory shared amongst all the nodes in the cluster -->
 <directory type="shared-scratch" path="/lfs/glite-sharedfs-example/local-slurm/shared-
scratch">
 <file-server operation="all" url="file:///lfs/glite-sharedfs-example/local-slurm/shared-
scratch"/>
 </directory>

 <profile namespace="env" key="PEGASUS_HOME">/lfs/software/pegasus</profile>

 <profile namespace="pegasus" key="style" >glite</profile>

 <profile namespace="condor" key="grid_resource">batch slurm</profile>
 <profile namespace="pegasus" key="queue">normal</profile>
 <profile namespace="pegasus" key="runtime">30000</profile>
 </site>

</sitecatalog>

Tip

Starting 4.2.1, in the examples directory you can find a glite shared filesystem example that you can use
to test out this configuration.

You probably don't need to know this, but Pegasus generates a +remote_cerequirements expression for an
HTCondor glite job based on the Pegasus profiles associated with the job. This expression is passed to glite and used
by the *_local_submit_attributes.sh scripts installed by pegasus-configure-glite to generate
the correct batch submit script. An example +remote_cerequirements classad expression in the HTCondor
submit file looks like this:

+remote_cerequirements = JOBNAME=="preprocessj1" && PASSENV==1 && WALLTIME=="01:00:00" && \
 EXTRA_ARGUMENTS=="-N testjob -l walltime=01:23:45 -l nodes=2" && \
 MYENV=="CONDOR_JOBID=$(cluster).$(process),PEGASUS_DAG_JOB_ID=preprocess_j1,PEGASUS_HOME=/
usr,PEGASUS_WF_UUID=aae14bc4-b2d1-4189-89ca-ccd99e30464f"

The job name and environment variables are automatically passed through to the remote job.

The following sections document the mapping of Pegasus profiles to batch system job requirements as implemented
by Pegasus, HTCondor, and glite.

Setting job requirements
The job requirements are constructed based on the following profiles:

Table 7.1. Mapping of Pegasus Profiles to Job Requirements

Profile Key Key in +re-
mote_cerequire-

ments

PBS Para-
meter

SGE Para-
meter

SLURM pa-
rameter

Moab Para-
meter

Cobalt Pa-
rameter

Description

pega-
sus.cores

CORES n/a -pe ompi --ntasks
cores

n/a --proccount
cores

Pegasus us-
es cores to
calculate ei-
ther nodes or
ppn. If cores
and ppn
are specified,
then nodes
is comput-
ed. If cores
and nodes
is specified,
then ppn is
computed. If
both nodes
and ppn
are specified,

134

Execution Environments

Profile Key Key in +re-
mote_cerequire-

ments

PBS Para-
meter

SGE Para-
meter

SLURM pa-
rameter

Moab Para-
meter

Cobalt Pa-
rameter

Description

then cores
is ignored.
The result-
ing values
for nodes and
ppn are used
to set the
job require-
ments for
PBS and
Moab. If nei-
ther nodes
nor ppn
is speci-
fied, then
no require-
ments are set
in the PBS or
Moab submit
script. For
SGE, how
the process-
es are dis-
tributed over
nodes de-
pends on
how the par-
allel envi-
ronment has
been config-
ured; it is set
to 'ompi' by
default.

pegasus.n-
odes

NODES -l nodes n/a --nodes
nodes

-l nodes -n nodes This speci-
fies the num-
ber of nodes
that the job
should use.
This is not
used for
SGE.

pegasus.ppn PROCS -l ppn n/a n/a -l ppn --mode
c[ppn]

This spec-
ifies the
number of
processors
per node
that the job
should use.
This is not
used for
SGE.

pegasus.run-
time

WALLTIME -l walltime -l h_rt --time wall-
time

-l walltime -t walltime This speci-
fies the max-
imum run-
time for

135

Execution Environments

Profile Key Key in +re-
mote_cerequire-

ments

PBS Para-
meter

SGE Para-
meter

SLURM pa-
rameter

Moab Para-
meter

Cobalt Pa-
rameter

Description

the job in
seconds. It
should be an
integer val-
ue. Pegasus
converts it to
the "hh:m-
m:ss" format
required by
the batch sys-
tem. The val-
ue is round-
ed up to the
next whole
minute.

pega-
sus.memory

PER_PRO-
CESS_MEM-
ORY

-l pmem -l h_vmem --mem mem-
ory

--mem-per-
cpu pmem

n/a This speci-
fies the maxi-
mum amount
of physi-
cal memo-
ry used by
any process
in the job.
For example,
if the job runs
four process-
es and each
requires up to
2 GB (gi-
gabytes) of
memory,
then this val-
ue should be
set to "2gb"
for PBS
and Moab,
and "2G"
for SGE.
The corre-
sponding
PBS direc-
tive would
be "#PBS -l
pmem=2gb".

pega-
sus.project

PROJECT -A
project_name

n/a n/a -A
project_name

-A
project_name

Causes the
job time to
be charged to
or associated
with a partic-
ular project/
account. This
is not used
for SGE.

pega-
sus.queue

n/a -q -q n/a -q This spec-
ifies the

136

Execution Environments

Profile Key Key in +re-
mote_cerequire-

ments

PBS Para-
meter

SGE Para-
meter

SLURM pa-
rameter

Moab Para-
meter

Cobalt Pa-
rameter

Description

queue for the
job. This pro-
file does not
have a corre-
sponding
value in
+re-
mote_cerequire-
ments. In-
stead, Pega-
sus sets the
batch_queue
key in the
Condor sub-
mit file,
which gLite/
blahp trans-
lates into
the appropri-
ate batch sys-
tem require-
ment.

globus.to-
talmemory

TO-
TAL_MEM-
ORY

-l mem n/a --mem mem-
ory

-l mem n/a The total
memory that
your job re-
quires. It is
usually better
to just spec-
ify the pega-
sus.memory
profile. This
is not
mapped for
SGE.

pega-
sus.glite.ar-
guments

EX-
TRA_AR-
GUMENTS

prefixed by
"#PBS"

prefixed by
"#?"

prefixed by
"#SBATCH"

prefixed by
"#MSUB"

n/a This speci-
fies the ex-
tra argu-
ments that
must appear
in the gen-
erated sub-
mit script
for a job.
The value of
this profile is
added to the
submit script
prefixed by
the batch sys-
tem-specific
value. These
requirements
override any
requirements
specified us-

137

Execution Environments

Profile Key Key in +re-
mote_cerequire-

ments

PBS Para-
meter

SGE Para-
meter

SLURM pa-
rameter

Moab Para-
meter

Cobalt Pa-
rameter

Description

ing other pro-
files. This
is useful
when you
want to pass
through spe-
cial options
to the under-
lying batch
system. For
example, on
the USC
cluster we
use resource
properties to
specify the
network
type. If you
want to use
the Myrinet
network, you
must spec-
ify some-
thing like "-l
nodes=8:pp-
n=2:myri".
For infini-
band, you
would use
something
like "-l
nodes=8:pp-
n=2:IB". In
that case,
both the
nodes and
ppn profiles
would be ef-
fectively ig-
nored.

Specifying a remote directory for the job

gLite/blahp does not follow the remote_initialdir or initialdir classad directives. Therefore, all the jobs
that have the glite style applied don't have a remote directory specified in the submit script. Instead, Pegasus uses
Kickstart to change to the working directory when the job is launched on the remote system.

SDSC Comet with BOSCO glideins
BOSCO documentation: https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO

BOSCO is part of the HTCondor system which allows you to set up a personal pool of resources brought in from a
remote cluster. In this section, we describe how to use BOSCO to run glideins (pilot jobs) dynamically on the SDSC
Comet cluster. The glideins are submitted based on the demand of the user jobs in the pool.

138

https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO

Execution Environments

As your regular user, on the host you want to use as a workflow submit host, download the latest version of HTCon-
dor from the HTCondor Download page [https://research.cs.wisc.edu/htcondor/downloads/>]. At this point the latest
version was 8.5.2 and we downloaded condor-8.5.2-x86_64_RedHat6-stripped.tar.gz. Untar, and run the installer:

$ tar xzf condor-8.5.2-x86_64_RedHat6-stripped.tar.gz
$ cd condor-8.5.2-x86_64_RedHat6-stripped
$./bosco_install
...
Created a script you can source to setup your Condor environment
variables. This command must be run each time you log in or may
be placed in your login scripts:
 source /home/$USER/bosco/bosco_setenv

Source the setup file as instructed, run bosco_start, and then test that condor_q and condor_status works.

$ source /home/$USER/bosco/bosco_setenv
$ condor_q

-- Schedd: workflow.iu.xsede.org : 127.0.0.1:11000?...
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended
$ condor_status

Let's tell BOSCO about our SDSC Comet account:

$ bosco_cluster -a YOUR_SDSC_USERNAME@comet-ln2.sdsc.edu pbs

BOSCO needs a little bit more information to be able to submit the glideins to Comet. Log in to your Comet account via
ssh (important - this step has to take place on Comet) and create the ~/bosco/glite/bin/pbs_local_submit_attributes.sh
file with the following content. You can find your allocation by running show_accounts and looking at the project
column.

echo "#PBS -q compute"
echo "#PBS -l nodes=1:ppn=24"
echo "#PBS -l walltime=24:00:00"
echo "#PBS -A [YOUR_COMET_ALLOCATION]"

Also chmod the file:

$ chmod 755 ~/bosco/glite/bin/pbs_local_submit_attributes.sh

Log out of Comet, and get back into the host and user BOSCO was installed into. We also need to edit a few files
on that host. ~/bosco/libexec/campus_factory/share/glidein_jobs/glidein_wrapper.sh has a bug in some versions of
HTCondor. Open up the file and make sure the eval line in the beginning is below the unset/export HOME section.
If that is not the case, edit the file to look like:

#!/bin/sh

starting_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

BLAHP does weird things with home directory
unset HOME
export HOME

eval campus_factory_dir=$_campusfactory_CAMPUSFACTORY_LOCATION

If the order of the HOME and eval statements are reversed in your file, change them to look like the above. At the end
of ~/bosco/libexec/campus_factory/share/glidein_jobs/glidein_condor_config add:

139

https://research.cs.wisc.edu/htcondor/downloads/>
https://research.cs.wisc.edu/htcondor/downloads/>

Execution Environments

dynamic slots
SLOT_TYPE_1 = cpus=100%,disk=100%,swap=100%
SLOT_TYPE_1_PARTITIONABLE = TRUE
NUM_SLOTS = 1
NUM_SLOTS_TYPE_1 = 1

In the file ~/bosco/libexec/campus_factory/share/glidein_jobs/job.submit.template find the line reading:

 _condor_NUM_CPUS=1; \

You should now have a functioning BOSCO setup. Submit a Pegasus workflow.

Remote PBS Cluster using BOSCO and SSH
BOSCO [http://bosco.opensciencegrid.org/about/] enables HTCondor to submit jobs to remote PBS clusters using
SSH. This section describes how to specify a site catalog entry for a site that has been configured for BOSCO job
submissions.

First, the site needs to be setup for BOSCO according to the BOSCO documentation [https://twiki.openscience-
grid.org/bin/view/CampusGrids/BoSCO]. BOSCO uses glite to submit jobs to the PBS scheduler on the remote clus-
ter. You will also need to configure the glite installed for BOSCO on the remote system according to the documentation
in the glite section in order for the mapping of Pegasus profiles to PBS job requirements to work. In particular, you
will need to install the pbs_local_submit_attributes.sh and sge_local_submit_attributes.sh
scripts in the correct place in the glite bin directory on the remote cluster, usually in the directory ~/bosco/glite/bin/ .

Second, to tag a site for SSH submission, the following profiles need to be specified for the site in the site catalog:

1. pegasus profile style with value set to ssh

2. Specify the service information as grid gateways. This should match what BOSCO provided when the cluster was
set up.

An example site catalog entry for a BOSCO site looks like this:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="USC_HPCC_Bosco" arch="x86_64" os="LINUX">

 <!-- Specify the service information. This should match what Bosco provided when the cluster
 was set up. -->
 <grid type="batch" contact="vahi@hpc-pegasus.usc.edu" scheduler="PBS" jobtype="compute"/>
 <grid type="batch" contact="vahi@hpc-pegasus.usc.edu" scheduler="PBS" jobtype="auxillary"/>

 <!-- Scratch directory on the cluster -->
 <directory type="shared-scratch" path="/home/rcf-40/vahi/tmp">
 <file-server operation="all" url="scp://vahi@hpc-pegasus.usc.edu/home/rcf-40/vahi/tmp"/>
 </directory>

 <!-- SSH is the style to use for Bosco SSH submits -->
 <profile namespace="pegasus" key="style">ssh</profile>

 <!-- works around bug in the HTCondor GAHP, that does not
 set the remote directory -->
 <profile namespace="pegasus" key="change.dir">true</profile>

 <!-- Job requirements should be specified using Pegasus profiles -->
 <profile namespace="pegasus" key="queue">default</profile>
 <profile namespace="pegasus" key="runtime">30</profile>

 </site>

</sitecatalog>

140

http://bosco.opensciencegrid.org/about/
http://bosco.opensciencegrid.org/about/
https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO
https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO
https://twiki.opensciencegrid.org/bin/view/CampusGrids/BoSCO

Execution Environments

Note

It is recommended to have a submit node configured either as a BOSCO submit node or a vanilla HTCondor
node. You cannot have HTCondor configured both as a BOSCO install and a traditional HTCondor submit
node at the same time as BOSCO will override the traditional HTCondor pool in the user environment.

There is a bosco-shared-fs example in the examples directory of the distribution.

Job Requirements for the jobs can be set using the same profiles as listed here .

Campus Cluster
There are almost as many different configurations of campus clusters as there are campus clusters, and because of that
it can be hard to determine what the best way to run Pegasus workflows. Below is a ordered checklist with some ideas
we have collected from working with users in the past:

1. If the cluster scheduler is HTCondor, please see the HTCondor Pool section.

2. If the cluster is Globus GRAM enabled, see the Globus GRAM section. If you have have a lot of short jobs, also
read the Glidein section.

3. For clusters without GRAM, you might be able to do glideins. If outbound network connectivity is allowed, your
submit host can be anywhere. If the cluster is setup to not allow any network connections to the outside, you will
probably have to run the submit host inside the cluster as well.

If the cluster you are trying to use is not fitting any of the above scenarios, please post to the Pegasus users mailing
list [http://pegasus.isi.edu/support] and we will help you find a solution.

XSEDE
The Extreme Science and Engineering Discovery Environment (XSEDE) [https://www.xsede.org/] provides a set of
High Performance Computing (HPC) and High Throughput Computing (HTC) resources.

For the HPC resources, it is recommended to run using Globus GRAM or glideins. Most of these resources have
fast parallel file systesm, so running with sharedfs data staging is recommended. Below is example site catalog and
pegasusrc to run on SDSC Trestles [http://www.sdsc.edu/us/resources/trestles/]:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog http://pegasus.isi.edu/
schema/sc-4.0.xsd"
 version="4.0">

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/tmp/wf/work">
 <file-server operation="all" url="file:///tmp/wf/work"/>
 </directory>
 <directory type="local-storage" path="/tmp/wf/storage">
 <file-server operation="all" url="file:///tmp/wf/storage"/>
 </directory>
 </site>

 <site handle="Trestles" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="trestles.sdsc.edu:2119/jobmanager-fork" scheduler="PBS"
 jobtype="auxillary"/>
 <grid type="gt5" contact="trestles.sdsc.edu:2119/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <directory type="shared-scratch" path="/phase1/USERNAME">
 <file-server operation="all" url="gsiftp://trestles-dm1.sdsc.edu/phase1/USERNAME"/>
 </directory>
 </site>

</sitecatalog>

141

http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
http://pegasus.isi.edu/support
https://www.xsede.org/
https://www.xsede.org/
http://www.sdsc.edu/us/resources/trestles/
http://www.sdsc.edu/us/resources/trestles/

Execution Environments

pegasusrc:

pegasus.catalog.replica=SimpleFile
pegasus.catalog.replica.file=rc

pegasus.catalog.site.file=sites.xml

pegasus.catalog.transformation=Text
pegasus.catalog.transformation.file=tc

pegasus.data.configuration = sharedfs

Pegasus might not be installed, or be of a different version
so stage the worker package
pegasus.transfer.worker.package = true

The HTC resources available on XSEDE are all HTCondor based, so standard HTCondor Pool setup will work fine.

If you need to run high throughput workloads on the HPC machines (for example, post processing after a large parallel
job), glideins can be useful as it is a more efficient method for small jobs on these systems.

Open Science Grid Using glideinWMS
glideinWMS [http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/] is a glidein system widely used
on Open Science Grid. Running on top of glideinWMS is like running on a Condor Pool without a shared filesystem.

142

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/
http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/

Chapter 8. Containers
Overview

Application containers provides a solution to package software with complex dependencies to be used during work-
flow execution. Starting with Pegasus 4.8.0, Pegasus has support for application containers in the non-shared filesys-
tem or condorio data configurations using PegasusLite. Users can specify with their transformations in the Transfor-
mation Catalog the container in which the the transformation should be executed. Pegasus currently has support for
the following container technologies:

1. Docker

2. Singularity

The worker package is not required to be pre-installed in images. If a matching worker package is not installed, Pegasus
will try to determine which package is required and download it.

Configuring Workflows To Use Containers
Containers currently can only be specified in the Transformation Catalog. Users have the option of either using a
different container for each executable or same container for all executables. In the case, where you wants to use a
container that does not have your executable pre-installed, you can mark the executable as STAGEABLE and Pegasus
will stage the executable into the container, as part of executable staging.

The DAX API extensions don't support references for containers.

Containerized Applications in the Transformation Catalog
Users can specify what container they want to use for running their application in the Transformation Catalog using
the multi line text based format described in this section. Users can specify an optional attribute named container that
refers to the container to be used for the application.

tr example::keg:1.0 {

 #specify profiles that apply for all the sites for the transformation
 #in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 # environment to be set when the job is run in the container
 # overrides env profiles specified in the container
 profile env "HELLo" "WORLD"
 profile env "JAVA_HOME" "/bin/java.1.6"

 profile condor "FOO" "bar"

 pfn "/path/to/keg
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"

 # INSTALLED means pfn refers to path in the container.
 # STAGEABLE means the executable can be staged into the container
 type "INSTALLED"

 #optional attribute to specify the container to use
 container "centos-pegasus"
 }
}

cont centos-pegasus{
 # can be either docker or singularity

143

Containers

 type "docker"

 # URL to image in a docker|singularity hub OR
 # URL to an existing docker image exported as a tar file or singularity image
 image "docker:///rynge/montage:latest"

 # optional site attribute to tell pegasus which site tar file
 # exists. useful for handling file URL's correctly
 image_site "optional site"

 # environment to be set when the job is run in the container
 # only env profiles are supported
 profile env "JAVA_HOME" "/opt/java/1.6"
}

The container itself is defined using the cont entry. Multiple transformations can refer to the same container.

1. cont cont - A container identifier.

2. image - URL to image in a docker|singularity hub or URL to an existing docker image exported as a tar file or
singularity image. Example of a docker hub URL is docker:///rynge/montage:latest, while for singularity shub://
pegasus-isi/fedora-montage

3. image_site - The site identifier for the site where the container is available

4. Profiles - One or many profiles can be attached to a transformation for all sites or to a transformation on a particular
site. For containers, only env profiles are supported.

Note

Containerized Applications can only be specified in the transformation catalog, not via the DAX API.

Container Execution Model
User's containerized applications are launched as part of PegasusLite jobs. PegasusLite job when starting on a remote
worker node.

1. Sets up a directory to run a user job in.

2. Pulls in all the relevant input data, executables and the container image to that directory

3. Optionally, loads the container from the container image file and sets up the user to run as in the container (only
applicable for Docker containers)

4. Mounts the job directory into the container as /scratch for Docker containers, while as /srv for Singularity containers.

5. Container will run a job specific script that figures out the appropriate Pegasus worker to use in the container
if not already installed, and sets up the job environment to use it, before launching the user application using
pegasus-kickstart.

6. Optionally, shuts down the container (only applicable for Docker containers)

7. Ships out the output data to the staging site

8. Cleans up the directory on the worker node.

The above model, allows for all credential handling required for data transfers to be handled outside the container
within the PegasusLite job.

Staging of Application Containers
Pegasus treats containers as other files in terms of data management. Container to be used for a job is tracked as an
input dependency that needs to be staged if it is not already there. Similar to executables, you specify the location for
your container image in the Transformation Catalog. You can specify the source URL's for containers as the following.

144

Containers

1. URL to a container hosted on a central hub repository

Example of a docker hub URL is docker:///rynge/montage:latest, while for singularity shub://pegasus-isi/fedo-
ra-montage

2. URL to a container image file on a file server.

• Docker - Docker supports loading of containers from a tar file, Hence, containers images can only be specified
as tar files and the extension for the filename is not important.

• Singularity - Singularity supports container images in various forms and relies on the extension in the filename
to determine what format the file is in. Pegasus supports the following extensions for singularity container images

• .img

• .tar

• .tar.gz

• .tar.bz2

• .cpio

• .cpio.gz

Singularity will fail to run the container if you don't specify the right extension , when specify the source URL
for the image.

In both the cases, Pegasus will place the container image on the staging site used for the workflow, as part of the data
stage-in nodes, using pegasus-transfer. When pulling in an image from a container hub repository, pegasus-transfer
will export the container as a tar file in case of Docker, and as .img file in case of Singularity

Symlinking
Since, Pegasus only mounts the job directory determined by PegasusLite into the application container, symlinking
of input data sets does not work. This is because the symlink in PegasusLite directory points to a source directory on
the worker node, that is not mounted in the container. Hence user's jobs would fail. Hence, Pegasus will automatically
disable symlinking for jobs that use containers. The only exception being the application container itself. If you specify
a URL for the container image, the image will be symlinked if Pegasus determines that it can be.

Enabling symlinking of containers is useful, when running large workflows on a single cluster. Pegasus can pull the
image from the container repository once, and place it on the shared filesystem where it can then be symlinked from,
when the PegasusLite jobs start on the worker nodes of that cluster. In order to do this, you need to be running the
nonsharedfs data configuration mode with the staging site set to be the same as the compute site.

Container Example - Montage Workflow

Montage Using Containers
This section contains an example of a real workflow running inside Singularity containers. The application is Montage
[http://montage.ipac.caltech.edu/] using the montage-v2 workflow [https://github.com/pegasus-isi/montage-work-
flow-v2]. Be aware that this workflow can be fairly data intensive, and when running with containers in condorio or
nonsharedfs data management modes, the data staging of the application data and the container image to each job can
result in a non-trivial amount of network traffic.

The software dependencies consists of the Montage software stack, and AstroPy. These are installed into the image
(see the Singularity file in the GitHub repository). The image has been made available in Singularity Hub [https://
singularity-hub.org/].

Now that we have an image, the next step is to check out the workflow from GitHub, and use it to create an abstract
workflow description, a transformation catalog and a replica catalog. The montage-workflow.py command create all

145

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://singularity-hub.org/
https://singularity-hub.org/
https://singularity-hub.org/

Containers

this for us, but the command itself requires Montage to look up input data for the specified location in the sky. The
provide the environment, run this command inside the same Singularity image. For example:

singularity exec \
 --bind $PWD:/srv --workdir /srv \
 shub://pegasus-isi/montage-workflow-v2 \
 /srv/montage-workflow.py \
 --tc-target container \
 --center "56.7 24.00" \
 --degrees 2.0 \
 --band dss:DSS2B:blue \
 --band dss:DSS2R:green \
 --band dss:DSS2IR:red

The command executes a data find for the 3 specified bands, 2.0 degrees around the location 56.7 24.00, and generates
a workflow to combine the images into a single image. One extra flag is provided to let the command know we want
to execute the workflow inside containers: --tc-target container. The result is a transformation catalog in data/tc.txt
, with starts with:

cont montage {
 type "singularity"
 image "shub://pegasus-isi/montage-workflow-v2"
 profile env "MONTAGE_HOME" "/opt/Montage"
}

tr mDiffFit {
 site condor_pool {
 type "INSTALLED"
 container "montage"
 pfn "file:///opt/Montage/bin/mDiffFit"
 profile pegasus "clusters.size" "5"
 }
}
...

The first entry describes the container, where the image can be found (Singularity Hub in this example), and a special
environment variable we want to be set for the jobs.

The second entry, of which there are many more similar ones in the file, describes the application. Note how it refers
back to the "montage" container, specifying that we want the job to be wrapped in the container.

In the data/ directory. we can also find the abstract workflow (montage.dax), and replica catalog (rc.dax). Note that
this are the same as if the workflow was running in a non-container environment. To plan the workflow:

pegasus-plan \
 --dir work \
 --relative-dir `date +'%s'` \
 --dax data/montage.dax \
 --sites condor_pool \
 --output-site local \
 --cluster horizontal

146

Chapter 9. Example Workflows
These examples are included in the Pegasus distribution and can be found under share/pegasus/examples in
your Pegasus install (/usr/share/pegasus/examples for native packages)

Note

These examples are intended to be a starting point for when you want to create your own workflows and want
to see how other workflows are set up. The example workflows will probably not work in your environment
without modifications. Site and transformation catalogs contain site and user specifics such as paths to
scratch directories and installed software, and at least minor modificiations are required to get the workflows
to plan and run.

Grid Examples
These examples assumes you have access to a cluster with Globus installed. A pre-ws gatekeeper and gridftp server is
required. You also need Globus and Pegasus installed, both on the machine you are submitting from, and the cluster.

Black Diamond

Pegasus is shipped with 3 different Black Diamond examples for the grid. This is to highlight the available DAX APIs
which are Java, Perl and Python. The examples can be found under:

share/pegasus/examples/grid-blackdiamond-java/
share/pegasus/examples/grid-blackdiamond-perl/
share/pegasus/examples/grid-blackdiamond-python/

The workflow has 4 nodes, layed out in a diamond shape, with files being passed between them (f.*):

147

Example Workflows

The binary for the nodes is a simple "mock application" name keg ("canonical example for the grid") which reads
input files designated by arguments, writes them back onto output files, and produces on STDOUT a summary of
where and when it was run. Keg ships with Pegasus in the bin directory.

This example ships with a "submit" script which will build the replica catalog, the transformation catalog, and the
site catalog. When you create your own workflows, such a submit script is not needed if you want to maintain those
catalogs manually.

Note

The use of ./submit scripts in these examples are just to make it more easy to run the examples out of the
box. For a production site, the catalogs (transformation, replica, site) may or may not be static or generated
by other tooling.

To test the examples, edit the submit script and change the cluster config to the setup and install locations for your
cluster. Then run:

148

Example Workflows

$./submit

The workflow should now be submitted and in the output you should see a work dir location for the instance. With
that directory you can monitor the workflow with:

$ pegasus-status [workdir]

Once the workflow is done, you can make sure it was sucessful with:

$ pegasus-analyzer -d [workdir]

NASA/IPAC Montage
This example can be found under

share/pegasus/examples/grid-montage/

The NASA IPAC Montage (http://montage.ipac.caltech.edu/) workflow projects/montages a set of input images from
telescopes like Hubble and end up with images like http://montage.ipac.caltech.edu/images/m104.jpg . The test work-
flow is for a 1 by 1 degrees tile. It has about 45 input images which all have to be projected, background modeled
and adjusted to come out as one seamless image.

Just like the Black Diamond above, this example uses a ./submit script.

The Montage DAX is generated with a tool called mDAG shipped with Montage which generates the workflow.

Rosetta
This example can be found under

share/pegasus/examples/grid-rosetta/

Rosetta (http://www.rosettacommons.org/) is a high resolution protein prediction and design software. Highlights in
this example are:

• Using the Pegasus Java API to generate the DAX

• The DAX generator loops over the input PDBs and creates a job for each input

• The jobs all have a dependency on a flatfile database. For simplicity, each job depends on all the files in the database
directory.

• Job clustering is turned on to make each grid job run longer and better utilize the compute cluster

Just like the Black Diamond above, this example uses a ./submit script.

Condor Examples

Black Diamond - condorio
There are a set of Condor examples available, highlighting different data staging configurations.The most basic one
is condorio, and the example can be found under:

share/pegasus/examples/condor-blackdiamond-condorio/

This example is using the same abstract workflow as the Black Diamond grid example above, and can be executed
either on the submit machine (universe="local") or on a local Condor pool (universe="vanilla").

You can run this example with the ./submit script. Example:

$./submit

149

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/images/m104.jpg
http://www.rosettacommons.org/

Example Workflows

Container Examples
Montage Using Containers

This section contains an example of a real workflow running inside Singularity containers. The application is Montage
[http://montage.ipac.caltech.edu/] using the montage-v2 workflow [https://github.com/pegasus-isi/montage-work-
flow-v2]. Be aware that this workflow can be fairly data intensive, and when running with containers in condorio or
nonsharedfs data management modes, the data staging of the application data and the container image to each job can
result in a non-trivial amount of network traffic.

The software dependencies consists of the Montage software stack, and AstroPy. These are installed into the image
(see the Singularity file in the GitHub repository). The image has been made available in Singularity Hub [https://
singularity-hub.org/].

Now that we have an image, the next step is to check out the workflow from GitHub, and use it to create an abstract
workflow description, a transformation catalog and a replica catalog. The montage-workflow.py command create all
this for us, but the command itself requires Montage to look up input data for the specified location in the sky. The
provide the environment, run this command inside the same Singularity image. For example:

singularity exec \
 --bind $PWD:/srv --workdir /srv \
 shub://pegasus-isi/montage-workflow-v2 \
 /srv/montage-workflow.py \
 --tc-target container \
 --center "56.7 24.00" \
 --degrees 2.0 \
 --band dss:DSS2B:blue \
 --band dss:DSS2R:green \
 --band dss:DSS2IR:red

The command executes a data find for the 3 specified bands, 2.0 degrees around the location 56.7 24.00, and generates
a workflow to combine the images into a single image. One extra flag is provided to let the command know we want
to execute the workflow inside containers: --tc-target container. The result is a transformation catalog in data/tc.txt
, with starts with:

cont montage {
 type "singularity"
 image "shub://pegasus-isi/montage-workflow-v2"
 profile env "MONTAGE_HOME" "/opt/Montage"
}

tr mDiffFit {
 site condor_pool {
 type "INSTALLED"
 container "montage"
 pfn "file:///opt/Montage/bin/mDiffFit"
 profile pegasus "clusters.size" "5"
 }
}
...

The first entry describes the container, where the image can be found (Singularity Hub in this example), and a special
environment variable we want to be set for the jobs.

The second entry, of which there are many more similar ones in the file, describes the application. Note how it refers
back to the "montage" container, specifying that we want the job to be wrapped in the container.

In the data/ directory. we can also find the abstract workflow (montage.dax), and replica catalog (rc.dax). Note that
this are the same as if the workflow was running in a non-container environment. To plan the workflow:

pegasus-plan \
 --dir work \
 --relative-dir `date +'%s'` \
 --dax data/montage.dax \
 --sites condor_pool \

150

http://montage.ipac.caltech.edu/
http://montage.ipac.caltech.edu/
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://github.com/pegasus-isi/montage-workflow-v2
https://singularity-hub.org/
https://singularity-hub.org/
https://singularity-hub.org/

Example Workflows

 --output-site local \
 --cluster horizontal

Local Shell Examples
Black Diamond

To aid in workflow development and debugging, Pegasus can now map a workflow to a local shell script. One advan-
tage is that you do not need a remote compute resource.

This example is using the same abstract workflow as the Black Diamond grid example above. The difference is that
a property is set in pegasusrc to force shell execution:

tell pegasus to generate shell version of
the workflow
pegasus.code.generator = Shell

You can run this example with the ./submit script.

Notifications Example
A new feature in Pegasus 3.1. is notifications. While the workflow is running, a monitoring tool is running side by
side to the workflow, and issues user defined notifications when certain events takes place, such as job completion or
failure. See notifications section for detailed information. A workflow example with notifications can be found under
examples/notifications. This workflow is based on the Black Diamond, with the changes being notifications added to
the DAX generator. For example, notifications are added at the workflow level:

Create a abstract dag
diamond = ADAG("diamond")
dax level notifications
diamond.invoke('all', os.getcwd() + "/my-notify.sh")

The DAX generator also contains job level notifications:

job level notifications - in this case for at_end events
frr.invoke('at_end', os.getcwd() + "/my-notify.sh")

These invoke lines specify that the my-notify.sh script will be invoked for events generated (all in the first case,
at_end in the second). The my-notify.sh script contains callouts sample notification tools shipped with Pegasus, one
for email and for Jabber/GTalk (commented out by default):

#!/bin/bash

Pegasus ships with a couple of basic notification tools. Below
we show how to notify via email and gtalk.

all notifications will be sent to email
change $USER to your full email addess
$PEGASUS_HOME/libexec/notification/email -t $USER

this sends notifications about failed jobs to gtalk.
note that you can also set which events to trigger on in your DAX.
set jabberid to your gmail address, and put in yout
password
uncomment to enable
if ["x$PEGASUS_STATUS" != "x" -a "$PEGASUS_STATUS" != "0"]; then
 $PEGASUS_HOME/libexec/notification/jabber --jabberid FIXME@gmail.com \
 --password FIXME \
 --host talk.google.com
fi

Workflow of Workflows
Galactic Plane

The Galactic Plane [http://en.wikipedia.org/wiki/Galactic_plane] workflow is a workflow of many Montage work-
flows. The output is a set of tiles which can be used in software which takes the tiles and produces a seamless image

151

http://en.wikipedia.org/wiki/Galactic_plane
http://en.wikipedia.org/wiki/Galactic_plane

Example Workflows

which can be scrolled and zoomed into. As this is more of a production workflow than an example one, it can be a
little bit harder to get running in your environment.

Highlights of the example are:

• The subworkflow DAXes are generated as jobs in the parent workflow - this is an example on how to make more
dynamic workflows. For example, if you need a job in your workflow to determine the number of jobs in the next
level, you can have the first job create a subworkflow with the right number of jobs.

• DAGMan job categories are used to limit the number of concurrant jobs in certain places. This is used to limit the
number of concurrant connections to the data find service, as well limit the number of concurrant subworkflows
to manage disk usage on the compute cluster.

• Job priorities are used to make sure we overlap staging and computation. Pegasus sets default priorities, which for
most jobs are fine, but the priority of the data find job is set explicitly to a higher priority.

• A specific output site is defined the the site catalog and specified with the --output option of subworkflows.

The DAX API has support for sub workflows:

 remote_tile_setup = Job(namespace="gp", name="remote_tile_setup", version="1.0")
 remote_tile_setup.addArguments("%05d" % (tile_id))
 remote_tile_setup.addProfile(Profile("dagman", "CATEGORY", "remote_tile_setup"))
 remote_tile_setup.uses(params, link=Link.INPUT, register=False)
 remote_tile_setup.uses(mdagtar, link=Link.OUTPUT, register=False, transfer=True)
 uberdax.addJob(remote_tile_setup)
...
 subwf = DAX("%05d.dax" % (tile_id), "ID%05d" % (tile_id))
 subwf.addArguments("-Dpegasus.schema.dax=%s/etc/dax-2.1.xsd" %(os.environ["PEGASUS_HOME"]),
 "-Dpegasus.catalog.replica.file=%s/rc.data" % (tile_work_dir),
 "-Dpegasus.catalog.site.file=%s/sites.xml" % (work_dir),
 "-Dpegasus.transfer.links=true",
 "--sites", cluster_name,
 "--cluster", "horizontal",
 "--basename", "tile-%05d" % (tile_id),
 "--force",
 "--output", output_name)
 subwf.addProfile(Profile("dagman", "CATEGORY", "subworkflow"))
 subwf.uses(subdax_file, link=Link.INPUT, register=False)
 uberdax.addDAX(subwf)

152

Chapter 10. Data Management
Replica Selection

Each job in the DAX maybe associated with input LFN's denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus queries the Replica catalog to get all the PFN's (replicas)
associated with a LFN. The Replica Catalog may return multiple PFN's for each of the LFN's queried. Hence, Pegasus
needs to select a single PFN amongst the various PFN's returned for each LFN. This process is known as replica
selection in Pegasus. Users can specify the replica selector to use in the properties file.

This document describes the various Replica Selection Strategies in Pegasus.

Configuration
The user properties determine what replica selector Pegasus Workflow Mapper uses. The property pegasus.selec-
tor.replica is used to specify the replica selection strategy. Currently supported Replica Selection strategies are

1. Default

2. Regex

3. Restricted

4. Local

The values are case sensitive. For example the following property setting will throw a Factory Exception .

pegasus.selector.replica default

The correct way to specify is

pegasus.selector.replica Default

Supported Replica Selectors
The various Replica Selectors supported in Pegasus Workflow Mapper are explained below.

Note

Starting 4.6.0 release the Default and Regex Replica Selectors return an ordered list with priorities set. pega-
sus-transfer at runtime will failover to alternate url's specified, if a higher priority source URL is inaccessible.

Default

This is the default replica selector used in the Pegasus Workflow Mapper. If the property pegasus.selector.replica is
not defined in properties, then Pegasus uses this selector.

The selector orders the various candidate replica's according to the following rules

1. valid file URL's . That is URL's that have the site attribute matching the site where the executable pegasus-transfer
is executed.

2. all URL's from preferred site (usually the compute site)

3. all other remotely accessible (non file) URL's

To use this replica selector set the following property

153

Data Management

pegasus.selector.replica Default

Regex

This replica selector allows the user to specific regular expressions that can be used to rank various PFN's returned
from the Replica Catalog for a particular LFN. This replica selector orders the replicas based on the rank. Lower the
rank higher the preference.

The regular expressions are assigned different rank, that determine the order in which the expressions are employed.
The rank values for the regex can expressed in user properties using the property.

pegasus.selector.replica.regex.rank.[value] regex-expression

The [value] in the above property is an integer value that denotes the rank of an expression with a rank value of 1
being the highest rank.

For example, a user can specify the following regex expressions that will ask Pegasus to prefer file URL's over gsiftp
url's from example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://example\.isi\.edu.*

User can specify as many regex expressions as they want.

Since Pegasus is in Java , the regex expression support is what Java supports. It is pretty close to what is supported by
Perl. More details can be found at http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

Before applying any regular expressions on the PFN's for a particular LFN that has to be staged to a site X, the file
URL's that don't match the site X are explicitly filtered out.

To use this replica selector set the following property

pegasus.selector.replica Regex

Restricted

This replica selector, allows the user to specify good sites and bad sites for staging in data to a particular compute site.
A good site for a compute site X, is a preferred site from which replicas should be staged to site X. If there are more
than one good sites having a particular replica, then a random site is selected amongst these preferred sites.

A bad site for a compute site X, is a site from which replicas should not be staged. The reason of not accessing replica
from a bad site can vary from the link being down, to the user not having permissions on that site's data.

The good | bad sites are specified by the following properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name denotes the name of the compute site. A * in the property key is taken to mean all
sites. The value to these properties is a comma separated list of sites.

For example the following settings

pegasus.selector.replica.*.prefer.stagein.sites usc
pegasus.replica.uwm.prefer.stagein.sites isi,cit

means that prefer all replicas from site usc for staging in to any compute site. However, for uwm use a tighter constraint
and prefer only replicas from site isi or cit. The pool attribute associated with the PFN's tells the replica selector to
what site a replica/PFN is associated with.

The pegasus.replica.*.prefer.stagein.sites property takes precedence over pegasus.replica.*.ignore.stagein.sites prop-
erty i.e. if for a site X, a site Y is specified both in the ignored and the preferred set, then site Y is taken to mean as
only a preferred site for a site X.

154

Data Management

To use this replica selector set the following property

pegasus.selector.replica Restricted

Local

This replica selector always prefers replicas from the local host (pool attribute set to local) and that start with a file:
URL scheme. It is useful, when users want to stagein files to a remote site from the submit host using the Condor
file transfer mechanism.

To use this replica selector set the following property

pegasus.selector.replica Local

Data Transfers
As part of the Workflow Mapping Process, Pegasus does data management for the executable workflow . It queries
a Replica Catalog to discover the locations of the input datasets and adds data movement and registration nodes in
the workflow to

1. stage-in input data to the staging sites (a site associated with the compute job to be used for staging. In the shared
filesystem setup, staging site is the same as the execution sites where the jobs in the workflow are executed)

2. stage-out output data generated by the workflow to the final storage site.

3. stage-in intermediate data between compute sites if required.

4. data registration nodes to catalog the locations of the output data on the final storage site into the replica catalog.

The separate data movement jobs that are added to the executable workflow are responsible for staging data to a work-
flow specific directory accessible to the staging server on a staging site associated with the compute sites. Depending
on the data staging configuration, the staging site for a compute site is the compute site itself. In the default case,
the staging server is usually on the headnode of the compute site and has access to the shared filesystem between the
worker nodes and the head node. Pegasus adds a directory creation job in the executable workflow that creates the
workflow specific directory on the staging server.

In addition to data, Pegasus does transfer user executables to the compute sites if the executables are not installed on
the remote sites before hand. This chapter gives an overview of how transfers of data and executables is managed
in Pegasus.

Data Staging Configuration
Pegasus can be broadly setup to run workflows in the following configurations

• Shared File System

This setup applies to where the head node and the worker nodes of a cluster share a filesystem. Compute jobs in
the workflow run in a directory on the shared filesystem.

• NonShared FileSystem

This setup applies to where the head node and the worker nodes of a cluster don't share a filesystem. Compute jobs
in the workflow run in a local directory on the worker node

• Condor Pool Without a shared filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All
data IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead
of using pegasus-transfer to transfer input and output data, Condor File IO is used.

For the purposes of data configuration various sites, and directories are defined below.

155

Data Management

1. Submit Host

The host from where the workflows are submitted . This is where Pegasus and Condor DAGMan are installed. This
is referred to as the "local" site in the site catalog .

2. Compute Site

The site where the jobs mentioned in the DAX are executed. There needs to be an entry in the Site Catalog for
every compute site. The compute site is passed to pegasus-plan using --sites option

3. Staging Site

A site to which the separate transfer jobs in the executable workflow (jobs with stage_in , stage_out and stage_inter
prefixes that Pegasus adds using the transfer refiners) stage the input data to and the output data from to transfer to
the final output site. Currently, the staging site is always the compute site where the jobs execute.

4. Output Site

The output site is the final storage site where the users want the output data from jobs to go to. The output site
is passed to pegasus-plan using the --output option. The stageout jobs in the workflow stage the data from the
staging site to the final storage site.

5. Input Site

The site where the input data is stored. The locations of the input data are catalogued in the Replica Catalog, and
the "site" attribute of the locations gives us the site handle for the input site.

6. Workflow Execution Directory

This is the directory created by the create dir jobs in the executable workflow on the Staging Site. This is a directory
per workflow per staging site. Currently, the Staging site is always the Compute Site.

7. Worker Node Directory

This is the directory created on the worker nodes per job usually by the job wrapper that launches the job.

Shared File System

By default Pegasus is setup to run workflows in the shared file system setup, where the worker nodes and the head
node of a cluster share a filesystem.

156

Data Management

Figure 10.1. Shared File System Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or Head Node) to stage in input data from Input Sites (1---n) to a
workflow specific execution directory on the shared filesystem.

2. Compute Job starts on a worker node in the workflow execution directory. Accesses the input data using Posix IO

3. Compute Job executes on the worker node and writes out output data to workflow execution directory using Posix
IO

4. Stageout Job executes (either on Submit Host or Head Node) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

Tip

Set pegasus.data.configuration to sharedfs to run in this configuration.

Non Shared Filesystem

In this setup , Pegasus runs workflows on local file-systems of worker nodes with the the worker nodes not sharing a
filesystem. The data transfers happen between the worker node and a staging / data coordination site. The staging site
server can be a file server on the head node of a cluster or can be on a separate machine.

Setup

• compute and staging site are the different

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

157

Data Management

Figure 10.2. Non Shared Filesystem Setup

The data flow is as follows in this case

1. Stagein Job executes (either on Submit Host or on staging site) to stage in input data from Input Sites (1---n) to
a workflow specific execution directory on the staging site.

2. Compute Job starts on a worker node in a local execution directory. Accesses the input data using pegasus transfer
to transfer the data from the staging site to a local directory on the worker node

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. Output Data is pushed out to the staging site from the worker node using pegasus-transfer.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set p egasus.data.configuration to nonsharedfs to run in this configuration. The staging site can be spec-
ified using the --staging-site option to pegasus-plan.

In this setup, Pegasus always stages the input files through the staging site i.e the stage-in job stages in data from the
input site to the staging site. The PegasusLite jobs that start up on the worker nodes, then pull the input data from the
staging site for each job. In some cases, it might be useful to setup the PegasusLite jobs to pull input data directly
from the input site without going through the staging server. This is based on the assumption that the worker nodes
can access the input site. Starting 4.3 release, users can enable this. However, you should be aware that the access to

158

Data Management

the input site is no longer throttled (as in case of stage in jobs). If large number of compute jobs start at the same time
in a workflow, the input server will see a connection from each job.

Tip

Set pegasus.transfer.bypass.input.staging to trueto enable the bypass of staging of input files via the
staging server.

Condor Pool Without a Shared Filesystem

This setup applies to a condor pool where the worker nodes making up a condor pool don't share a filesystem. All data
IO is achieved using Condor File IO. This is a special case of the non shared filesystem setup, where instead of using
pegasus-transfer to transfer input and output data, Condor File IO is used.

Setup

• Submit Host and staging site are same

• head node and worker nodes of compute site don't share a filesystem

• Input Data is staged from remote sites.

• Remote Output Site i.e site other than compute site. Can be submit host.

Figure 10.3. Condor Pool Without a Shared Filesystem

The data flow is as follows in this case

1. Stagein Job executeson the submit host to stage in input data from Input Sites (1---n) to a workflow specific
execution directory on the submit host

2. Compute Job starts on a worker node in a local execution directory. Before the compute job starts, Condor transfers
the input data for the job from the workflow execution directory on thesubmit host to the local execution directory
on the worker node.

159

Data Management

3. The compute job executes in the worker node, and executes on the worker node.

4. The compute Job writes out output data to the local directory on the worker node using Posix IO

5. When the compute job finishes, Condor transfers the output data for the job from the local execution directory on
the worker node to the workflow execution directory on the submit host.

6. Stageout Job executes (either on Submit Host or staging site) to stage out output data from the workflow specific
execution directory to a directory on the final output site.

In this case, the compute jobs are wrapped as PegasusLite instances.

This mode is especially useful for running in the cloud environments where you don't want to setup a shared filesystem
between the worker nodes. Running in that mode is explained in detail here.

Tip

Set p egasus.data.configuration to condorio to run in this configuration. In this mode, the staging site is
automatically set to site local

In this setup, Pegasus always stages the input files through the submit host i.e the stage-in job stages in data from the
input site to the submit host (local site). The input data is then transferred to remote worker nodes from the submit
host using Condor file transfers. In the case, where the input data is locally accessible at the submit host i.e the input
site and the submit host are the same, then it is possible to bypass the creation of separate stage in jobs that copy the
data to the workflow specific directory on the submit host. Instead, Condor file transfers can be setup to transfer the
input files directly from the locally accessible input locations (file URL's with "site" attribute set to local) specified
in the replica catalog. Starting 4.3 release, users can enable this.

Tip

Set pegasus.transfer.bypass.input.staging to trueto bypass the creation of separate stage in jobs.

Local versus Remote Transfers
As far as possible, Pegasus will ensure that the transfer jobs added to the executable workflow are executed on the
submit host. By default, Pegasus will schedule a transfer to be executed on the remote staging site only if there is no
way to execute it on the submit host. Some scenarios where transfer jobs are executed on remote sites are as follows:

• the file server specified for the staging site/compute site is a file server. In that case, Pegasus will schedule all the
stage in data movement jobs on the compute site to stage-in the input data for the workflow.

• a user has symlinking turned on. In that case, the transfer jobs that symlink against the input data on the compute
site, will be executed remotely (on the compute site).

In certain execution environments, such a local campus cluster the compute site and the local share a filesystem (i.e.
compute site has file servers specified for the staging/compute site, and the scratch and storage directories mentioned
for the compute site are locally mounted on the submit host), it is beneficial to have the remote transfer jobs run locally
and hence bypass going through the local scheduler queue. In that case, users can set a boolean profile auxillary.local
in pegasus namespace in the site catalog for the compute/staging site to true.

Users can specify the property pegasus.transfer.*.remote.sites to change the default behaviour of Pegasus and force
pegasus to run different types of transfer jobs for the sites specified on the remote site. The value of the property is a
comma separated list of compute sites for which you want the transfer jobs to run remotely.

The table below illustrates all the possible variations of the property.

Table 10.1. Property Variations for pegasus.transfer.*.remote.sites

Property Name Applies to

pegasus.transfer.stagein.remote.sites the stage in transfer jobs

160

Data Management

Property Name Applies to

pegasus.transfer.stageout.remote.sites the stage out transfer jobs

pegasus.transfer.inter.remote.sites the inter site transfer jobs

pegasus.transfer.*.remote.sites all types of transfer jobs

The prefix for the transfer job name indicates whether the transfer job is to be executed locallly (on the submit host)
or remotely (on the compute site). For example stage_in_local_ in a transfer job name stage_in_local_isi_viz_0
indicates that the transfer job is a stage in transfer job that is executed locally and is used to transfer input data to
compute site isi_viz. The prefix naming scheme for the transfer jobs is [stage_in|stage_out|inter]_[local|remote]_ .

Controlling Transfer Parallelism
When it comes to data transfers, Pegasus ships with a default configuration which is trying to strike a balance between
performance and aggressiveness. We obviously want data transfers to be as quick as possibly, but we also do not want
our transfers to overwhelm data services and systems.

Starting 4.8.0 release, the default configuration of Pegasus now adds transfer jobs and cleanup jobs based on the
number of jobs at a particular level of the workflow. For example, for every 10 compute jobs on a level of a workflow,
one data transfer job(stage-in and stage-out) is created. The default configuration also sets how many threads such a
pegasus-transfer job can spawn. Cleanup jobs are similarly constructed with an internal ratio of 5.

Information on how to control the number of stagein and stageout jobs can be found in the Data Movement Nodes
section.

How to control the number of threads pegasus-transfer can use depends on if you want to control standard transfer
jobs, or PegasusLite. For the former, see the pegasus.transfer.threads property, and for the latter the pegasus.trans-
fer.lite.threads property.

Symlinking Against Input Data
If input data for a job already exists on a compute site, then it is possible for Pegasus to symlink against that data.
In this case, the remote stage in transfer jobs that Pegasus adds to the executable workflow will symlink instead of
doing a copy of the data.

Pegasus determines whether a file is on the same site as the compute site, by inspecting the "site" attribute associated
with the URL in the Replica Catalog. If the "site" attribute of an input file location matches the compute site where
the job is scheduled, then that particular input file is a candidate for symlinking.

For Pegasus to symlink against existing input data on a compute site, following must be true

1. Property pegasus.transfer.links is set to true

2. The input file location in the Replica Catalog has the "site" attribute matching the compute site.

Tip

To confirm if a particular input file is symlinked instead of being copied, look for the destination URL for
that file in stage_in_remote*.in file. The destination URL will start with symlink:// .

In the symlinking case, Pegasus strips out URL prefix from a URL and replaces it with a file URL.

For example if a user has the following URL catalogued in the Replica Catalog for an input file f.input

f.input gsiftp://server.isi.edu/shared/storage/input/data/f.input site="isi"

and the compute job that requires this file executes on a compute site named isi , then if symlinking is turned on the
data stage in job (stage_in_remote_viz_0) will have the following source and destination specified for the file

#viz viz
file:///shared/storage/input/data/f.input symlink://shared-scratch/workflow-exec-dir/f.input

161

Data Management

Addition of Separate Data Movement Nodes to Executable
Workflow

Pegasus relies on a Transfer Refiner that comes up with the strategy on how many data movement nodes are added
to the executable workflow. All the compute jobs scheduled to a site share the same workflow specific directory. The
transfer refiners ensure that only one copy of the input data is transferred to the workflow execution directory. This
is to prevent data clobbering . Data clobbering can occur when compute jobs of a workflow share some input files,
and have different stage in transfer jobs associated with them that are staging the shared files to the same destination
workflow execution directory.

Pegasus supports three different transfer refiners that dictate how the stagein and stageout jobs are added for the
workflow.The default Transfer Refiner used in Pegasus is the BalancedCluster Refiner. Starting 4.8.0 release, the
default configuration of Pegasus now adds transfer jobs and cleanup jobs based on the number of jobs at a particular
level of the workflow. For example, for every 10 compute jobs on a level of a workflow, one data transfer job(stage-
in and stage-out) is created.

The transfer refiners also allow the user to specify how many local|remote stagein|stageout jobs are created per exe-
cution site.

The behavior of the refiners (BalancedCluster and Cluster) are controlled by specifying certain pegasus profiles

1. either with the execution sites in the site catalog

2. OR globally in the properties file

Table 10.2. Pegasus Profile Keys For the Cluster Transfer Refiner

Profile Key Description

stagein.clusters This key determines the maximum number of stage-in
jobs that are can executed locally or remotely per compute
site per workflow.

stagein.local.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.

stagein.remote.clusters This key provides finer grained control in determining the
number of stage-in jobs that are executed remotely on the
remote site and are responsible for staging data to it.

stageout.clusters This key determines the maximum number of stage-out
jobs that are can executed locally or remotely per compute
site per workflow.

stageout.local.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed locally and are
responsible for staging data from a particular remote site.

stageout.remote.clusters This key provides finer grained control in determining the
number of stage-out jobs that are executed remotely on the
remote site and are responsible for staging data from it.

Tip

Which transfer refiner to use is controlled by property pegasus.transfer.refiner

BalancedCluster

This is a new transfer refiner that was introduced in Pegasus 4.4.0 and is the default one used in Pegasus. It does a
round robin distribution of the files amongst the stagein and stageout jobs per level of the workflow. The figure below
illustrates the behavior of this transfer refiner.

162

Data Management

Figure 10.4. BalancedCluster Transfer Refiner : Input Data To Workflow Specific Directory
on Shared File System

Cluster

This transfer refiner is similar to BalancedCluster but differs in the way how distribution of files happen across stagein
and stageout jobs per level of the workflow. In this refiner, all the input files for a job get associated with a single
transfer job. As illustrated in the figure below each compute usually gets associated with one stagein transfer job. In
contrast, for the BalancedCluster a compute job maybe associated with multiple data stagein jobs.

163

Data Management

Figure 10.5. Cluster Transfer Refiner : Input Data To Workflow Specific Directory on
Shared File System

Basic

Pegasus also supports a basic Transfer Refiner that adds one stagein and stageout job per compute job of the workflow.
This is not recommended to be used for large workflows as the number of data transfer nodes in the worst case are
2n where n is the number of compute jobs in the workflow.

Executable Used for Transfer and Cleanup Jobs
Pegasus refers to a python script called pegasus-transfer as the executable in the transfer jobs to transfer the data.
pegasus-transfer looks at source and destination url and figures out automatically which underlying client to use.
pegasus-transfer is distributed with the PEGASUS and can be found at $PEGASUS_HOME/bin/pegasus-transfer.

Currently, pegasus-transfer interfaces with the following transfer clients

Table 10.3. Transfer Clients interfaced to by pegasus-transfer

Transfer Client Used For

gfal-copy staging file to and from GridFTP servers

globus-url-copy staging files to and from GridFTP servers, only if gfal is
not detected in the path.

gfal-copy staging files to and from SRM or XRootD servers

wget staging files from a HTTP server

cp copying files from a POSIX filesystem

ln symlinking against input files

pegasus-s3 staging files to and from S3 buckets in Amazon Web Ser-
vices

164

Data Management

Transfer Client Used For

gsutil staging files to and from Google Storage buckets

scp staging files using scp

gsiscp staging files using gsiscp and X509

iget staging files to and from iRODS servers

For remote sites, Pegasus constructs the default path to pegasus-transfer on the basis of PEGASUS_HOME env profile
specified in the site catalog. To specify a different path to the pegasus-transfer client , users can add an entry into the
transformation catalog with fully qualified logical name as pegasus::pegasus-transfer

Preference of GFAL over GUC

JGlobus is no longer actively supported and is not in compliance with RFC 2818 [https://docs.globus.org/security-bul-
letins/2015-12-strict-mode] . As a result cleanup jobs using pegasus-gridftp client would fail against the servers sup-
porting the strict mode. We have removed the pegasus-gridftp client and now use gfal clients as globus-url-copy does
not support removes. If gfal is not available, globus-url-copy is used for cleanup by writing out zero bytes files instead
of removing them.

If you want to force globus-url-copy to be preferred over GFAL, set the PEGASUS_FORCE_GUC=1 environment
variable in the site catalog for the sites you want the preference to be enforced. Please note that we expect globus-
url-copy support to be completely removed in future releases of Pegasus due to the end of life of Globus Toolkit (see
announcement [https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018]).

Staging of Executables
Users can get Pegasus to stage the user executables (executables that the jobs in the DAX refer to) as part of the transfer
jobs to the workflow specific execution directory on the compute site. The URL locations of the executables need to
be specified in the transformation catalog as the PFN and the type of executable needs to be set to STAGEABLE .

The location of a transformation can be specified either in

• DAX in the executables section. More details here .

• Transformation Catalog. More details here .

A particular transformation catalog entry of type STAGEABLE is compatible with a compute site only if all the
System Information attributes associated with the entry match with the System Information attributes for the compute
site in the Site Catalog. The following attributes make up the System Information attributes

1. arch

2. os

3. osrelease

4. osversion

Transformation Mappers

Pegasus has a notion of transformation mappers that determines what type of executables are picked up when a job
is executed on a remote compute site. For transfer of executables, Pegasus constructs a soft state map that resides
on top of the transformation catalog, that helps in determining the locations from where an executable can be staged
to the remote site.

Users can specify the following property to pick up a specific transformation mapper

pegasus.catalog.transformation.mapper

Currently, the following transformation mappers are supported.

165

https://docs.globus.org/security-bulletins/2015-12-strict-mode
https://docs.globus.org/security-bulletins/2015-12-strict-mode
https://docs.globus.org/security-bulletins/2015-12-strict-mode
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018
https://www.globus.org/blog/support-open-source-globus-toolkit-ends-january-2018

Data Management

Table 10.4. Transformation Mappers Supported in Pegasus

Transformation Mapper Description

Installed This mapper only relies on transformation catalog entries
that are of type INSTALLED to construct the soft state
map. This results in Pegasus never doing any transfer of
executables as part of the workflow. It always prefers the
installed executables at the remote sites

Staged This mapper only relies on matching transformation cata-
log entries that are of type STAGEABLE to construct the
soft state map. This results in the executable workflow re-
ferring only to the staged executables, irrespective of the
fact that the executables are already installed at the remote
end

All This mapper relies on all matching transformation catalog
entries of type STAGEABLE or INSTALLED for a par-
ticular transformation as valid sources for the transfer of
executables. This the most general mode, and results in
the constructing the map as a result of the cartesian prod-
uct of the matches.

Submit This mapper only on matching transformation catalog en-
tries that are of type STAGEABLE and reside at the sub-
mit host (site local), are used while constructing the soft
state map. This is especially helpful, when the user wants
to use the latest compute code for his computations on the
grid and that relies on his submit host.

Staging of Worker Package
The worker package contains runtime tools such as pegasus-kickstart and pegasus-transfer, and is required to be
available for most jobs.

How the package is made available to the jobs depends on multiple factors. For example, a pre-installed Pegasus can
be used if the location is set using the environment profile PEGASUS_HOME for the site in the Site Catalog.

If Pegasus is not already available on the execution site, the worker package can be staged by setting the following
property:

pegasus.transfer.worker.package true

Note that how the package is transferred and accessed differs based on the configured data management mode:

• sharedfs mode: the package is staged in to the shared filesystem once, and reused for all the jobs

• nonsharedfs or condorio mode: each job carries a worker package. This is obviously less efficient, but the size of
the worker package is kept small to minimize the impact of these extra transfers.

Which worker package is used is determined in the following order:

• There is an entry for pegasus::worker executable in the transformation catalog. Information on how to construct
that entry is provided below.

• The planner at runtime creates a worker package out of the binary installation, and puts it in the submit directory.
This worker package is used if the OS and architecture of the created worker package match with remote site, or
there is an exact match with (osrelease and osversion) if specified by the user in the site catalog for the remote site.

• The worker package compatible with the remote site is available as a binary from the Pegasus download site.

• At runtime, in the nonsharedfs or condorio modes, extra checks are made to make sure the worker package matches
the Pegasus version and the OS and architecture. The reason is that these workflows might be running in an hetero-
geneous environment, and thus there is no way to know before the job starts what worker package is required. If the
runtime check fails, a worker package matching the Pegasus version, OS and architecture will be downloaded from

166

Data Management

the Pegasus download site. This behavior can be controlled with the pegasus.transfer.worker.package.autodown-
load and pegasus.transfer.worker.package.strict properties.

If you want to specify a particular worker package to use, you can specify the transformation pegasus::worker in
the transformation catalog with:

• type set to STAGEABLE

• System Information attributes of the transformation catalog entry match the System Information attributes of the
compute site.

• the PFN specified should be a remote URL that can be pulled to the compute site.

example of specifying a worker package in the transformation catalog
tr pegasus::worker {
site corbusier {
 pfn "https://download.pegasus.isi.edu/pegasus/4.8.0dev/pegasus-worker-4.8.0dev-
x86_64_macos_10.tar.gz"
 arch "x86_64"
 os "MACOSX"
 type "INSTALLED"
 }
}

Staging of Application Containers
Pegasus treats containers as other files in terms of data management. Container to be used for a job is tracked as an
input dependency that needs to be staged if it is not already there. Similar to executables, you specify the location for
your container image in the Transformation Catalog. You can specify the source URL's for containers as the following.

1. URL to a container hosted on a central hub repository

Example of a docker hub URL is docker:///rynge/montage:latest, while for singularity shub://pegasus-isi/fedo-
ra-montage

2. URL to a container image file on a file server.

• Docker - Docker supports loading of containers from a tar file, Hence, containers images can only be specified
as tar files and the extension for the filename is not important.

• Singularity - Singularity supports container images in various forms and relies on the extension in the filename
to determine what format the file is in. Pegasus supports the following extensions for singularity container images

• .img

• .tar

• .tar.gz

• .tar.bz2

• .cpio

• .cpio.gz

Singularity will fail to run the container if you don't specify the right extension , when specify the source URL
for the image.

In both the cases, Pegasus will place the container image on the staging site used for the workflow, as part of the data
stage-in nodes, using pegasus-transfer. When pulling in an image from a container hub repository, pegasus-transfer
will export the container as a tar file in case of Docker, and as .img file in case of Singularity

Symlinking

Since, Pegasus only mounts the job directory determined by PegasusLite into the application container, symlinking
of input data sets does not work. This is because the symlink in PegasusLite directory points to a source directory on

167

Data Management

the worker node, that is not mounted in the container. Hence user's jobs would fail. Hence, Pegasus will automatically
disable symlinking for jobs that use containers. The only exception being the application container itself. If you specify
a URL for the container image, the image will be symlinked if Pegasus determines that it can be.

Enabling symlinking of containers is useful, when running large workflows on a single cluster. Pegasus can pull the
image from the container repository once, and place it on the shared filesystem where it can then be symlinked from,
when the PegasusLite jobs start on the worker nodes of that cluster. In order to do this, you need to be running the
nonsharedfs data configuration mode with the staging site set to be the same as the compute site.

Staging of Job Checkpoint Files
Pegasus has support for transferring job checkpoint files back to the staging site, when a job exceeds it's advertised
running time. In order to use this feature, you need to

1. Associate a job checkpoint file (that the job creates) with the job in the DAX. A checkpoint file is specified by
setting the link attribute to checkpoint for the uses tag.

2. Associate a Pegasus profile key named checkpoint.time is the time in minutes after which a job is sent the TERM
signal by pegasus-kickstart, telling it to create the checkpoint file.

3. Associate a Pegasus profile key named maxwalltime with the job that specifies the max runtime in minutes before
the job will be killed by the local resource manager (such as PBS) deployed on the site. Usually, this value should
be associated with the execution site in the site catalog.

Pegasus planner uses the above mentioned profile keys to setup pegasus-kickstart such that the job is sent a TERM
signal when the checkpoint time of job is reached. A KILL signal is sent at (checkpoint.time + (maxwalltime-check-
point.time)/2) minutes. This ensures that there is enough time for pegasus-lite to transfer the checkpoint file before
the job is killed by the underlying scheduler.

Using Amazon S3 as a Staging Site
Pegasus can be configured to use Amazon S3 as a staging site. In this mode, Pegasus transfers workflow inputs from
the input site to S3. When a job runs, the inputs for that job are fetched from S3 to the worker node, the job is executed,
then the output files are transferred from the worker node back to S3. When the jobs are complete, Pegasus transfers
the output data from S3 to the output site.

In order to use S3, it is necessary to create a config file for the S3 transfer client, pegasus-s3. See the man page for
details on how to create the config file. You also need to specify S3 as a staging site.

Next, you need to modify your site catalog to tell the location of your s3cfg file. See the section on credential staging.

The following site catalog shows how to specify the location of the s3cfg file on the local site and how to specify
an Amazon S3 staging site:

<sitecatalog xmlns="http://pegasus.isi.edu/schema/sitecatalog"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/sitecatalog
 http://pegasus.isi.edu/schema/sc-3.0.xsd" version="3.0">
 <site handle="local" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/work"/>
 <internal-mount-point mount-point="/tmp/wf/work"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file://" mount-point="/tmp/wf/storage"/>
 <internal-mount-point mount-point="/tmp/wf/storage"/>
 </shared>
 </storage>
 </head-fs>
 <profile namespace="env" key="S3CFG">/home/username/.s3cfg</profile>
 </site>

168

Data Management

 <site handle="s3" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch>
 <shared>
 <!-- wf-scratch is the name of the S3 bucket that will be used -->
 <file-server protocol="s3" url="s3://user@amazon" mount-point="/wf-scratch"/>
 <internal-mount-point mount-point="/wf-scratch"/>
 </shared>
 </scratch>
 </head-fs>
 </site>
 <site handle="condorpool" arch="x86_64" os="LINUX">
 <head-fs>
 <scratch/>
 <storage/>
 </head-fs>
 <profile namespace="pegasus" key="style">condor</profile>
 <profile namespace="condor" key="universe">vanilla</profile>
 <profile namespace="condor" key="requirements">(Target.Arch == "X86_64")</profile>
 </site>
</sitecatalog>

iRODS data access
iRODS can be used as a input data location, a storage site for intermediate data during workflow execution, or a
location for final output data. Pegasus uses a URL notation to identify iRODS files. Example:

irods://some-host.org/path/to/file.txt

The path to the file is relative to the internal iRODS location. In the example above, the path used to refer to the
file in iRODS is path/to/file.txt (no leading /).

See the section on credential staging for information on how to set up an irodsEnv file to be used by Pegasus.

GridFTP over SSH (sshftp)
Instead of using X.509 based security, newer version of Globus GridFTP can be configured to set up transfers over
SSH. See the Globus Documentation [http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-con-
fig-security-sshftp] for details on installing and setting up this feature.

Pegasus requires the ability to specify which SSH key to be used at runtime, and thus a small modification is neces-
sary to the default Globus configuration. On the hosts where Pegasus initiates transfers (which depends on the data
configuration of the workflow), please replace gridftp-ssh, usually located under /usr/share/globus/gridftp-ssh, with:

#!/bin/bash

url_string=$1
remote_host=$2
port=$3
user=$4

port_str=""
if ["X" = "X$port"]; then
 port_str=""
else
 port_str=" -p $port "
fi

if ["X" != "X$user"]; then
 remote_host="$user@$remote_host"
fi

remote_default1=.globus/sshftp
remote_default2=/etc/grid-security/sshftp
remote_fail="echo -e 500 Server is not configured for SSHFTP connections.\\\r\\\n"
remote_program=$GLOBUS_REMOTE_SSHFTP
if ["X" = "X$remote_program"]; then
 remote_program="((test -f $remote_default1 && $remote_default1) || (test -f $remote_default2
 && $remote_default2) || $remote_fail)"
fi

169

http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp
http://toolkit.globus.org/toolkit/docs/6.0/gridftp/admin/#gridftp-admin-config-security-sshftp

Data Management

if ["X" != "X$GLOBUS_SSHFTP_PRINT_ON_CONNECT"]; then
 echo "Connecting to $1 ..." >/dev/tty
fi

for pegasus-transfer
extra_opts=" -o StrictHostKeyChecking=no"
if ["x$SSH_PRIVATE_KEY" != "x"]; then
 extra_opts="$extra_opts -i $SSH_PRIVATE_KEY"
fi

exec /usr/bin/ssh $extra_opts $port_str $remote_host $remote_program

Once configured, you should be able to use URLs such as sshftp://username@host/foo/bar.txt in your workflows.

Globus Online
Globus Online [http://globus.org] is a transfer service with features such as policy based connection management and
automatic failure detection and recovery. Pegasus has limited the support for Globus Online transfers.

If you want to use Globus Online in your workflow, all data has to be accessible via a Globus Online endpoint. You
can not mix Globus Online endpoints with other protocols. For most users, this means they will have to create an
endpoint for their submit host and probably modify both the replica catalog and DAX generator so that all URLs in
the workflow are for Globus Online endpoints.

There are two levels of credentials required. One is for the workflow to use the Globus Online API, which is handled
by OAuth tokens, provided by Globus Auth service. The second level is for the endpoints, which the user will have
to manage via the Globus Online web interface. The required steps are:

1. Using pegasus-globus-online-init, provide authorization to Pegasus and retrieve your transfer access tokens. By
default Pegasus acquires temporary tokens that expire within a few days. Using --permanent option you can request
refreshable tokens that last indefinetely (or until access is revoked).

2. In the Globus Online web interface, under Endpoints, find the endpoints you need for the workflow, and activate
them. Note that you should activate them for the whole duration of the workflow or you will have to regularly log
in and re-activate the endpoints during workflow execution.

URLs for Globus Online endpoint data follows the following scheme: go://[endpoint]/[path]. For example, for a user
with the Globus Online private endpoint bob#researchdata and a file /home/bsmith/experiment/1.dat, the URL would
be: go://bob#researchdata/home/bsmith/experiment/1.dat

Credentials Management
Pegasus tries to do data staging from localhost by default, but some data scenarios makes some remote jobs do data
staging. An example of such a case is when running in nonsharedfs mode. Depending on the transfer protocols used,
the job may have to carry credentials to enable these data transfers. To specify where which credential to use and where
Pegasus can find it, use environment variable profiles in your site catalog. The supported credential types are X.509
grid proxies, Amazon AWS S3 keys, Google Cloud Platform OAuth token (.boto file), iRods password and SSH keys.

Credentials are usually associated per site in the site catalog. Users can associate the credentials either as a Pegasus
profile or an environment profile with the site.

1. A pegasus profile with the value pointing to the path to the credential on the local site or the submit host. If a pegasus
credential profile associated with the site, then Pegasus automatically transfers it along with the remote jobs.

2. A env profile with the value pointing to the path to the credential on the remote site. If an env profile is specified,
then no credential is transferred along with the job. Instead the job's environment is set to ensure that the job picks
up the path to the credential on the remote site.

Tip

Specifying credentials as Pegasus profiles was introduced in 4.4.0 release.

170

http://globus.org
http://globus.org

Data Management

In case of data transfer jobs, it is possible to associate different credentials for a single file transfer (one for the source
server and the other for the destination server) . For example, when leveraging GridFTP transfers between two sides
that accept different grid credentials such as XSEDE Stampede site and NCSA Bluewaters. In that case, Pegasus picks
up the associated credentials from the site catalog entries for the source and the destination sites associated with the
transfer.

X.509 Grid Proxies
If the grid proxy is required by transfer jobs, and the proxy is in the standard location, Pegasus will pick the proxy up
automatically. For non-standard proxy locations, you can use the X509_USER_PROXY environment variable. Site
catalog example:

<profile namespace="pegasus" key="X509_USER_PROXY" >/some/location/x509up</profile>

Amazon AWS S3
If a workflow is using s3 URLs, Pegasus has to be told where to find the .s3cfg file. This format of the file is described
in the pegaus-s3 command line client's man page. For the file to be picked up by the workflow, set the S3CFG profile
to the location of the file. Site catalog example:

<profile namespace="pegasus" pegasus="S3CFG" >/home/user/.s3cfg</profile>

Google Storage
If a workflow is using gs:// URLs, Pegasus needs access to a Google Storage service account. First generate the
credential by following the instructions at:

https://cloud.google.com/storage/docs/authentication#service_accounts

Download the credential in PKCS12 format, and then use "gsutil config -e" to generate a .boto file. For example:

$ gsutil config -e
This command will create a boto config file at /home/username/.boto
containing your credentials, based on your responses to the following
questions.
What is your service account email address? some-identifier@developer.gserviceaccount.com
What is the full path to your private key file? /home/username/my-cred.p12
What is the password for your service key file [if you haven't set one
explicitly, leave this line blank]?

Please navigate your browser to https://cloud.google.com/console#/project,
then find the project you will use, and copy the Project ID string from the
second column. Older projects do not have Project ID strings. For such projects,
click the project and then copy the Project Number listed under that project.

What is your project-id? your-project-id

Boto config file "/home/username/.boto" created. If you need to use a
proxy to access the Internet please see the instructions in that file.

Pegasus has to be told where to find both the .boto file as well as the PKCS12 file. For the files to be picked up by the
workflow, set the BOTO_CONFIG and GOOGLE_PKCS12 profiles for the storage site. Site catalog example:

<profile namespace="pegasus" key="BOTO_CONFIG" >/home/user/.boto</profile>
<profile namespace="pegasus" key="GOOGLE_PKCS12" >/home/user/.google-service-account.p12</profile>

iRods Password
If a workflow is using iRods URLs, Pegasus has to be given an irodsEnv file. It is a standard file, with the addtion
of an password attribute. Example when using iRods 3.X:

iRODS personal configuration file.
#
iRODS server host name:

171

https://cloud.google.com/storage/docs/authentication#service_accounts

Data Management

irodsHost 'some.host.edu'
iRODS server port number:
irodsPort 1259

Account name:
irodsUserName 'someuser'
Zone:
irodsZone 'somezone'

this is used with Pegasus
irodsPassword 'somesecretpassword'

iRods 4.0 switched to a JSON based configuration file. Pegasus can handle either config file. JSON Example:

{
 "irods_host": "some.host.edu",
 "irods_port": 1247,
 "irods_user_name": "someuser",
 "irods_zone_name": "somezone",
 "irodsPassword" : "somesecretpassword"
}

The location of the file can be given to the workflow using the irodsEnvFile environment profile. Site catalog
example:

<profile namespace="pegasus" key="irodsEnvFile" >/home/user/.irods/.irodsEnv</profile>

SSH Keys
New in Pegasus 4.0 is the support for data staging with scp using ssh public/private key authentication. In this mode,
Pegasus transports a private key with the jobs. The storage machines will have to have the public part of the key listed
in ~/.ssh/authorized_keys.

Warning

SSH keys should be handled in a secure manner. In order to keep your personal ssh keys secure, It is rec-
ommended that a special set of keys are created for use with the workflow. Note that Pegasus will not pick
up ssh keys automatically. The user will have to specify which key to use with SSH_PRIVATE_KEY.

The location of the ssh private key can be specified with the SSH_PRIVATE_KEY environment profile. Site catalog
example:

<profile namespace="pegasus" key="SSH_PRIVATE_KEY" >/home/user/wf/wfsshkey</profile>

Staging Mappers
Starting 4.7 release, Pegasus has support for staging mappers in the nonsharedfs data configuration. The staging
mappers determine what sub directory on the staging site a job will be associated with. Before, the introduction of
staging mappers, all files associated with the jobs scheduled for a particular site landed in the same directory on the
staging site. As a result, for large workflows this could degrade filesystem performance on the staging servers.

To configure the staging mapper, you need to specify the following property

pegasus.dir.staging.mapper <name of the mapper to use>

The following mappers are supported currently, with Hashed being the default .

1. Flat : This mapper results in Pegasus placing all the job submit files in the staging site directory as determined
from the Site Catalog and planner options. This can result in too many files in one directory for large workflows,
and was the only option before Pegasus 4.7.0 release.

2. Hashed : This mapper results in the creation of a deep directory structure rooted at the staging site directory created
by the create dir jobs. The binning is at the job level, and not at the file level i.e each job will push out it's outputs
to the same directory on the staging site, independent of the number of output files. To control behavior of this
mapper, users can specify the following properties

172

Data Management

pegasus.dir.staging.mapper.hashed.levels the number of directory levels used to accomodate
 the files. Defaults to 2.
pegasus.dir.staging.mapper.hashed.multiplier the number of files associated with a job in the
 submit directory. defaults to 5.

Note

The staging mappers are only triggered if pegasus.data.configuration is set to nonsharedfs

Output Mappers
Starting 4.3 release, Pegasus has support for output mappers, that allow users fine grained control over how the output
files on the output site are laid out. By default, Pegasus stages output products to the storage directory specified in
the site catalog for the output site. Output mappers allow users finer grained control over where the output files are
placed on the output site.

To configure the output mapper, you need to specify the following property

pegasus.dir.storage.mapper <name of the mapper to use>

The following mappers are supported currently

1. Flat : By default, Pegasus will place the output files in the storage directory specified in the site catalog for the
output site.

2. Fixed : This mapper allows users to specify an externally accesible url to the storage directory in their properties
file. To use this mapper, the following property needs to be set.

• pegasus.dir.storage.mapper.fixed.url an externally accessible URL to the storage directory on the output site e.g.
gsiftp://outputs.isi.edu/shared/outputs

Note: For hierarchal workflows, the above property needs to be set separately for each dax job, if you want the sub
workflow outputs to goto a different directory.

3. Hashed : This mapper results in the creation of a deep directory structure on the output site, while populating the
results. The base directory on the remote end is determined from the site catalog. Depending on the number of
files being staged to the remote site a Hashed File Structure is created that ensures that only 256 files reside in one
directory. To create this directory structure on the storage site, Pegasus relies on the directory creation feature of
the underlying file servers such as theGrid FTP server, which appeared in globus 4.0.x

4. Replica: This mapper determines the path for an output file on the output site by querying an output replica catalog.
The output site is one that is passed on the command line. The output replica catalog can be configured by specifying
the following properties.

• pegasus.dir.storage.mapper.replica Regex|File

• pegasus.dir.storage.mapper.replica.file the RC file at the backend to use

Please note that the output replica catalog (even though the formats are the same) is logically different from the
input replica catalog, where you specify the locations for the input files. You cannot specify the locations for the
output files to be used by the mapper in the DAX. The format for the File based replica catalog is described here,
while for the Regex it is here.

Effect of pegasus.dir.storage.deep
For Flat and Hashed output mappers, the base directory to which the add on component is added is determined by the
property pegasus.dir.storage.deep . The output directory on the output site is determined from the site catalog.

If pegasus.dir.storage.deep is set to true, then to this base directory, a relative directory is appended i.e. $storage_base
= $base + $relative_directory. The relative directory is computed on the basis of the --relative-dir option. If that is not
set, then defaults to the relative submit directory for the workflow (usually $user/$vogroup/$label/runxxxx).This is
the base directory that is passed to the storage mappers.

173

Data Management

Data Cleanup
When executing large workflows, users often may run out of diskspace on the remote clusters / staging site. Pegasus
provides a couple of ways of enabling automated data cleanup on the staging site (i.e the scratch space used by
the workflows). This is achieved by adding data cleanup jobs to the executable workflow that the Pegasus Mapper
generates. These cleanup jobs are responsible for removing files and directories during the workflow execution. To
enable data cleanup you can pass the --cleanup option to pegasus-plan . The value passed decides the cleanup strategy
implemented

1. none disables cleanup altogether. The planner does not add any cleanup jobs in the executable workflow what-
soever.

2. leaf the planner adds a leaf cleanup node per staging site that removes the directory created by the create dir job
in the workflow

3. inplace the mapper adds cleanup nodes per level of the workflow in addition to leaf cleanup nodes. The nodes
remove files no longer required during execution. For example, an added cleanup node will remove input files
for a particular compute job after the job has finished successfully. Starting 4.8.0 release, the number of cleanup
nodes created by this algorithm on a particular level, is dictated by the number of nodes it encounters on a level
of the workflow.

4. constraint the mapper adds cleanup nodes to constraint the amount of storage space used by a workflow, in addi-
tion to leaf cleanup nodes. The nodes remove files no longer required during execution. The added cleanup node
guarantees limits on disk usage. File sizes are read from the size flag in the DAX, or from a CSV file (pega-
sus.file.cleanup.constraint.csv).

Note

For large workflows with lots of files, the inplace strategy may take a long time as the algorithm works at
a per file level to figure out when it is safe to remove a file.

Behaviour of the cleanup strategies implemented in the Pegasus Mapper can be controlled by properties described here.

Data Cleanup in Hierarchal Workflows
By default, for hierarchal workflows the inplace cleanup is always turned off. This is because the cleanup algorithm
(InPlace) does not work across the sub workflows. For example, if you have two DAX jobs in your top level workflow
and the child DAX job refers to a file generated during the execution of the parent DAX job, the InPlace cleanup
algorithm when applied to the parent dax job will result in the file being deleted, when the sub workflow corresponding
to parent DAX job is executed. This would result in failure of sub workflow corresponding to the child DAX job, as
the file deleted is required to present during it's execution.

In case there are no data dependencies across the dax jobs, then yes you can enable the InPlace algorithm for the sub
dax’es . To do this you can set the property

• pegasus.file.cleanup.scope deferred

This will result in cleanup option to be picked up from the arguments for the DAX job in the top level DAX .

Metadata
Pegasus allows users to associate metadata at

• Workflow Level in the DAX

• Task level in the DAX and the Transformation Catalog

• File level in the DAX and Replica Catalog

Metadata is specified as a key value tuple, where both key and values are of type String.

174

Data Management

All the metadata (user specified and auto-generated) gets populated into the workflow database (usually in the work-
flow submit directory) by pegasus-monitord. The metadata in this database can be be queried for using the pega-
sus-metadata command line tool, or is also shown in the Pegasus Dashboard.

Metadata in the DAX
In the DAX, metadata can be associated with the workflow, tasks, files and executables. For details on how to associate
metadata in the DAX using the DAX API refer to the DAX API chapter. Below is an example DAX that illustrates
metadata associations at workflow, task and file level.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

<!-- Section 1: Metadata attributes for the workflow (can be empty) -->

 <metadata key="name">diamond</metadata>
 <metadata key="createdBy">Karan Vahi</metadata>

<!-- Section 2: Invokes - Adds notifications for a workflow (can be empty) -->

 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>

<!-- Section 3: Files - Acts as a Replica Catalog (can be empty) -->

 <file name="f.a">
 <metadata key="size">1024</metadata>
 <pfn url="file:///Volumes/Work/lfs1/work/pegasus-features/PM-902/f.a" site="local"/>
 </file>

<!-- Section 4: Executables - Acts as a Transformaton Catalog (can be empty) -->

 <executable namespace="pegasus" name="preprocess" version="4.0" installed="true" arch="x86"
 os="linux">
 <metadata key="size">2048</metadata>
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>
 <executable namespace="pegasus" name="findrange" version="4.0" installed="true" arch="x86"
 os="linux">
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>
 <executable namespace="pegasus" name="analyze" version="4.0" installed="true" arch="x86"
 os="linux">
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>

<!-- Section 5: Transformations - Aggregates executables and Files (can be empty) -->

<!-- Section 6: Job's, DAX's or Dag's - Defines a JOB or DAX or DAG (Atleast 1 required) -->

 <job id="j1" namespace="pegasus" name="preprocess" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a preprocess -T 60 -i <file name="f.a"/> -o <file name="f.b1"/> <file
 name="f.b2"/></argument>
 <uses name="f.a" link="input">
 <metadata key="size">1024</metadata>
 </uses>
 <uses name="f.b1" link="output" transfer="true" register="true"/>
 <uses name="f.b2" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>
 <job id="j2" namespace="pegasus" name="findrange" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a findrange -T 60 -i <file name="f.b1"/> -o <file name="f.c1"/></argument>
 <uses name="f.b1" link="input"/>
 <uses name="f.c1" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>

175

Data Management

 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>
 <job id="j3" namespace="pegasus" name="findrange" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a findrange -T 60 -i <file name="f.b2"/> -o <file name="f.c2"/></argument>
 <uses name="f.b2" link="input"/>
 <uses name="f.c2" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>
 <job id="j4" namespace="pegasus" name="analyze" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a analyze -T 60 -i <file name="f.c1"/> <file name="f.c2"/> -o <file name="f.d"/
></argument>
 <uses name="f.c1" link="input"/>
 <uses name="f.c2" link="input"/>
 <uses name="f.d" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>

<!-- Section 7: Dependencies - Parent Child relationships (can be empty) -->

 <child ref="j2">
 <parent ref="j1"/>
 </child>
 <child ref="j3">
 <parent ref="j1"/>
 </child>
 <child ref="j4">
 <parent ref="j2"/>
 <parent ref="j3"/>
 </child>
</adag>

Workflow Level Metadata
Workflow level metadata can be associated only in the DAX under the root element adag. Below is a snippet that
illustrates this

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

<!-- Section 1: Metadata attributes for the workflow (can be empty) -->

 <metadata key="name">diamond</metadata>
 <metadata key="createdBy">Karan Vahi</metadata>

...

</adag>

Task Level Metadata
Metadata for the tasks is picked up from

• metadata associated with the job element in the DAX

• metadata associated with the corresponding transformation. The transformation for a task is picked up from either
a matching executable entry in the DAX (if exists) or the Transformation Catalog.

Below is a snippet that illustrates metadata for a task specified in the job element in the DAX

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

176

Data Management

...
 <job id="j2" namespace="pegasus" name="findrange" version="4.0">
 <metadata key="time">60</metadata>
 <argument>-a findrange -T 60 -i <file name="f.b1"/> -o <file name="f.c1"/></argument>
 <uses name="f.b1" link="input"/>
 <uses name="f.c1" link="output" transfer="true" register="true"/>
 <invoke when="start">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 <invoke when="at_end">/pegasus/libexec/notification/email -t notify@example.com</invoke>
 </job>

...

</adag>

Below is a snippet that illustrates metadata for a task specified in the executable element in the DAX

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

...
 <!-- Section 4: Executables - Acts as a Transformaton Catalog (can be empty) -->

 <executable namespace="pegasus" name="findrange" version="4.0" installed="true" arch="x86"
 os="linux">
 <metadata key="size">2048</metadata>
 <pfn url="file:///usr/bin/keg" site="TestCluster"/>
 </executable>

...

</adag>

Metadata can be associated with the transformation in the transformation catalog. The metadata specified in the trans-
formation catalog gets automatically associated with the task level metadata for the corresponding task (that uses that
executable). This resolution is similar to how profiles associated in the Transformation Catalog get associated with
the tasks. Below is an example Transformation Catalog that illustrates metadata associated with the executables.

tr pegasus::findrange:4.0 {
 site TestCluster {
 pfn "/usr/bin/pegasus-keg"
 arch "x86_64"
 os "linux"
 type "INSTALLED"
 profile pegasus "clusters.size" "20"
 metadata "key" "value"
 metadata "appmodel" "myxform.aspen"
 metadata "version" "3.0"
 }
}

File Level Metadata
Metadata for the files is picked up from

• metadata associated with the file element in the DAX. File elements are optionally used to record the locations of
input files for the workflow in the DAX.

• metadata associated with the files in the uses section of the job element in the DAX

• metadata associated with the file in the Replica Catalog.

Below is a snippet that illustrates metadata for a file specified in the file element in the DAX

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

177

Data Management

...
 <!-- Section 3: Files - Acts as a Replica Catalog (can be empty) -->

 <file name="f.a">
 <metadata key="size">1024</metadata>
 <pfn url="file:///Volumes/Work/lfs1/work/pegasus-features/PM-902/f.a" site="local"/>
 </file>

...

</adag>

Below is a snippet that illustrates metadata for a file in the uses section of the job element

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated on: 2016-01-21T10:36:39-08:00 -->
<!-- generated by: vahi [??] -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd" version="3.6" name="diamond" index="0" count="1">

...
 <job id="j1" namespace="pegasus" name="preprocess" version="4.0">
 <argument>-a preprocess -T 60 -i <file name="f.a"/> -o <file name="f.b1"/> <file
 name="f.b2"/></argument>
 <uses name="f.a" link="input">
 <metadata key="size">1024</metadata>
 <metadata key="source">DAX</metadata>
 </uses>
 <uses name="f.b1" link="output" transfer="true" register="true"/>
 <uses name="f.b2" link="output" transfer="true" register="true"/>
 </job>

...

</adag>

Below is a snippet that illustrates metadata for an input file in the Replica Catalog entry for the file

File Based Replica Catalog
f.a file://$PWD/production_200.conf site="local" source="replica_catalog"

Automatically Generated Metadata attributes
Pegasus captures certain metadata attributes as output files are generated and associates them at the file level in the
database. Currently, the following attributes for the output files are automatically captured from the kickstart record
and stored in the workflow database.

• pfn - the physical file location

• ctime - creation time

• size - size of the file in bytes

• user - the linux user as who the process ran that generated the output file.

Note

The automatic collection of the metadata attributes for output files is only triggered if the output file is
marked to be registered in the replica catalog, and --output-site option to pegasus-plan is specified.

Tracing Metadata for an output file
The command line client pegasus-metadata allows a user to trace all the metadata associated with the file. The client
will display metadata for the output file, the task that generated the file, the workflow which contains the task, and the
root workflow which contains the task. Below is a sample illustration of it.

$ pegasus-metadata file --file-name f.d --trace /path/to/submit-dir

178

Data Management

Workflow 493dda63-c6d0-4e62-bc36-26e5629449ad
 createdby : Test user
 name : diamond

Task ID0000004
 size : 2048
 time : 60
 transformation : analyze

File f.d
 ctime : 2016-01-20T19:02:14-08:00
 final_output : true
 size : 582
 user : bamboo

179

Chapter 11. Optimizing Workflows for
Efficiency and Scalability

By default, Pegasus generates workflows which targets the most common usecases and execution environments. For
more specialized environments or workflows, the following sections can provide hints on how to optimize your work-
flow to scale better, and run more efficient. Below are some common issues and solutions.

Optimizing Short Jobs / Scheduling Delays
Issue: Even though HTCondor is a high throughput system, there are overheads when scheduling short jobs. Common
overheads include scheduling, data transfers, state notifications, and task book keeping. These overheads can be very
noticeable for short jobs, but not noticeable at all for longer jobs as the ration between the computation and the
overhead is higher.

Solution: If you have many short tasks to run, the solution to minimize the overheads is to use task clustering. This
instructs Pegasus to take a set of tasks, selected horizontally, by labels, or by runtime, and create jobs containing that
whole set of tasks. The result is more efficient jobs, for wich the overheads are less noticeable.

Job Clustering
A large number of workflows executed through the Pegasus Workflow Management System, are composed of several
jobs that run for only a few seconds or so. The overhead of running any job on the grid is usually 60 seconds or more.
Hence, it makes sense to cluster small independent jobs into a larger job. This is done while mapping an abstract
workflow to an executable workflow. Site specific or transformation specific criteria are taken into consideration while
clustering smaller jobs into a larger job in the executable workflow. The user is allowed to control the granularity of
this clustering on a per transformation per site basis.

Overview

The abstract workflow is mapped onto the various sites by the Site Selector. This semi executable workflow is then
passed to the clustering module. The clustering of the workflow can be either be

• level based horizontal clustering - where you can denote how many jobs get clustered into a single clustered job
per level, or how many clustered jobs should be created per level of the workflow

• level based runtime clustering - similar to horizontal clustering , but while creating the clusters per level take into
account the job runtimes.

• label based (label clustering)

The clustering module clusters the jobs into larger/clustered jobs, that can then be executed on the remote sites. The
execution can either be sequential on a single node or on multiple nodes using MPI. To specify which clustering
technique to use the user has to pass the --cluster option to pegasus-plan .

Generating Clustered Executable Workflow

The clustering of a workflow is activated by passing the --cluster|-C option to pegasus-plan. The clustering granu-
larity of a particular logical transformation on a particular site is dependant upon the clustering techniques being used.
The executable that is used for running the clustered job on a particular site is determined as explained in section 7.

#Running pegasus-plan to generate clustered workflows

$ pegasus-plan --dax example.dax --dir ./dags -p siteX --output local
 --cluster [comma separated list of clustering techniques] -verbose

180

Optimizing Workflows for
Efficiency and Scalability

Valid clustering techniques are horizontal and label.

The naming convention of submit files of the clustered jobs is merge_NAME_IDX.sub . The NAME is derived from
the logical transformation name. The IDX is an integer number between 1 and the total number of jobs in a cluster.
Each of the submit files has a corresponding input file, following the naming convention merge_NAME_IDX.in . The
input file contains the respective execution targets and the arguments for each of the jobs that make up the clustered job.

Horizontal Clustering

In case of horizontal clustering, each job in the workflow is associated with a level. The levels of the workflow are
determined by doing a modified Breadth First Traversal of the workflow starting from the root nodes. The level
associated with a node, is the furthest distance of it from the root node instead of it being the shortest distance as in
normal BFS. For each level the jobs are grouped by the site on which they have been scheduled by the Site Selector.
Only jobs of same type (txnamespace, txname, txversion) can be clustered into a larger job. To use horizontal clustering
the user needs to set the --cluster option of pegasus-plan to horizontal .

Controlling Clustering Granularity

The number of jobs that have to be clustered into a single large job, is determined by the value of two parameters
associated with the smaller jobs. Both these parameters are specified by the use of a PEGASUS namespace profile
keys. The keys can be specified at any of the placeholders for the profiles (abstract transformation in the DAX, site
in the site catalog, transformation in the transformation catalog). The normal overloading semantics apply i.e. profile
in transformation catalog overrides the one in the site catalog and that in turn overrides the one in the DAX. The two
parameters are described below.

• clusters.size factor

The clusters.size factor denotes how many jobs need to be merged into a single clustered job. It is specified via
the use of a PEGASUS namespace profile key 'clusters.size'. for e.g. if at a particular level, say 4 jobs referring to
logical transformation B have been scheduled to a siteX. The clusters.size factor associated with job B for siteX is
say 3. This will result in 2 clustered jobs, one composed of 3 jobs and another of 2 jobs. The clusters.size factor
can be specified in the transformation catalog as follows

multiple line text-based transformation catalog: 2014-09-30T16:05:01.731-07:00
tr B {
 site siteX {
 profile pegasus "clusters.size" "3"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr C {
 site siteX {
 profile pegasus "clusters.size" "2"
 pfn "/shared/PEGASUS/bin/jobC"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

181

Optimizing Workflows for
Efficiency and Scalability

Figure 11.1. Clustering by clusters.size

• clusters.num factor

The clusters.num factor denotes how many clustered jobs does the user want to see per level per site. It is specified
via the use of a PEGASUS namespace profile key 'clusters.num'. for e.g. if at a particular level, say 4 jobs referring
to logical transformation B have been scheduled to a siteX. The 'clusters.num' factor associated with job B for siteX
is say 3. This will result in 3 clustered jobs, one composed of 2 jobs and others of a single job each. The clusters.num
factor in the transformation catalog can be specified as follows

multiple line text-based transformation catalog: 2014-09-30T16:06:23.397-07:00
tr B {
 site siteX {
 profile pegasus "clusters.num" "3"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

tr C {
 site siteX {
 profile pegasus "clusters.num" "2"
 pfn "/shared/PEGASUS/bin/jobC"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }

182

Optimizing Workflows for
Efficiency and Scalability

}

In the case, where both the factors are associated with the job, the clusters.num value supersedes the clusters.size
value.

multiple line text-based transformation catalog: 2014-09-30T16:08:01.537-07:00
tr B {
 site siteX {
 profile pegasus "clusters.num" "3"
 profile pegasus "clusters.size" "3"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered on the basis
of 'clusters.num' value. Hence, if there are 4 jobs referring to logical transformation B scheduled to siteX, then 3
clustered jobs will be created.

Figure 11.2. Clustering by clusters.num

Runtime Clustering

Workflows often consist of jobs of same type, but have varying run times. Two or more instances of the same job,
with varying inputs can differ significantly in their runtimes. A simple way to think about this is running the same
program on two distinct input sets, where one input is smaller (1 MB) as compared to the other which is 10 GB in

183

Optimizing Workflows for
Efficiency and Scalability

size. In such a case the two jobs will having significantly differing run times. When such jobs are clustered using
horizontal clustering, the benefits of job clustering may be lost if all smaller jobs get clustered together, while the
larger jobs are clustered together. In such scenarios it would be beneficial to be able to cluster jobs together such that
all clustered jobs have similar runtimes.

In case of runtime clustering, jobs in the workflow are associated with a level. The levels of the workflow are deter-
mined in the same manner as in horizontal clustering. For each level the jobs are grouped by the site on which they
have been scheduled by the Site Selector. Only jobs of same type (txnamespace, txname, txversion) can be clustered
into a larger job. To use runtime clustering the user needs to set the --cluster option of pegasus-plan to horizontal,
and set the Pegasus property pegasus.clusterer.preference to Runtime.

Runtime clustering supports two modes of operation.

1. Clusters jobs together such that the clustered job's runtime does not exceed a user specified maxruntime.

Basic Algorithm of grouping jobs into clusters is as follows

// cluster.maxruntime - Is the maximum runtime for which the clustered job should run.
// j.runtime - Is the runtime of the job j.
1. Create a set of jobs of the same type (txnamespace, txname, txversion), and that run on the
 same site.
2. Sort the jobs in decreasing order of their runtime.
3. For each job j, repeat
 a. If j.runtime > cluster.maxruntime then
 ignore j.
 // Sum of runtime of jobs already in the bin + j.runtime <= cluster.maxruntime
 b. If j can be added to any existing bin (clustered job) then
 Add j to bin
 Else
 Add a new bin
 Add job j to newly added bin

The runtime of a job, and the maximum runtime for which a clustered jobs should run is determined by the value
of two parameters associated with the jobs.

• runtime

expected runtime for a job

• clusters.maxruntime

maxruntime for the clustered job i.e. Group as many jobs as possible into a cluster, as long as the clustered jobs'
runtime does not exceed clusters.maxruntime.

2. Clusters all the into a fixed number of clusters (clusters.num), such that the runtimes of the clustered jobs are similar.

Basic Algorithm of grouping jobs into clusters is as follows

// cluster.num - Is the number of clustered jobs to create.
// j.runtime - Is the runtime of the job j.
1. Create a set of jobs of the same type (txnamespace, txname, txversion), and that run on the
 same site.
2. Sort the jobs in decreasing order of their runtime.
3. Create a heap containing clusters.num number of clustered jobs.
4. For each job j, repeat
 a. Get cluster job cj, having the shortest runtime
 b. Add job j to clustered job cj

The runtime of a job, and the number of clustered jobs to create is determined by the value of two parameters
associated with the jobs.

• runtime

expected runtime for a job

• clusters.num

clusters.num factor denotes how many clustered jobs does the user want to see per level per site

184

Optimizing Workflows for
Efficiency and Scalability

Note

Users should either specify clusters.maxruntime or clusters.num. If both of them are specified, then cluster-
s.num profile will be ignored by the clustering engine.

All of these parameters are specified by the use of a PEGASUS namespace profile keys. The keys can be specified at
any of the placeholders for the profiles (abstract transformation in the DAX, site in the site catalog, transformation in
the transformation catalog). The normal overloading semantics apply i.e. profile in transformation catalog overrides
the one in the site catalog and that in turn overrides the one in the DAX. The two parameters are described below.

multiple line text-based transformation catalog: 2014-09-30T16:09:40.610-07:00
#Cluster all jobs of type B at siteX, into 2 clusters such that the 2 clusters have similar runtimes
tr B {
 site siteX {
 profile pegasus "clusters.num" "2"
 profile pegasus "runtime" "100"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

#Cluster all jobs of type C at siteX, such that the duration of the clustered job does not exceed
 300.
tr C {
 site siteX {
 profile pegasus "clusters.maxruntime" "300"
 profile pegasus "runtime" "100"
 pfn "/shared/PEGASUS/bin/jobC"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

185

Optimizing Workflows for
Efficiency and Scalability

Figure 11.3. Clustering by runtime

In the above case the jobs referring to logical transformation B scheduled on siteX will be clustered such that all
clustered jobs will run approximately for the same duration specified by the clusters.maxruntime property. In the
above case we assume all jobs referring to transformation B run for 100 seconds. For jobs with significantly differing
runtime, the runtime property will be associated with the jobs in the DAX.

In addition to the above two profiles, we need to inform pegasus-plan to use runtime clustering. This is done by setting
the following property .

 pegasus.clusterer.preference Runtime

Label Clustering

In label based clustering, the user labels the workflow. All jobs having the same label value are clustered into a single
clustered job. This allows the user to create clusters or use a clustering technique that is specific to his workflows. If
there is no label associated with the job, the job is not clustered and is executed as is

186

Optimizing Workflows for
Efficiency and Scalability

Figure 11.4. Label-based clustering

Since, the jobs in a cluster in this case are not independent, it is important the jobs are executed in the correct order.
This is done by doing a topological sort on the jobs in each cluster. To use label based clustering the user needs to
set the --cluster option of pegasus-plan to label.

Labelling the Workflow

The labels for the jobs in the workflow are specified by associated pegasus profile keys with the jobs during the DAX
generation process. The user can choose which profile key to use for labeling the workflow. By default, it is assumed
that the user is using the PEGASUS profile key label to associate the labels. To use another key, in the pegasus
namespace the user needs to set the following property

• pegasus.clusterer.label.key

For example if the user sets pegasus.clusterer.label.key to user_label then the job description in the DAX looks
as follows

<adag >
...
 <job id="ID000004" namespace="app" name="analyze" version="1.0" level="1" >
 <argument>-a bottom -T60 -i <filename file="user.f.c1"/> -o <filename file="user.f.d"/></
argument>
 <profile namespace="pegasus" key="user_label">p1</profile>
 <uses file="user.f.c1" link="input" register="true" transfer="true"/>
 <uses file="user.f.c2" link="input" register="true" transfer="true"/>
 <uses file="user.f.d" link="output" register="true" transfer="true"/>
 </job>

187

Optimizing Workflows for
Efficiency and Scalability

...
</adag>

• The above states that the pegasus profiles with key as user_label are to be used for designating clusters.

• Each job with the same value for pegasus profile key user_label appears in the same cluster.

Recursive Clustering

In some cases, a user may want to use a combination of clustering techniques. For e.g. a user may want some jobs in
the workflow to be horizontally clustered and some to be label clustered. This can be achieved by specifying a comma
separated list of clustering techniques to the --cluster option of pegasus-plan. In this case the clustering techniques
are applied one after the other on the workflow in the order specified on the command line.

For example

$ pegasus-plan --dax example.dax --dir ./dags --cluster label,horizontal -s siteX --output local --
verbose

188

Optimizing Workflows for
Efficiency and Scalability

Figure 11.5. Recursive clustering

Execution of the Clustered Job

The execution of the clustered job on the remote site, involves the execution of the smaller constituent jobs either

• sequentially on a single node of the remote site

The clustered job is executed using pegasus-cluster, a wrapper tool written in C that is distributed as part of the
PEGASUS. It takes in the jobs passed to it, and ends up executing them sequentially on a single node. To use
pegasus-cluster for executing any clustered job on a siteX, there needs to be an entry in the transformation catalog
for an executable with the logical name seqexec and namespace as pegasus.

189

Optimizing Workflows for
Efficiency and Scalability

#site transformation pfn type architecture profiles

siteX pegasus::seqexec /usr/pegasus/bin/pegasus-cluster INSTALLED INTEL32::LINUX
 NULL

If the entry is not specified, Pegasus will attempt create a default path on the basis of the environment profile
PEGASUS_HOME specified in the site catalog for the remote site.

• On multiple nodes of the remote site using MPI based task management tool called Pegasus MPI Cluster
(PMC)

The clustered job is executed using pegasus-mpi-cluster, a wrapper MPI program written in C that is distributed
as part of the PEGASUS. A PMC job consists of a single master process (this process is rank 0 in MPI parlance)
and several worker processes. These processes follow the standard master-worker architecture. The master process
manages the workflow and assigns workflow tasks to workers for execution. The workers execute the tasks and
return the results to the master. Communication between the master and the workers is accomplished using a sim-
ple text-based protocol implemented using MPI_Send and MPI_Recv. PMC relies on a shared filesystem on the
remote site to manage the individual tasks stdout and stderr and stage it back to the submit host as part of it's own
stdout/stderr.

The input format for PMC is a DAG based format similar to Condor DAGMan's. PMC follows the dependencies
specified in the DAG to release the jobs in the right order and executes parallel jobs via the workers when possible.
The input file for PMC is automatically generated by the Pegasus Planner when generating the executable workflow.
PMC allows for a finer grained control on how each task is executed. This can be enabled by associating the
following pegasus profiles with the jobs in the DAX

Table 11.1. Pegasus Profiles that can be associated with jobs in the DAX for PMC

Key Description

pmc_request_memory This key is used to set the -m option for pegasus-mpi-
cluster. It specifies the amount of memory in MB that a
job requires. This profile is usually set in the DAX for
each job.

pmc_request_cpus This key is used to set the -c option for pegasus-mpi-clus-
ter. It specifies the number of cpu's that a job requires.
This profile is usually set in the DAX for each job.

pmc_priority This key is used to set the -p option for pegasus-mpi-
cluster. It specifies the priority for a job . This profile is
usually set in the DAX for each job. Negative values are
allowed for priorities.

pmc_task_arguments The key is used to pass any extra arguments to the PMC
task during the planning time. They are added to the very
end of the argument string constructed for the task in the
PMC file. Hence, allows for overriding of any argument
constructed by the planner for any particular task in the
PMC job.

Refer to the pegasus-mpi-cluster man page in the command line tools chapter to know more about PMC and how
it schedules individual tasks.

It is recommended to have a pegasus::mpiexec entry in the transformation catalog to specify the path to PMC on
the remote and specify the relevant globus profiles such as xcount, host_xcount and maxwalltime to control size
of the MPI job.

multiple line text-based transformation catalog: 2014-09-30T16:11:11.947-07:00
tr pegasus::mpiexec {
 site siteX {
 profile globus "host_xcount" "1"
 profile globus "xcount" "32"
 pfn "/usr/pegasus/bin/pegasus-mpi-cluster"
 arch "x86"

190

Optimizing Workflows for
Efficiency and Scalability

 os "LINUX"
 type "INSTALLED"
 }
}

the entry is not specified, Pegasus will attempt create a default path on the basis of the environment profile PE-
GASUS_HOME specified in the site catalog for the remote site.

Tip

Users are encouraged to use label based clustering in conjunction with PMC

Specification of Method of Execution for Clustered Jobs

The method execution of the clustered job(whether to launch via mpiexec or seqexec) can be specified

1. globally in the properties file

The user can set a property in the properties file that results in all the clustered jobs of the workflow being executed
by the same type of executable.

#PEGASUS PROPERTIES FILE
pegasus.clusterer.job.aggregator seqexec|mpiexec

In the above example, all the clustered jobs on the remote sites are going to be launched via the property value, as
long as the property value is not overridden in the site catalog.

2. associating profile key job.aggregator with the site in the site catalog

<site handle="siteX" gridlaunch = "/shared/PEGASUS/bin/kickstart">
 <profile namespace="env" key="GLOBUS_LOCATION" >/home/shared/globus</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH">/home/shared/globus/lib</profile>
 <profile namespace="pegasus" key="job.aggregator" >seqexec</profile>
 <lrc url="rls://siteX.edu" />
 <gridftp url="gsiftp://siteX.edu/" storage="/home/shared/work" major="2" minor="4"
 patch="0" />
 <jobmanager universe="transfer" url="siteX.edu/jobmanager-fork" major="2" minor="4"
 patch="0" />
 <jobmanager universe="vanilla" url="siteX.edu/jobmanager-condor" major="2" minor="4"
 patch="0" />
 <workdirectory >/home/shared/storage</workdirectory>
 </site>

In the above example, all the clustered jobs on a siteX are going to be executed via seqexec, as long as the value
is not overridden in the transformation catalog.

3. associating profile key job.aggregator with the transformation that is being clustered, in the transformation
catalog

multiple line text-based transformation catalog: 2014-09-30T16:11:52.230-07:00
tr B {
 site siteX {
 profile pegasus "clusters.size" "3"
 profile pegasus "job.aggregator" "mpiexec"
 pfn "/shared/PEGASUS/bin/jobB"
 arch "x86"
 os "LINUX"
 type "INSTALLED"
 }
}

In the above example, all the clustered jobs that consist of transformation B on siteX will be executed via mpiexec.

Note

The clustering of jobs on a site only happens only if

• there exists an entry in the transformation catalog for the clustering executable that has been determined
by the above 3 rules

191

Optimizing Workflows for
Efficiency and Scalability

• the number of jobs being clustered on the site are more than 1

Outstanding Issues

1. Label Clustering

More rigorous checks are required to ensure that the labeling scheme applied by the user is valid.

How to Scale Large Workflows
Issue: When planning and running large workflows, there are some scalability issues to be aware of. During the
planning stage, Pegasus traverses the graphs multiple times, and some of the graph transforms can be slow depending
on if the graph is large in the number of tasks, the number of files, or the number of dependencies. Once planned,
large workflows can also see scalability limits when interacting with the operating system. A common problem is the
number of files in a single directory, such as thousands or millons input or output files.

Solution: The most common solution to these problems is to use hierarchical workflows, which works really well if
your workflow can be logically partitioned into smaller workflows. A hierarchical workflow still runs like a single
workflow, with the difference being that some jobs in the workflow are actually sub-workflows.

For workflows with a large number of files, you can control the number of files in a single directory by reorganizing
the files into a deep directory structure.

Hierarchical Workflows

Introduction
The Abstract Workflow in addition to containing compute jobs, can also contain jobs that refer to other workflows.
This is useful for running large workflows or ensembles of workflows.

Users can embed two types of workflow jobs in the DAX

1. daxjob - refers to a sub workflow represented as a DAX. During the planning of a workflow, the DAX jobs are
mapped to condor dagman jobs that have pegasus plan invocation on the dax (referred to in the DAX job) as
the prescript.

Figure 11.6. Planning of a DAX Job

2. dagjob - refers to a sub workflow represented as a DAG. During the planning of a workflow, the DAG jobs are
mapped to condor dagman and refer to the DAG file mentioned in the DAG job.

192

Optimizing Workflows for
Efficiency and Scalability

Figure 11.7. Planning of a DAG Job

Specifying a DAX Job in the DAX
Specifying a DAXJob in a DAX is pretty similar to how normal compute jobs are specified. There are minor differences
in terms of the xml element name (dax vs job) and the attributes specified. DAXJob XML specification is described
in detail in the chapter on DAX API . An example DAX Job in a DAX is shown below

 <dax id="ID000002" name="black.dax" node-label="bar" >
 <profile namespace="dagman" key="maxjobs">10</profile>
 <argument>-Xmx1024 -Xms512 -Dpegasus.dir.storage=storagedir -Dpegasus.dir.exec=execdir -o local
 -vvvvv --force -s dax_site </argument>
 </dax>

DAX File Locations

The name attribute in the dax element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. Replica Catalog

2. Replica Catalog Section in the DAX .

Note

Currently, only file url's on the local site (submit host) can be specified as DAX file locations.

Arguments for a DAX Job

Users can specify specific arguments to the DAX Jobs. The arguments specified for the DAX Jobs are passed to the
pegasus-plan invocation in the prescript for the corresponding condor dagman job in the executable workflow.

The following options for pegasus-plan are inherited from the pegasus-plan invocation of the parent workflow. If an
option is specified in the arguments section for the DAX Job then that overrides what is inherited.

Table 11.2. Options inherited from parent workflow

Option Name Description

--sites list of execution sites.

It is highly recommended that users don't specify directory related options in the arguments section for the DAX Jobs.
Pegasus assigns values to these options for the sub workflows automatically.

1. --relative-dir

193

Optimizing Workflows for
Efficiency and Scalability

2. --dir

3. --relative-submit-dir

Profiles for DAX Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above maxjobs is set to 10 for the sub workflow.

Execution of the PRE script and Condor DAGMan instance

The pegasus plan that is invoked as part of the prescript to the condor dagman job is executed on the submit host. The
log from the output of pegasus plan is redirected to a file (ending with suffix pre.log) in the submit directory of the
workflow that contains the DAX Job. The path to pegasus-plan is automatically determined.

The DAX Job maps to a Condor DAGMan job. The path to condor dagman binary is determined according to the
following rules -

1. entry in the transformation catalog for condor::dagman for site local, else

2. pick up the value of CONDOR_HOME from the environment if specified and set path to condor dagman as $CON-
DOR_HOME/bin/condor_dagman , else

3. pick up the value of CONDOR_LOCATION from the environment if specified and set path to condor dagman as
$CONDOR_LOCATION/bin/condor_dagman , else

4. pick up the path to condor dagman from what is defined in the user's PATH

Tip

It is recommended that users specify dagman.maxpre in their properties file to control the maximum number
of pegasus plan instances launched by each running dagman instance.

Specifying a DAG Job in the DAX
Specifying a DAGJob in a DAX is pretty similar to how normal compute jobs are specified. There are minor differences
in terms of the xml element name (dag vs job) and the attributes specified. For DAGJob XML details,see the API
Reference chapter . An example DAG Job in a DAX is shown below

 <dag id="ID000003" name="black.dag" node-label="foo" >
 <profile namespace="dagman" key="maxjobs">10</profile>
 <profile namespace="dagman" key="DIR">/dag-dir/test</profile>
 </dag>

DAG File Locations

The name attribute in the dag element refers to the LFN (Logical File Name) of the dax file. The location of the
DAX file can be catalogued either in the

1. Replica Catalog

2. Replica Catalog Section in the DAX.

Note

Currently, only file url's on the local site (submit host) can be specified as DAG file locations.

Profiles for DAG Job

Users can choose to specify dagman profiles with the DAX Job to control the behavior of the corresponding condor
dagman instance in the executable workflow. In the example above, maxjobs is set to 10 for the sub workflow.

194

Optimizing Workflows for
Efficiency and Scalability

The dagman profile DIR allows users to specify the directory in which they want the condor dagman instance to
execute. In the example above black.dag is set to be executed in directory /dag-dir/test . The /dag-dir/test should be
created beforehand.

File Dependencies Across DAX Jobs

In hierarchal workflows , if a sub workflow generates some output files required by another sub workflow then there
should be an edge connecting the two dax jobs. Pegasus will ensure that the prescript for the child sub-workflow,
has the path to the cache file generated during the planning of the parent sub workflow. The cache file in the submit
directory for a workflow is a textual replica catalog that lists the locations of all the output files created in the remote
workflow execution directory when the workflow executes.

This automatic passing of the cache file to a child sub-workflow ensures that the datasets from the same workflow
run are used. However, the passing the locations in a cache file also ensures that Pegasus will prefer them over all
other locations in the Replica Catalog. If you need the Replica Selection to consider locations in the Replica Catalog
also, then set the following property.

pegasus.catalog.replica.cache.asrc true

The above is useful in the case, where you are staging out the output files to a storage site, and you want the child
sub workflow to stage these files from the storage output site instead of the workflow execution directory where the
files were originally created.

Recursion in Hierarchal Workflows

It is possible for a user to add a dax jobs to a dax that already contain dax jobs in them. Pegasus does not place a
limit on how many levels of recursion a user can have in their workflows. From Pegasus perspective recursion in
hierarchal workflows ends when a DAX with only compute jobs is encountered . However, the levels of recursion are
limited by the system resources consumed by the DAGMan processes that are running (each level of nesting produces
another DAGMan process) .

The figure below illustrates an example with recursion 2 levels deep.

195

Optimizing Workflows for
Efficiency and Scalability

Figure 11.8. Recursion in Hierarchal Workflows

The execution time-line of the various jobs in the above figure is illustrated below.

196

Optimizing Workflows for
Efficiency and Scalability

Figure 11.9. Execution Time-line for Hierarchal Workflows

Example
The Galactic Plane workflow is a Hierarchical workflow of many Montage workflows. For details, see Workflow
of Workflows.

Optimizing Data Transfers
Issue: When it comes to data transfers, Pegasus ships with a default configuration which is trying to strike a balance
between performance and aggressiveness. We obviously want data transfers to be as quick as possibly, but we also
do not want our transfers to overwhelm data services and systems.

Solution: Starting 4.8.0 release, the default configuration of Pegasus now adds transfer jobs and cleanup jobs based
on the number of jobs at a particular level of the workflow. For example, for every 10 compute jobs on a level of
a workflow, one data transfer job(stage-in and stage-out) is created. The default configuration also sets how many
threads such a pegasus-transfer job can spawn. Cleanup jobs are similarly constructed with an internal ratio of 5.

Additionally, Pegasus makes use of DAGMan categories and associates the following default values with the transfer
and cleanup jobs.

Table 11.3. Default Category names associated by Pegasus

DAGMan Category Name Auxillary Job applied to. Default Value Assigned in generat-
ed DAG file

197

Optimizing Workflows for
Efficiency and Scalability

stage-in data stage-in jobs 10

stage-out data stage-out jobs 10

stage-inter inter site data transfer jobs -

cleanup data cleanup jobs 4

registration registration jobs 1 (for file based RC)

Information on how to control manully the maxinum number of stagein and stageout jobs can be found in the Data
Movement Nodes section.

How to control the number of threads pegasus-transfer can use depends on if you want to control standard transfer
jobs, or PegasusLite. For the former, see the pegasus.transfer.threads property, and for the latter the pegasus.trans-
fer.lite.threads property.

Job Throttling
Issue: For large workflows you may want to control the number of jobs released by DAGMan in local condor queue,
or number of remote jobs submitted.

Solution: HTCondor DAGMan has knobs that can be tuned at a per workflow level to control it's behavior. These
knobs control how it interacts with the local HTCondor Schedd to which it submits jobs that are ready to run in a
particular DAG. These knobs are exposed as DAGMan profiles (maxidle, maxjobs, maxpre and maxpost) that you
can set in your properties files.

Table 11.4. Useful dagman Commands that can be specified in the properties file.

Property Key Description

Property Key: dagman.maxpre
Profile Key: MAXPRE
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of PRE scripts within the DAG
that may be running at one time

Property Key: dagman.maxpost
Profile Key: MAXPOST
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of POST scripts within the
DAG that may be running at one time

Property Key: dagman.maxjobs
Profile Key: MAXJOBS
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of jobs within the DAG that
will be submitted to Condor at one time.

Property Key: dagman.maxidle
Profile Key: MAXIDLE
Scope : Properties
Since : 2.0
Type : String

Sets the maximum number of idle jobs allowed before
HTCondor DAGMan stops submitting more jobs. Once
idle jobs start to run, HTCondor DAGMan will resume
submitting jobs. If the option is omitted, the number of
idle jobs is unlimited.

Property Key: dagman.[CATEGORY-NAME].maxjobs
Profile Key: [CATEGORY-NAME].MAXJOBS
Scope : Properties
Since : 2.0
Type : String

is the value of maxjobs for a particular category. Users can
associate different categories to the jobs at a per job basis.
However, the value of a dagman knob for a category can
only be specified at a per workflow basis in the properties.

Property Key: dagman.post.scope
Profile Key: POST.SCOPE
Scope : Properties

scope for the postscripts.

198

Optimizing Workflows for
Efficiency and Scalability

Since : 2.0
Type : String

1. If set to all , means each job in the workflow will have
a postscript associated with it.

2. If set to none , means no job has postscript associated
with it. None mode should be used if you are running
vanilla / standard/ local universe jobs, as in those cas-
es Condor traps the remote exitcode correctly. None
scope is not recommended for grid universe jobs.

3. If set to essential, means only essential jobs have post
scripts associated with them. At present the only non
essential job is the replica registration job.

Within a single workflow, you can also control the number of jobs submitted per type (or category) of jobs. To
associate categories, you needs to associate dagman profile key named category with the jobs and specify the property
dagman.[CATEGORY-NAME].* in the properties file. More information about HTCondor DAGMan categories can
be found in the HTCondor Documentation [http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Ap-
plications.html#SECTION003108400000000000000].

By default, pegasus associates default category names to following types of auxillary jobs

Table 11.5. Default Category names associated by Pegasus

DAGMan Category Name Auxillary Job applied to. Default Value Assigned in generat-
ed DAG file

stage-in data stage-in jobs 10

stage-out data stage-out jobs 10

stage-inter inter site data transfer jobs -

cleanup data cleanup jobs 4

registration registration jobs 1 (for file based RC)

Below is a sample properties file that illustrates how categories can be specified in the properties file

pegasus properties file snippet illustrating
how to specify dagman categories for different types of jobs

dagman.stage-in.maxjobs 4
dagman.stage-out.maxjobs 1
dagman.cleanup.maxjobs 2

HTCondor also exposes useful configuration parameters that can be specified in it's configuration file (condor_con-
fig_val -conf will list the condor configuration files), to control job submission across workflows. Some of the useful
parameters that you may want to tune are

Table 11.6. Useful HTCondor Job Throttling Configuration Parameters

HTCondor Configuration Parameter Description

Parameter Name: START_LOCAL_UNIVERSE
Sample Value : TotalLocalJobsRunning < 20

Most of the pegauss added auxillary jobs (createdir,
cleanup, registration and data cleanup) run in the local
universe on the submit host. If you have a lot of workflows
running, HTCondor may try to start too many local uni-
verse jobs, that may bring down your submit host. This
global parameter is used to configure condor to not launch
too many local universe jobs.

Parameter Name: GRIDMANAGER_MAX_JOBMANAGERS_PER_RESOURCE
Sample Value : Integer

For grid jobs of type gt2, limits the number of globus-
job-manager processes that the condor_gridmanager lets
run at a time on the remote head node. Allowing too
many globus-job-managers to run causes severe load on

199

http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.3.5/2_10DAGMan_Applications.html#SECTION003108400000000000000

Optimizing Workflows for
Efficiency and Scalability

the head note, possibly making it non-functional. Usually
the default value in htcondor (as of version 8.3.5) is 10.

This parameter is useful when you are doing remote job
submissions using HTCondor-G.

Parameter Name: GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE
Sample Value : Integer

An integer value that limits the number of jobs that a
condor_gridmanager daemon will submit to a resource. A
comma-separated list of pairs that follows this integer lim-
it will specify limits for specific remote resources. Each
pair is a host name and the job limit for that host. Consider
the example

GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE =
 200, foo.edu, 50,
 bar.com, 100.

In this example, all resources have a job limit of
200, except foo.edu, which has a limit of 50, and
bar.com, which has a limit of 100. Limits specif-
ic to grid types can be set by appending the name
of the grid type to the configuration variable name,
as the example GRIDMANAGER_MAX_SUBMIT-
TED_JOBS_PER_RESOURCE_CREAM = 300 In this
example, the job limit for all CREAM resources is 300.
Defaults to 1000 (as of version 8.3.5).

This parameter is useful when you are doing remote job
submissions using HTCondor-G.

Job Throttling Across Workflows
Issue: DAGMan throttling knobs are per workflow, and don't work across workflows. Is there any way to control
different types of jobs run at a time across workflows?

Solution: While not possible in all cases, it is possible to throttle different types of jobs across workflows if you con-
figure the jobs to run in vanilla universe by leverage HTCondor concurrency limits [http://research.cs.wisc.edu/htcon-
dor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000]. Most of the Pegasus generated jobs
(data transfer jobs and auxillary jobs such as create dir, cleanup and registration) execute in local universe where
concurrency limits don't work. To use this you need to do the following

1. Get the local universe jobs to run locally in vanilla universe. You can do this by associating condor profiles universe
and requirements in the site catalog for local site or individually in the transformation catalog for each pegasus
executable. Here is an example local site catalog entry.

 <site handle="local" arch="x86_64" os="LINUX">
 <directory type="shared-scratch" path="/shared-scratch/local">
 <file-server operation="all" url="file:///shared-scratch/local"/>
 </directory>
 <directory type="local-storage" path="/storage/local">
 <file-server operation="all" url="file:///storage/local"/>
 </directory>

 <!-- keys to make jobs scheduled to local site run on local site in vanilla universe -->
 <profile namespace="condor" key="universe">vanilla</profile>
 <profile namespace="condor" key="requirements">(Machine=="submit.example.com")</profile>
 </site>

Replace the Machine value in requirements with the hostname of your submit host.

2. Copy condor_config.pegasus file from share/pegasus/htcondor directory to your condor config.d directory.

Starting Pegasus 4.5.1 release, the following values for concurrency limits can be associated with different types of
jobs Pegasus creates. To enable the generation of concurrency limits with the jobs set the following property in your
properties file.

200

http://research.cs.wisc.edu/htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_12Setting_Up.html#SECTION0041215000000000000000

Optimizing Workflows for
Efficiency and Scalability

pegasus.condor.concurrency.limits true

Table 11.7. Pegasus Job Types To Condor Concurrency Limits

Pegasus Job Type HTCondor Concurrency Limit Compatible with dis-
tributed condor_config.pegasus

Data Stagein Job pegasus_transfer.stagein

Data Stageout Job pegasus_transfer.stageout

Inter Site Data Transfer Job pegasus_transfer.inter

Worker Pacakge Staging Job pegasus_transfer.worker

Create Directory Job pegasus_auxillary.createdir

Data Cleanup Job pegasus_auxillary.cleanup

Replica Registration Job pegasus_auxillary.registration

Set XBit Job pegasus_auxillary.chmod

User Compute Job pegasus_compute

Note

It is not recommended to set limit for compute jobs unless you know what you are doing.

Increase Memory Requirements for Retries
Issue: Setting memory limits for codes with varying amounts of memory requirments can be challenging. Some codes
do not use much RAM most of the time, but once in a while require more RAM due to for example initial condition
and hitting a particular spot in the algorithm.

Solution: A common approach is to provide a smaller limit for the first try of a job, and if the job fails, increase the limit
for subsequent tries. This can be accomplished with an expression for the request_memory attribute. For example,
setting the attribute in the site catalog, setting the limit to 1 GB for the first try, and then 4 GB for remaining tries:

 <profile namespace="condor" key="request_memory"> ifthenelse(isundefined(DAGNodeRetry) ||
 DAGNodeRetry == 0, 1024, 4096) </profile>

201

Chapter 12. Pegasus Service
Service Administration

Service Configuration
Create a file called service.py in $HOME/.pegasus/ OR modify the lib/pegasus/python/Pegasus/service/defaults.py
file. The servuce can be configured using the properties described below.

Table 12.1. Pegasus Service Configuration Options

Property Default Value Description

SERVER_HOST 127.0.0.1 SERVER_HOST specifies the host-
name/network interface on which the
service listens for requests.

SERVER_PORT 5000 SERVER_PORT specifies the port
number on which the service listens
for requests.

CERTIFICATE None SSL certificate file used to encrypt
sessions. If no certificate, key files are
provided the service will generate and
use self-signed certificates.

PRIVATE_KEY None SSL key file used to encrypt connec-
tions. If no certificate, key files are
provided the service will generate and
use self-signed certificates.

AUTHENTICATION PAMAuthentication By default the service uses PAM au-
thentication i.e. When prompted for a
username and password users can use
the credentials that they use to login to
the machine. Users can specify NoAu-
thentication to disable username/pass-
word prompt.

ADMIN_USERS None ADMIN_USERS can be used to spec-
ify which users have the ability to ac-
cess other users workflow info. If AD-
MIN_USERS is None, False, or '' then
users can only access their own work-
flow information. If ADMIN_USERS
is '*' then all users are admin users and
can access everyones workflow infor-
mation. If ADMIN_USERS = {'u1', ..,
'un'} OR ['u1', .., 'un'] then only users
u1, .., un can access other users work-
flow information.

PROCESS_SWITCHING True File created by running Pegasus work-
flows have permissions as per user
configuration. So one user migt not
be able to view workflow informa-
tion of other users. Setting PRO-
CESS_SWITCHING to True makes
the service change the process UID to
the UID of the user whose informa-
tion is being requested. pegasus-ser-

202

Pegasus Service

Property Default Value Description

vice must be started as root for PRO-
CESS_SWITCHING to work. PRO-
CESS_SWITCHING can be set to
False.

USERNAME '' The username which pegasus-em
client uses to connect to the pega-
sus-em server.

PASSWORD '' The password which pegasus-em
client uses to connect to the pega-
sus-em server.

All clients that connect to the web API will require the USERNAME and PASSWORD settings in the configuration
file.

Running the Service
Pegasus Service can be started using the pegasus-service command as follows

$ pegasus-service

By default, the server will start on https://localhost:5000 [http://localhost:5000]. You can set the host and port in the
configuration file OR pass it as a command line switch to pegasus-service as follows.

$ pegasus-service --host <SERVER_HOSTNAME> --port <SERVER_PORT>

Dashboard
The dashboard is automatically started when pegasus-service command is executed.

Running Pegasus Service under Apache HTTPD
Prerequisites Apache HTTPD, mod_ssl, and mod_wsgi to be installed.

To run pegasus-service under Apache HTTPD

1. Copy file share/pegasus/service/pegasus-service.wsgi to some other directory. We will refer to this directory as
<WSGI_FILE_DIR>.

Configure pegasus service by setting the AUTHENTICATION, PROCESS_SWITCHING, and/or AD-
MIN_USERS properties in the <WSGI_FILE_DIR>/pegasus-service.wsgi file as desired.

2. Copy file share/pegasus/service/pegasus-service-httpd.conf to your Apache conf directory.

a. Replace PEGASUS_PYTHON_EXTERNALS with absolute path to pegasus python externals directory. Exe-
cute pegasus-config --python-externals to get this path

b. Replace HOSTNAME with the hostname on which the server should listen for requests.

c. Replace DOCUMENT_ROOT with <WSGI_FILE_DIR>

d. Replace USER_NAME with the username as which the WSGIDaemonProcess should start

e. Replace GROUP_NAME with the groupname as which the WSGIDaemonProcess should start

f. Replace PATH_TO_PEGASUS_SERVICE_WSGI_FILE with <WSGI_FILE_DIR>/pegasus-service.wsgi

g. Replace PATH_TO_SSL_CERT with absolute location of your SSL certificate file

h. Replace PATH_TO_SSL_KEY with absolute location of your SSL private key file

203

http://localhost:5000
http://localhost:5000

Pegasus Service

For additional mod_wsgi configuration refer to https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives

Ensemble Manager
The ensemble manager is a service that manages collections of workflows called ensembles. The ensemble manager
is useful when you have a set of workflows you need to run over a long period of time. It can throttle the number
of concurrent planning and running workflows, and plan and run workflows in priority order. A typical use-case is a
user with 100 workflows to run, who needs no more than one to be planned at a time, and needs no more than two
to be running concurrently.

The ensemble manager also allows workflows to be submitted and monitored programmatically through its RESTful
interface, which makes it an ideal platform for integrating workflows into larger applications such as science gateways
and portals.

To start the ensemble manager server, run:

$ pegasus-em server

Once the ensemble manager is running, you can create an ensemble with:

$ pegasus-em create myruns

where "myruns" is the name of the ensemble.

Then you can submit a workflow to the ensemble by running:

$ pegasus-em submit myruns.run1 ./plan.sh run1.dax

Where the name of the ensemble is "myruns", the name of the workflow is "run1", and "./plan.sh run1.dax" is the
command for planning the workflow from the current working directory. The planning command should either be a
direct invocation of pegasus-plan, or a shell script that calls pegasus-plan. If a shell script is used, then it should not
redirect the output of pegasus-plan, because the ensemble manager reads the output to determine whether pegasus-plan
succeeded and what is the submit directory of the workflow.

To check the status of your ensembles run:

$ pegasus-em ensembles

To check the status of your workflows run:

$ pegasus-em workflows myruns

To check the status of a specific workflow, run:

$ pegasus-em status myruns.run1

To help with debugging, the ensemble manager has an analyze command that emits diagnostic information about a
workflow, including the output of pegasus-analyzer, if possible. To analyze a workflow, run:

$ pegasus-em analyze myruns.run1

Ensembles can be paused to prevent workflows from being planned and executed. Workflows in a paused ensemble
will continue to run, but no new workflows will be planned or executed. To pause an ensemble, run:

$ pegasus-em pause myruns

Paused ensembles can be reactivated by running:

$ pegasus-em activate myruns

A workflow might fail during planning. In that case, run the analyze command to examine the planner output, make
the necessary corrections to the workflow configuration, and replan the workflow by running:

$ pegasus-em replan myruns.run1

A workflow might also fail during execution. In that case, run the analyze command to identify the issue, correct the
problem, and rerun the workflow by running:

204

https://code.google.com/p/modwsgi/wiki/ConfigurationDirectives

Pegasus Service

$ pegasus-em rerun myruns.run1

Workflows in an ensemble can have different priorities. These priorities are used to determine the order in which
workflows in the ensemble will be planned and executed. Priorities are specified using the '-p' option of the submit
command. They can also be modified after a workflow has been submitted by running:

$ pegasus-em priority myruns.run1 -p 10

where 10 is the desired priority. Higher values have higher priority, the default is 0, and negative values are allowed.

Each ensemble has a pair of throttles that limit the number of workflows that are concurrently planning and execut-
ing. These throttles are called max_planning and max_running. Max planning limits the number of workflows in the
ensemble that can be planned concurrently. Max running limits the number of workflows in the ensemble that can be
running concurrently. These throttles are useful to limit the impact of planning on the memory usage of the submit
host, and the load on the submit host and remote site caused by concurrently running workflows. The throttles can be
specified with the '-R' and '-P' options of the create command. They can also be updated using the config command:

$ pegasus-em config myruns.run1 -P 1 -R 5

205

Chapter 13. Configuration
Pegasus has configuration options to configure

1. the behavior of an individual job via profiles

2. the behavior of the whole system via properties

For job level configuration (such as what environment a job is set with), the Pegasus Workflow Mapper uses the
concept of profiles. Profiles encapsulate configurations for various aspects of dealing with the Grid infrastructure.
They provide an abstract yet uniform interface to specify configuration options for various layers from planner/map-
per behavior to remote environment settings. At various stages during the mapping process, profiles may be added
associated with the job. The system supports five diffferent namespaces, with each namespace refers to a different
aspect of a job's runtime settings. A profile's representation in the executable workflow (e.g. the Condor submit files)
depends on its namespace. Pegasus supports the following Namespaces for profiles:

• env permits remote environment variables to be set.

• globus sets Globus RSL parameters.

• condor sets Condor configuration parameters for the submit file.

• dagman introduces Condor DAGMan configuration parameters.

• pegasus configures the behaviour of various planner/mapper components.

• hints allows to override site selection behavior of the planner. Can be specified only in the DAX.

Properties are primarily used to configure the behavior of the Pegasus WMS system at a global level. The properties
file is actually a java properties file and follows the same conventions as that to specify the properties.

This chapter describes various types of profiles and properties, levels of priorities for intersecting profiles, and how
to specify profiles in different contexts.

Differences between Profiles and Properties
The main difference between properties and profiles is that profiles eventually get associated at a per job level in the
workflow. On the other hand, properties are a way of configuring and controlling the behavior of the whole system.
While all profiles can be specified in the properties file, not all properties can be used as profiles. This section lists
out the properties supported by Pegasus and if any can be used as a profile, it is clearly indicated.

Profiles

Profile Structure Heading
All profiles are triples comprised of a namespace, a name or key, and a value. The namespace is a simple identifier.
The key has only meaning within its namespace, and it's yet another identifier. There are no constraints on the contents
of a value

Profiles may be represented with different syntaxes in different context. However, each syntax will describe the un-
derlying triple.

Sources for Profiles
Profiles may enter the job-processing stream at various stages. Depending on the requirements and scope a profile is
to apply, profiles can be associated at

• as user property settings.

206

Configuration

• dax level

• in the site catalog

• in the transformation catalog

Unfortunately, a different syntax applies to each level and context. This section shows the different profile sources
and syntaxes. However, at the foundation of each profile lies the triple of namespace, key and value.

User Profiles in Properties

Users can specify all profiles in the properties files where the property name is [namespace].key and value of the
property is the value of the profile.

Namespace can be env|condor|globus|dagman|pegasus

Any profile specified as a property applies to the whole workflow i.e (all jobs in the workflow) unless overridden at
the DAX level , Site Catalog , Transformation Catalog Level.

Some profiles that they can be set in the properties file are listed below

env.JAVA_HOME "/software/bin/java"

condor.periodic_release 5
condor.periodic_remove my_own_expression
condor.stream_error true
condor.stream_output fa

globus.maxwalltime 1000
globus.maxtime 900
globus.maxcputime 10
globus.project test_project
globus.queue main_queue

dagman.post.arguments --test arguments
dagman.retry 4
dagman.post simple_exitcode
dagman.post.path.simple_exitcode /bin/exitcode/exitcode.sh
dagman.post.scope all
dagman.maxpre 12
dagman.priority 13

dagman.bigjobs.maxjobs 1

pegasus.clusters.size 5

pegasus.stagein.clusters 3

Profiles in DAX

The user can associate profiles with logical transformations in DAX. Environment settings required by a job's appli-
cation, or a maximum estimate on the run-time are examples for profiles at this stage.

<job id="ID000001" namespace="asdf" name="preprocess" version="1.0"
 level="3" dv-namespace="voeckler" dv-name="top" dv-version="1.0">
 <argument>-a top -T10 -i <filename file="voeckler.f.a"/>
 -o <filename file="voeckler.f.b1"/>
 <filename file="voeckler.f.b2"/></argument>
 <profile namespace="pegasus" key="walltime">2</profile>
 <profile namespace="pegasus" key="diskspace">1</profile>
 …
</job>

Profiles in Site Catalog

If it becomes necessary to limit the scope of a profile to a single site, these profiles should go into the site catalog.
A profile in the site catalog applies to all jobs and all application run at the site. Commonly, site catalog profiles set
environment settings like the LD_LIBRARY_PATH, or globus rsl parameters like queue and project names.

207

Configuration

Currently, there is no tool to manipulate the site catalog, e.g. by adding profiles. Modifying the site catalog requires
that you load it into your editor.

The XML version of the site catalog uses the following syntax:

<profile namespace="namespace" key="key">value</profile>

<site handle="CCG" arch="x86_64" os="LINUX">
 <grid type="gt5" contact="obelix.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>

 <directory type="shared-scratch" path="/shared-scratch">
 <file-server operation="all" url="gsiftp://headnode.isi.edu/shared-scratch"/>
 </directory>
 <directory type="local-storage" path="/local-storage">
 <file-server operation="all" url="gsiftp://headnode.isi.edu/local-storage"/>
 </directory>
 <profile namespace="pegasus" key="clusters.num">1</profile>
 <profile namespace="env" key="PEGASUS_HOME">/usr</profile>
</site>

Profiles in Transformation Catalog

Some profiles require a narrower scope than the site catalog offers. Some profiles only apply to certain applications
on certain sites, or change with each application and site. Transformation-specific and CPU-specific environment
variables, or job clustering profiles are good candidates. Such profiles are best specified in the transformation catalog.

Profiles associate with a physical transformation and site in the transformation catalog. The Database version of the
transformation catalog also permits the convenience of connecting a transformation with a profile.

The Pegasus tc-client tool is a convenient helper to associate profiles with transformation catalog entries. As benefit,
the user does not have to worry about formats of profiles in the various transformation catalog instances.

tc-client -a -P -E -p /home/shared/executables/analyze -t INSTALLED -r isi_condor -e
 env::GLOBUS_LOCATION=”/home/shared/globus”

The above example adds an environment variable GLOBUS_LOCATION to the application /home/shared/executa-
bles/analyze on site isi_condor. The transformation catalog guide has more details on the usage of the tc-client.

tr example::keg:1.0 {

#specify profiles that apply for all the sites for the transformation
#in each site entry the profile can be overriden

 profile env "APP_HOME" "/tmp/myscratch"
 profile env "JAVA_HOME" "/opt/java/1.6"

 site isi {
 profile env "HELLo" "WORLD"
 profile condor "FOO" "bar"
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "INSTALLED"
 }

 site wind {
 profile env "CPATH" "/usr/cpath"
 profile condor "universe" "condor"
 pfn "file:///path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "STAGEABLE"
 }
}

Most of the users prefer to edit the transformation catalog file directly in the editor.

208

Configuration

Profiles Conflict Resolution
Irrespective of where the profiles are specified, eventually the profiles are associated with jobs. Multiple sources
may specify the same profile for the same job. For instance, DAX may specify an environment variable X. The site
catalog may also specify an environment variable X for the chosen site. The transformation catalog may specify an
environment variable X for the chosen site and application. When the job is concretized, these three conflicts need
to be resolved.

Pegasus defines a priority ordering of profiles. The higher priority takes precedence (overwrites) a profile of a lower
priority.

1. Transformation Catalog Profiles

2. Site Catalog Profiles

3. DAX Profiles

4. Profiles in Properties

Details of Profile Handling
The previous sections omitted some of the finer details for the sake of clarity. To understand some of the constraints
that Pegasus imposes, it is required to look at the way profiles affect jobs.

Details of env Profiles

Profiles in the env namespace are translated to a semicolon-separated list of key-value pairs. The list becomes the
argument for the Condor environment command in the job's submit file.

##
Pegasus WMS SUBMIT FILE GENERATOR
DAG : black-diamond, Index = 0, Count = 1
SUBMIT FILE NAME : findrange_ID000002.sub
##
globusrsl = (jobtype=single)
environment=GLOBUS_LOCATION=/shared/globus;LD_LIBRARY_PATH=/shared/globus/lib;
executable = /shared/software/linux/pegasus/default/bin/kickstart
globusscheduler = columbus.isi.edu/jobmanager-condor
remote_initialdir = /shared/CONDOR/workdir/isi_hourglass
universe = globus
…
queue
##
END OF SUBMIT FILE

Condor-G, in turn, will translate the environment command for any remote job into Globus RSL environment settings,
and append them to any existing RSL syntax it generates. To permit proper mixing, all environment setting should
solely use the env profiles, and none of the Condor nor Globus environment settings.

If kickstart starts a job, it may make use of environment variables in its executable and arguments setting.

Details of globus Profiles

Profiles in the globus Namespaces are translated into a list of paranthesis-enclosed equal-separated key-value pairs.
The list becomes the value for the Condor globusrsl setting in the job's submit file:

##
Pegasus WMS SUBMIT FILE GENERATOR
DAG : black-diamond, Index = 0, Count = 1
SUBMIT FILE NAME : findrange_ID000002.sub
##
globusrsl = (jobtype=single)(queue=fast)(project=nvo)
executable = /shared/software/linux/pegasus/default/bin/kickstart
globusscheduler = columbus.isi.edu/jobmanager-condor
remote_initialdir = /shared/CONDOR/workdir/isi_hourglass
universe = globus
…
queue

209

Configuration

##
END OF SUBMIT FILE

For this reason, Pegasus prohibits the use of the globusrsl key in the condor profile namespace.

The Env Profile Namespace
The env namespace allows users to specify environment variables of remote jobs. Globus transports the environment
variables, and ensure that they are set before the job starts.

The key used in conjunction with an env profile denotes the name of the environment variable. The value of the profile
becomes the value of the remote environment variable.

Grid jobs usually only set a minimum of environment variables by virtue of Globus. You cannot compare the envi-
ronment variables visible from an interactive login with those visible to a grid job. Thus, it often becomes necessary
to set environment variables like LD_LIBRARY_PATH for remote jobs.

If you use any of the Pegasus worker package tools like transfer or the rc-client, it becomes necessary to set PE-
GASUS_HOME and GLOBUS_LOCATION even for jobs that run locally

Table 13.1. Useful Environment Settings

Key Attributes Description

Property Key: env.PEGASUS_HOME
Profile Key: PEGASUS_HOME
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

Property Key: env.GLOBUS_LOCATION
Profile Key: GLOBUS_LOCATION
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Used by auxillary jobs created by Pegasus both on remote
site and local site. Should be set usually set in the Site
Catalog for the sites

Property Key: env.LD_LIBRARY_PATH
Profile Key: LD_LIBRARY_PATH
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Point this to $GLOBUS_LOCATION/lib, except you
cannot use the dollar variable. You must use the full path.
Applies to both, local and remote jobs that use Globus
components and should be usually set in the site catalog
for the sites

Even though Condor and Globus both permit environment variable settings through their profiles, all remote environ-
ment variables must be set through the means of env profiles.

The Globus Profile Namespace
The globus profile namespace encapsulates Globus resource specification language (RSL) instructions. The RSL con-
figures settings and behavior of the remote scheduling system. Some systems require queue name to schedule jobs, a
project name for accounting purposes, or a run-time estimate to schedule jobs. The Globus RSL addresses all these
issues.

A key in the globus namespace denotes the command name of an RSL instruction. The profile value becomes the
RSL value. Even though Globus RSL is typically shown using parentheses around the instruction, the out pair of
parentheses is not necessary in globus profile specifications

The table below shows some commonly used RSL instructions. For an authoritative list of all possible RSL instructions
refer to the Globus RSL specification.

Table 13.2. Useful Globus RSL Instructions

Property Key Description

Property Key: globus.count the number of times an executable is started.

210

Configuration

Profile Key: count
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

Property Key: globus.jobtype
Profile Key: jobtype
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

specifies how the job manager should start the remote job.
While Pegasus defaults to single, use mpi when running
MPI jobs.

Property Key: globus.maxcputime
Profile Key: maxcputime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the max CPU time in minutes for a single execution of a
job.

Property Key: globus.maxmemory
Profile Key: maxmemory
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the maximum memory in MB required for the job

Property Key: globus.maxtime
Profile Key: maxtime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the maximum time or walltime in minutes for a single ex-
ecution of a job.

Property Key: globus.maxwalltime
Profile Key: maxwalltime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the maximum walltime in minutes for a single execution
of a job.

Property Key: globus.minmemory
Profile Key: minmemory
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the minumum amount of memory required for this job

Property Key: globus.project
Profile Key: project
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

associates an account with a job at the remote end.

Property Key: globus.queue
Profile Key: queue
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

the remote queue in which the job should be run. Used
when remote scheduler is PBS that supports queues.

Pegasus prevents the user from specifying certain RSL instructions as globus profiles, because they are either auto-
matically generated or can be overridden through some different means. For instance, if you need to specify remote
environment settings, do not use the environment key in the globus profiles. Use one or more env profiles instead.

Table 13.3. RSL Instructions that are not permissible

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
in the DAX

directory the site catalog and properties determine which directory
a job will run in.

211

Configuration

environment use multiple env profiles instead

executable the physical executable to be used is specified in the trans-
formation catalog and is also dependant on the gridstart
module being used. If you are launching jobs via kickstart
then the executable created is the path to kickstart and the
application executable path appears in the arguments for
kickstart

stdin you specify in the DAX for the job

stdout you specify in the DAX for the job

stderr you specify in the DAX for the job

The Condor Profile Namespace
The Condor submit file controls every detail how and where a job is run. The condor profiles permit to add or overwrite
instructions in the Condor submit file.

The condor namespace directly sets commands in the Condor submit file for a job the profile applies to. Keys in
the condor profile namespace denote the name of the Condor command. The profile value becomes the command's
argument. All condor profiles are translated into key=value lines in the Condor submit file

Some of the common condor commands that a user may need to specify are listed below. For an authoritative list
refer to the online condor documentation. Note: Pegasus Workflow Planner/Mapper by default specify a lot of condor
commands in the submit files depending upon the job, and where it is being run.

Table 13.4. Useful Condor Commands

Property Key Description

Property Key: condor.universe
Profile Key: universe
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Pegasus defaults to either globus or scheduler universes.
Set to standard for compute jobs that require standard uni-
verse. Set to vanilla to run natively in a condor pool, or to
run on resources grabbed via condor glidein.

Property Key: condor.periodic_release
Profile Key: periodic_release
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the number of times job is released back to the queue
if it goes to HOLD, e.g. due to Globus errors. Pegasus
defaults to 3.

Property Key: condor.periodic_remove
Profile Key: periodic_remove
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the number of times a job is allowed to get into HOLD
state before being removed from the queue. Pegasus de-
faults to 3.

Property Key: condor.filesystemdomain
Profile Key: filesystemdomain
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Useful for Condor glide-ins to pin a job to a remote site.

Property Key: condor.stream_error
Profile Key: stream_error
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

boolean to turn on the streaming of the stderr of the remote
job back to submit host.

Property Key: condor.stream_output
Profile Key: stream_output
Scope : TC, SC, DAX, Properties

boolean to turn on the streaming of the stdout of the re-
mote job back to submit host.

212

Configuration

Since : 2.0
Type : Boolean

Property Key: condor.priority
Profile Key: priority
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

integer value to assign the priority of a job. Higher value
means higher priority. The priorities are only applied for
vanilla / standard/ local universe jobs. Determines the or-
der in which a users own jobs are executed.

Property Key: condor.request_cpus
Profile Key: request_cpus
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

New in Condor 7.8.0 . Number of CPU's a job requires.

Property Key: condor.request_gpus
Profile Key: request_cpus
Scope : TC, SC, DAX, Properties
Since : 4.6
Type : String

Number of GPU's a job requires.

Property Key: condor.request_memory
Profile Key: request_memory
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

New in Condor 7.8.0 . Amount of memory a job requires.

Property Key: condor.request_disk
Profile Key: request_disk
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

New in Condor 7.8.0 . Amount of disk a job requires.

Other useful condor keys, that advanced users may find useful and can be set by profiles are

1. should_transfer_files

2. transfer_output

3. transfer_error

4. whentotransferoutput

5. requirements

6. rank

Pegasus prevents the user from specifying certain Condor commands in condor profiles, because they are automatically
generated or can be overridden through some different means. The table below shows prohibited Condor commands.

Table 13.5. Condor commands prohibited in condor profiles

Key Reason for Prohibition

arguments you specify arguments in the arguments section for a job
in the DAX

environment use multiple env profiles instead

executable the physical executable to be used is specified in the trans-
formation catalog and is also dependant on the gridstart
module being used. If you are launching jobs via kickstart
then the executable created is the path to kickstart and the
application executable path appears in the arguments for
kickstart

213

Configuration

The Dagman Profile Namespace
DAGMan is Condor's workflow manager. While planners generate most of DAGMan's configuration, it is possible to
tweak certain job-related characteristics using dagman profiles. A dagman profile can be used to specify a DAGMan
pre- or post-script.

Pre- and post-scripts execute on the submit machine. Both inherit the environment settings from the submit host when
pegasus-submit-dag or pegasus-run is invoked.

By default, kickstart launches all jobs except standard universe and MPI jobs. Kickstart tracks the execution of the job,
and returns usage statistics for the job. A DAGMan post-script starts the Pegasus application exitcode to determine,
if the job succeeded. DAGMan receives the success indication as exit status from exitcode.

If you need to run your own post-script, you have to take over the job success parsing. The planner is set up to pass
the file name of the remote job's stdout, usually the output from kickstart, as sole argument to the post-script.

The table below shows the keys in the dagman profile domain that are understood by Pegasus and can be associated
at a per job basis.

Table 13.6. Useful dagman Commands that can be associated at a per job basis

Property Key Description

Property Key: dagman.pre
Profile Key: PRE
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the path to the pre-script. DAGMan executes the pre-
script before it runs the job.

Property Key: dagman.pre.arguments
Profile Key: PRE.ARGUMENTS
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

are command-line arguments for the pre-script, if any.

Property Key: dagman.post
Profile Key: POST
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

is the postscript type/mode that a user wants to associate
with a job.

1. pegasus-exitcode - pegasus will by default associate
this postscript with all jobs launched via kickstart, as
long the POST.SCOPE value is not set to NONE.

2. none -means that no postscript is generated for the
jobs. This is useful for MPI jobs that are not launched
via kickstart currently.

3. any legal identifier - Any other identifier of the form
([_A-Za-z][_A-Za-z0-9]*), than one of the 2 reserved
keywords above, signifies a user postscript. This al-
lows the user to specify their own postscript for the
jobs in the workflow. The path to the postscript can be
specified by the dagman profile POST.PATH.[value]
where [value] is this legal identifier specified. The user
postscript is passed the name of the .out file of the job
as the last argument on the command line.

For e.g. if the following dagman profiles were associ-
ated with a job X

a. POST with value user_script /bin/user_postscript

b. POST.PATH.user_script with value /path/to/user/
script

214

Configuration

c. POST.ARGUMENTS with value -verbose

then the following postscript will be associated with
the job X in the .dag file

/path/to/user/script -verbose X.out where X.out con-
tains the stdout of the job X

Property Key: dagman.post.path.[value of dagman.post]
Profile Key: post.path.[value of dagman.post]
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

the path to the post script on the submit host.

Property Key: dagman.post.arguments
Profile Key: POST.ARGUMENTS
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

are the command line arguments for the post script, if any.

Property Key: dagman.retry
Profile Key: RETRY
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer
Default : 1

is the number of times DAGMan retries the full job cycle
from pre-script through post-script, if failure was detect-
ed.

Property Key: dagman.category
Profile Key: CATEGORY
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

the DAGMan category the job belongs to.

Property Key: dagman.priority
Profile Key: PRIORITY
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Integer

the priority to apply to a job. DAGMan uses this to select
what jobs to release when MAXJOBS is enforced for the
DAG.

Property Key: dagman.abort-dag-on
Profile Key: ABORT-DAG-ON
Scope : TC, DAX,
Since : 4.5
Type : String

The ABORT-DAG-ON key word provides a way to abort
the entire DAG if a given node returns a specific exit code
(AbortExitValue). The syntax for the value of the key is
AbortExitValue [RETURN DAGReturnValue] . When a
DAG aborts, by default it exits with the node return val-
ue that caused the abort. This can be changed by using
the optional RETURN key word along with specifying the
desired DAGReturnValue

The table below shows the keys in the dagman profile domain that are understood by Pegasus and can be used to apply
to the whole workflow. These are used to control DAGMan's behavior at the workflow level, and are recommended
to be specified in the properties file.

Table 13.7. Useful dagman Commands that can be specified in the properties file.

Property Key Description

Property Key: dagman.maxpre
Profile Key: MAXPRE
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of PRE scripts within the DAG
that may be running at one time

Property Key: dagman.maxpost
Profile Key: MAXPOST

sets the maximum number of POST scripts within the
DAG that may be running at one time

215

Configuration

Scope : Properties
Since : 2.0
Type : String

Property Key: dagman.maxjobs
Profile Key: MAXJOBS
Scope : Properties
Since : 2.0
Type : String

sets the maximum number of jobs within the DAG that
will be submitted to Condor at one time.

Property Key: dagman.maxidle
Profile Key: MAXIDLE
Scope : Properties
Since : 2.0
Type : String

Sets the maximum number of idle jobs allowed before
HTCondor DAGMan stops submitting more jobs. Once
idle jobs start to run, HTCondor DAGMan will resume
submitting jobs. If the option is omitted, the number of
idle jobs is unlimited.

Property Key: dagman.[CATEGORY-NAME].maxjobs
Profile Key: [CATEGORY-NAME].MAXJOBS
Scope : Properties
Since : 2.0
Type : String

is the value of maxjobs for a particular category. Users can
associate different categories to the jobs at a per job basis.
However, the value of a dagman knob for a category can
only be specified at a per workflow basis in the properties.

Property Key: dagman.post.scope
Profile Key: POST.SCOPE
Scope : Properties
Since : 2.0
Type : String

scope for the postscripts.

1. If set to all , means each job in the workflow will have
a postscript associated with it.

2. If set to none , means no job has postscript associated
with it. None mode should be used if you are running
vanilla / standard/ local universe jobs, as in those cas-
es Condor traps the remote exitcode correctly. None
scope is not recommended for grid universe jobs.

3. If set to essential, means only essential jobs have post
scripts associated with them. At present the only non
essential job is the replica registration job.

The Pegasus Profile Namespace
The pegasus profiles allow users to configure extra options to the Pegasus Workflow Planner that can be applied
selectively to a job or a group of jobs. Site selectors may use a sub-set of pegasus profiles for their decision-making.

The table below shows some of the useful configuration option Pegasus understands.

Table 13.8. Useful pegasus Profiles.

Property Key Description

Property Key: pegasus.clusters.num
Profile Key: clusters.num
Scope : TC, SC, DAX, Properties
Since : 3.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This option determines the total number of
clusters per level. Jobs are evenly spread across clusters.

Property Key: pegasus.clusters.size
Profile Key: clusters.size
Scope : TC, SC, DAX, Properties
Since : 3.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This profile determines the number of jobs in
each cluster. The number of clusters depends on the total
number of jobs on the level.

Property Key: pegasus.job.aggregator
Profile Key: job.aggregator
Scope : TC, SC, DAX, Properties
Since : 2.0

Indicates the clustering executable that is used to run the
clustered job on the remote site.

216

Configuration

Type : Integer

Property Key: pegasus.gridstart
Profile Key: gridstart
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Determines the executable for launching a job. This cov-
ers both tasks (jobs specified by the user in the DAX) and
additional jobs added by Pegasus during the planning op-
eration. Possible values are Kickstart | NoGridStart | Pe-
gasusLite | Distribute at the moment.

Note

This profile should only be set by users if you
know what you are doing. Otherwise, let Pega-
sus do the right thing based on your configura-
tion.

Kickstart By default, all jobs executed are
launched using a lightweight C exe-
cutable called pegasus-kickstart. This
generates valuable runtime prove-
nance information for the job as it is
executed on a remote node. This infor-
mation serves as the basis for the mon-
itoring and debugging capabilities pro-
vided by Pegasus.

NoGridStart This explicity disables the wrapping of
the jobs with pegasus-kickstart. This
is internally used by the planner to
launch dax jobs directly. If this is set,
then the information populated in the
monitording database is on the basis of
what is recorded in the DAGMan out
file.

PegasusLite This value is automatically associat-
ed by the Planner whenever the job
runs in either nonsharedfs or condorio
mode. The property pegasus.data.con-
figuration decides whether a job is
launched via PegasusLite or not. Pega-
susLite is a lightweight Pegasus wrap-
per generated for each job that allows
a job to run in a nonshared file sys-
tem environment and is responsible for
staging in the input data and staging
out the output data back to a remote
staging site for the job.

Distribute This wrapper is a HubZero specfiic
wrapper that allows compute jobs that
are scheduled for a local PBS cluster
to be run locally on the submit host.
The jobs are wrapped with a distribute
wrapper that is responsible for doing
the qsub and tracking of the status of
the jobs in the PBS cluster.

Property Key: pegasus.gridstart.path
Profile Key: gridstart.path
Scope : TC, SC, DAX, Properties
Since : 2.0

Sets the path to the gridstart . This profile is best set in the
Site Catalog.

217

Configuration

Type : file path

Property Key: pegasus.gridstart.arguments
Profile Key: gridstart.arguments
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Sets the arguments with which GridStart is used to launch
a job on the remote site.

Property Key: pegasus.stagein.clusters
Profile Key: stagein.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key determines the maximum number of stage-in
jobs that are can executed locally or remotely per com-
pute site per workflow. This is used to configure the Bal-
ancedCluster Transfer Refiner, which is the Default Re-
finer used in Pegasus. This profile is best set in the Site
Catalog or in the Properties file

Property Key: pegasus.stagein.local.clusters
Profile Key: stagein.local.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-in jobs that are executed locally and are
responsible for staging data to a particular remote site.
This profile is best set in the Site Catalog or in the Prop-
erties file

Property Key: pegasus.stagein.remote.clusters
Profile Key: stagein.remote.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-in jobs that are executed remotely on the
remote site and are responsible for staging data to it. This
profile is best set in the Site Catalog or in the Properties
file

Property Key: pegasus.stageout.clusters
Profile Key: stageout.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key determines the maximum number of stage-out
jobs that are can executed locally or remotely per compute
site per workflow. This is used to configure the Balanced-
Cluster Transfer Refiner, , which is the Default Refiner
used in Pegasus.

Property Key: pegasus.stageout.local.clusters
Profile Key: stageout.local.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-out jobs that are executed locally and are
responsible for staging data from a particular remote site.
This profile is best set in the Site Catalog or in the Prop-
erties file

Property Key: pegasus.stageout.remote.clusters
Profile Key: stageout.remote.clusters
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

This key provides finer grained control in determining the
number of stage-out jobs that are executed remotely on the
remote site and are responsible for staging data from it.
This profile is best set in the Site Catalog or in the Prop-
erties file

Property Key: pegasus.group
Profile Key: group
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Tags a job with an arbitrary group identifier. The group
site selector makes use of the tag.

Property Key: pegasus.change.dir
Profile Key: change.dir
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

If true, tells kickstart to change into the remote working
directory. Kickstart itself is executed in whichever direc-
tory the remote scheduling system chose for the job.

Property Key: pegasus.create.dir
Profile Key: create.dir
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Boolean

If true, tells kickstart to create the the remote working di-
rectory before changing into the remote working directo-
ry. Kickstart itself is executed in whichever directory the
remote scheduling system chose for the job.

Property Key: pegasus.transfer.proxy
Profile Key: transfer.proxy
Scope : TC, SC, DAX, Properties

If true, tells Pegasus to explicitly transfer the proxy for
transfer jobs to the remote site. This is useful, when you

218

Configuration

Since : 2.0
Type : Boolean

want to use a full proxy at the remote end, instead of the
limited proxy that is transferred by CondorG.

Property Key: pegasus.style
Profile Key: style
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : String

Sets the condor submit file style. If set to globus, submit
file generated refers to CondorG job submissions. If set
to condor, submit file generated refers to direct Condor
submission to the local Condor pool. It applies for glidein,
where nodes from remote grid sites are glided into the lo-
cal condor pool. The default style that is applied is globus.

Property Key: pegasus.pmc_request_memory
Profile Key: pmc_request_memory
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : Integer

This key is used to set the -m option for pegasus-mpi-clus-
ter. It specifies the amount of memory in MB that a job re-
quires. This profile is usually set in the DAX for each job.

Property Key: pegasus.pmc_request_cpus
Profile Key: pmc_request_cpus
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : Integer

This key is used to set the -c option for pegasus-mpi-clus-
ter. It specifies the number of cpu's that a job requires.
This profile is usually set in the DAX for each job.

Property Key: pegasus.pmc_priority
Profile Key: pmc_priority
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : Integer

This key is used to set the -p option for pegasus-mpi-clus-
ter. It specifies the priority for a job . This profile is usu-
ally set in the DAX for each job. Negative values are al-
lowed for priorities.

Property Key: pegasus.pmc_task_arguments
Profile Key: pmc_task_arguments
Scope : TC, SC, DAX, Properties
Since : 4.2
Type : String

The key is used to pass any extra arguments to the PMC
task during the planning time. They are added to the very
end of the argument string constructed for the task in the
PMC file. Hence, allows for overriding of any argument
constructed by the planner for any particular task in the
PMC job.

Property Key: pegasus.exitcode.failuremsg
Profile Key: exitcode.failuremsg
Scope : TC, SC, DAX, Properties
Since : 4.4
Type : String

The message string that pegasus-exitcode searches for in
the stdout and stderr of the job to flag failures.

Property Key: pegasus.exitcode.successmsg
Profile Key: exitcode.successmsg
Scope : TC, SC, DAX, Properties
Since : 4.4
Type : String

The message string that pegasus-exitcode searches for in
the stdout and stderr of the job to determine whether a
job logged it's success message or not. Note this value is
used to check for whether a job failed or not i.e if this pro-
file is specified, and pegasus-exitcode DOES NOT find
the string in the job stdout or stderr, the job is flagged as
failed. The complete rules for determining failure are de-
scribed in the man page for pegasus-exitcode.

Property Key: pegasus.checkpoint.time
Profile Key: checkpoint_time
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : Integer

the expected time in minutes for a job after which it should
be sent a TERM signal to generate a job checkpoint file

Property Key: pegasus.maxwalltime
Profile Key: maxwalltime
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : Integer

the maximum walltime in minutes for a single execution
of a job.

Property Key: pegasus.glite.arguments
Profile Key: glite.arguments
Scope : TC, SC, DAX, Properties

specifies the extra arguments that must appear in the local
PBS generated script for a job, when running workflows
on a local cluster with submissions through Glite. This is

219

Configuration

Since : 4.5
Type : String

useful when you want to pass through special options to
underlying LRMS such as PBS e.g. you can set value -
l walltime=01:23:45 -l nodes=2 to specify your job's re-
source requirements.

Profile Key: auxillary.local
Scope : SC
Since : 4.6
Type : Boolean

indicates whether auxillary jobs associated with a com-
pute site X, can be run on local site. This CAN ONLY be
specified as a profile in the site catalog and should be set
when the compute site filesystem is accessible locally on
the submit host.

Property Key: pegasus.condor.arguments.quote
Profile Key: condor.arguments.quote
Scope : SC, Properties
Since : 4.6
Type : Boolean

indicates whether condor quoting rules should be applied
for writing out the arguments key in the condor submit
file. By default it is true unless the job is schedule to a glite
style site. The value is automatically set to false for glite
style sites, as condor quoting is broken in batch_gahp.

Task Resource Requirements Profiles

Startng Pegasus 4.6.0 Release, users can specify pegasus profiles to describe resources requirements for their job. The
planner will automatically translate them to appropriate execution environment specific directives. For example, the
profiles are automatically translated to Globus RSL keys if submitting job via CondorG to remote GRAM instances,
Condor Classad keys when running in a vanilla condor pool and to appropriate shell variables for Glite that can be
picked up by the local attributes.sh. The profiles are described below.

Table 13.9. Task Resource Requirement Profiles.

Property Key Description

Property Key: pegasus.runtime
Profile Key: runtime
Scope : TC, SC, DAX, Properties
Since : 2.0
Type : Long

This profile specifies the expected runtime of a job in sec-
onds. Refer to the Pegasus Clustering Guide for descrip-
tion on using it for runtime clustering.

Property Key: clusters.maxruntime
Profile Key: pegasus.clusters.maxruntime
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

Please refer to the Pegasus Clustering Guide for detailed
description. This profile specifies the maximum runtime
of a job.

Property Key: pegasus.cores
Profile Key: cores
Scope : TC, SC, DAX, Properties
Since : 4.0
Type : Integer

The total number of cores, required for a job. This is also
used for accounting purposes in the database while gener-
ating statistics. It corresponds to the multiplier_factor in
the job_instance table described here.

Property Key: pegasus.nodes
Profile Key: nodes
Scope : TC, SC, DAX, Properties
Since : 4.6
Type : Integer

Indicates the the number of nodes a job requires.

Property Key: pegasus.ppn
Profile Key: ppn
Scope : TC, SC, DAX, Properties
Since : 4.6
Type : Integer

Indicates the number of processors per node . This profile
is best set in the Site Catalog and usually set when running
workflows with MPI jobs.

Property Key: pegasus.memory
Profile Key: memory
Scope : TC, SC, DAX, Properties
Since : 4.6
Type : Long

Indicates the maximum memory a job requires in MB.

220

Configuration

Property Key: pegasus.diskspace
Profile Key: diskspace
Scope : TC, SC, DAX, Properties
Since : 4.6
Type : Long

Indicates the maximum diskspace a job requires in MB.

The automatic translation to various execution environment specific directives is explained below. It is important, to
note that execution environment specific keys take precedence over the Pegasus profile keys. For example, Globus
profile key maxruntime will be preferred over Pegasus profile key runtime when running jobs via HTCondorG.

Table 13.10. Table mapping translation of Pegasus Task Requirements to corresponding
execution environment keys.

Pegasus Task Resource
Requirement Profile Key

Corresponding
Globus RSL Key

Corresponding Con-
dor Classad Key

KEY in +re-
mote_cerequirements

classad for GLITE

runtime maxruntime - WALLTIME

cores count request_cpus CORES

nodes hostcount - NODES

ppn xcount - PROCS

memory maxmemory request_memory PER_PROCESS_MEMO-
RY

diskspace - request_diskspace -

The Hints Profile Namespace
The hints namespace allows users to override the behavior of the Workflow Mapper during site selection. This gives
you finer grained control over where a job executes and what executable it refers to. The hints namespace keys (exe-
cution.site and pfn) can only be specified in the DAX. It is important to note that these particular keys once specified
in the DAX, cannot be overriden like other profiles.

Table 13.11. Useful Hints Profile Keys

Key Attributes Description

Property Key: N/A
Profile Key: execution.site
Scope : DAX
Since : 4.5
Type : String

the execution site where a job should be executed.

Property Key: N/A
Profile Key: pfn
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : String

the physical file name to the main executable that a job
refers to. Overrides any entries specified in the transfor-
mation catalog.

Property Key: hints.grid.jobtype
Profile Key: grid.jobtype
Scope : TC, SC, DAX, Properties
Since : 4.5
Type : String

applicable when submitting to remote sites via GRAM.
The site catalog allows you to associate multiple job-
managers with a GRAM site, for different type of jobs
[compute, auxillary, transfer, register, cleanup] that Pe-
gasus generates in the executable workflow. This pro-
file is usually used to ensure that a compute job exe-
cutes on another job manager. For example, if in site cata-
log you have headnode.example.com/jobmanager-condor
for compute jobs, and headnode.example.com/jobmanag-
er-fork for auxillary jobs. Associating this profile and set-
ting value to auxillary for a compute job, will cause the

221

Configuration

compute job to run on the fork jobmanager instead of the
condor jobmanager.

Properties
Properties are primarily used to configure the behavior of the Pegasus Workflow Planner at a global level. The prop-
erties file is actually a java properties file and follows the same conventions as that to specify the properties.

Please note that the values rely on proper capitalization, unless explicitly noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces refer to the value
of the named property. For instance, ${pegasus.home} means that the value depends on the value of the pegasus.home
property plus any noted additions. You can use this notation to refer to other properties, though the extent of the
subsitutions are limited. Usually, you want to refer to a set of the standard system properties. Nesting is not allowed.
Substitutions will only be done once.

There is a priority to the order of reading and evaluating properties. Usually one does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property is able to
overwrite another. The following is a mutually exclusive list (highest priority first) of property file locations.

1. --conf option to the tools. Almost all of the clients that use properties have a --conf option to specify the property
file to pick up.

2. submit-dir/pegasus.xxxxxxx.properties file. All tools that work on the submit directory (i.e after pegasus has
planned a workflow) pick up the pegasus.xxxxx.properties file from the submit directory. The location for the pe-
gasus.xxxxxxx.propertiesis picked up from the braindump file.

3. The properties defined in the user property file ${user.home}/.pegasusrc have lowest priority.

Commandline properties have the highest priority. These override any property loaded from a property file. Each
commandline property is introduced by a -D argument. Note that these arguments are parsed by the shell wrapper, and
thus the -D arguments must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

From Pegasus 3.1 release onwards, support has been dropped for the following properties that were used to signify
the location of the properties file

• pegasus.properties

• pegasus.user.properties

The following example provides a sensible set of properties to be set by the user property file. These properties use
mostly non-default settings. It is an example only, and will not work for you:

pegasus.catalog.replica File
pegasus.catalog.replica.file ${pegasus.home}/etc/sample.rc.data
pegasus.catalog.transformation Text
pegasus.catalog.transformation.file ${pegasus.home}/etc/sample.tc.text
pegasus.catalog.site.file ${pegasus.home}/etc/sample.sites.xml

If you are in doubt which properties are actually visible, pegasus during the planning of the workflow dumps all
properties after reading and prioritizing in the submit directory in a file with the suffix properties.

Local Directories Properties
This section describes the GNU directory structure conventions. GNU distinguishes between architecture independent
and thus sharable directories, and directories with data specific to a platform, and thus often local. It also distinguishes
between frequently modified data and rarely changing data. These two axis form a space of four distinct directories.

Table 13.12. Local Directories Related Properties

Key Attributes Description

222

Configuration

Property Key: pegasus.home.datadir
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/share

The datadir directory contains broadly visible and possi-
bly exported configuration files that rarely change. This
directory is currently unused.

Property Key: pegasus.home.sysconfdir
Profile Key: N/A

Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/etc

The system configuration directory contains configura-
tion files that are specific to the machine or installation,
and that rarely change. This is the directory where the
XML schema definition copies are stored, and where the
base pool configuration file is stored.

Property Key: pegasus.home.sharedstatedir
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/com

Frequently changing files that are broadly visible are
stored in the shared state directory. This is currently un-
used.

Property Key: pegasus.home.localstatedir
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home}/var

Frequently changing files that are specific to a machine
and/or installation are stored in the local state directory.
This is currently unused

Property Key: pegasus.dir.submit.logs
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : (no default)

This property can be used to specify the directory where
the condor logs for the workflow should go to. By default,
starting 4.2.1 release, Pegasus will setup the log to be in
the workflow submit directory. This can create problems,
in case users submit directories are on NSF.

This is done to ensure that the logs are created in a local
directory even though the submit directory maybe on NFS

Site Directories Properties
The site directory properties modify the behavior of remotely run jobs. In rare occasions, it may also pertain to locally
run compute jobs.

Table 13.13. Site Directories Related Properties

Key Attributes Description

Property Key: pegasus.dir.useTimestamp
Profile Key: N/A
Scope : Properties
Since : 2.1
Type : Boolean
Default : false

While creating the submit directory, Pegasus employs a
run numbering scheme. Users can use this Boolean prop-
erty to use a timestamp based numbering scheme instead
of the runxxxx scheme.

Property Key: pegasus.dir.exec
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : (no default)

This property modifies the remote location work directory
in which all your jobs will run. If the path is relative then
it is appended to the work directory (associated with the
site), as specified in the site catalog. If the path is absolute
then it overrides the work directory specified in the site
catalog.

Property Key: pegasus.dir.submit.mapper
Profile Key: N/A

This property modifies determines how the directory for
job submit files are mapped on the submit host.

223

Configuration

Scope : Properties
Since : 4.7
Type : Enumeration
Values : Flat|Hashed
Default : Hashed

Flat This mapper results in Pegasus placing all the
job submit files in the submit directory as de-
termined from the planner options. This can
result in too many files in one directory for
large workflows, and was the only option be-
fore Pegasus 4.7.0 release.

Hashed This mapper results in the creation of a deep
directory structure rooted at the submit direc-
tory. The base directory is the submit directo-
ry as determined from the planner options. By
default, the directory structure created is two
levels deep. To control behavior of this map-
per, users can specify the following properties

pegasus.dir.submit.mapper.hashed.levels
 the number of directory levels
 used

 to accomodate the files. Defaults
 to 2.
pegasus.dir.submit.mapper.hashed.multiplier
 the number of files associated with a
 job

 in the submit directory. defaults
 to 5.

Property Key: pegasus.dir.staging.mapper
Profile Key: N/A
Scope : Properties
Since : 4.7
Type : Enumeration
Values : Flat|Hashed
Default : Hashed

This property modifies determines how the job input and
output files are mapped on the staging site. This only ap-
plies when the pegasus data configuration is set to non-
sharedfs.

Flat This mapper results in Pegasus placing all the
job submit files in the staging site directory as
determined from the Site Catalog and planner
options. This can result in too many files in
one directory for large workflows, and was the
only option before Pegasus 4.7.0 release.

Hashed This mapper results in the creation of a deep
directory structure rooted at the staging site
directory created by the create dir jobs. The
binning is at the job level, and not at the file
level i.e each job will push out it's outputs to
the same directory on the staging site, inde-
pendent of the number of output files. To con-
trol behavior of this mapper, users can specify
the following properties

pegasus.dir.staging.mapper.hashed.levels
 the number of directory levels
 used

 to accomodate the files. Defaults
 to 2.
pegasus.dir.staging.mapper.hashed.multiplier
 the number of files associated with a
 job

 in the submit directory. defaults
 to 5.

Property Key: pegasus.dir.storage.mapper
Profile Key: N/A
Scope : Properties

This property modifies determines how the output files
are mapped on the output site storage location.

224

Configuration

Since : 4.3
Type : Enumeration
Values : Flat|Fixed|Hashed|Replica
Default : Flat

In order to preserve backward compatibility, setting the
boolean property pegasus.dir.storage.deep results in the
Hashed output mapper to be loaded, if no output mapper
property is specified.

Flat By default, Pegasus will place the output
files in the storage directory specified in the
site catalog for the output site.

Fixed Using this mapper, users can specify an ex-
ternally accesible url to the storage directory
in their properties file. The following prop-
erty needs to be set.

pegasus.dir.storage.mapper.fixed.url
 an externally accessible URL to the
storage directory on the output site
e.g. gsiftp://outputs.isi.edu/shared/
outputs

Note: For hierarchal workflows, the above
property needs to be set separately for each
dax job, if you want the sub workflow out-
puts to goto a different directory.

Hashed This mapper results in the creation of a deep
directory structure on the output site, while
populating the results. The base directory on
the remote end is determined from the site
catalog. Depending on the number of files
being staged to the remote site a Hashed File
Structure is created that ensures that only
256 files reside in one directory. To create
this directory structure on the storage site,
Pegasus relies on the directory creation fea-
ture of the Grid FTP server, which appeared
in globus 4.0.x

Replica This mapper determines the path for an out-
put file on the output site by querying an out-
put replica catalog. The output site is one that
is passed on the command line. The output
replica catalog can be configured by speci-
fiing the properties with the prefix pega-
sus.dir.storage.replica. By default, a Regex
File based backend is assumed unless over-
ridden. For example

pegasus.dir.storage.mapper.replica
 Regex|File
pegasus.dir.storage.mapper.replica.file
 the RC file at the backend to use
 if using a file based RC

Property Key: pegasus.dir.storage.deep
Profile Key: N/A
Scope : Properties
Since : 2.1
Type : Boolean
Default : false

This Boolean property results in the creation of a deep
directory structure on the output site, while populating
the results. The base directory on the remote end is deter-
mined from the site catalog.

To this base directory, the relative submit directory struc-
ture ($user/$vogroup/$label/runxxxx) is appended.

$storage = $base + $relative_submit_directory

225

Configuration

This is the base directory that is passed to the storage map-
per.

Note: To preserve backward compatibilty, setting this
property results in the Hashed mapper to be loaded unless
pegasus.dir.storage.mapper is explicitly specified. Before
4.3, this property resulted in HashedDirectory structure.

Property Key: pegasus.dir.create.strategy
Profile Key: N/A
Scope : Properties
Since : 2.2
Type : Enumeration
Values : HourGlass|Tentacles|Minimal
Default : Minimal

If the

--randomdir

option is given to the Planner at runtime, the Pegasus plan-
ner adds nodes that create the random directories at the
remote pool sites, before any jobs are actually run. The
two modes determine the placement of these nodes and
their dependencies to the rest of the graph.

HourGlass It adds a make directory node at the top
level of the graph, and all these concat to
a single dummy job before branching out
to the root nodes of the original/ concrete
dag so far. So we introduce a classic X
shape at the top of the graph. Hence the
name HourGlass.

Tentacles This option places the jobs creating direc-
tories at the top of the graph. However
instead of constricting it to an hour glass
shape, this mode links the top node to all
the relevant nodes for which the create dir
job is necessary. It looks as if the node
spreads its tentacleas all around. This puts
more load on the DAGMan because of
the added dependencies but removes the
restriction of the plan progressing only
when all the create directory jobs have
progressed on the remote pools, as is the
case in the HourGlass model.

Minimal The strategy involves in walking the
graph in a BFS order, and updating a bit
set associated with each job based on the
BitSet of the parent jobs. The BitSet in-
dicates whether an edge exists from the
create dir job to an ancestor of the node.
For a node, the bit set is the union of all
the parents BitSets. The BFS traversal en-
sures that the bitsets are of a node are
only updated once the parents have been
processed.

Schema File Location Properties
This section defines the location of XML schema files that are used to parse the various XML document instances in
the PEGASUS. The schema backups in the installed file-system permit PEGASUS operations without being online.

Table 13.14. Schema File Location Properties

Key Attributes Description

226

Configuration

Property Key: pegasus.schema.dax
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home.sysconfdir}/dax-3.4.xsd

This file is a copy of the XML schema that describes ab-
stract DAG files that are the result of the abstract planning
process, and input into any concrete planning. Providing
a copy of the schema enables the parser to use the local
copy instead of reaching out to the Internet, and obtaining
the latest version from the Pegasus website dynamically.

Property Key: pegasus.schema.sc
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home.sysconfdir}/sc-4.0.xsd

This file is a copy of the XML schema that describes the
xml description of the site catalog. Providing a copy of the
schema enables the parser to use the local copy instead of
reaching out to the internet, and obtaining the latest ver-
sion from the GriPhyN website dynamically.

Property Key: pegasus.schema.ivr
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : ${pegasus.home.sysconfdir}/iv-2.0.xsd

This file is a copy of the XML schema that describes in-
vocation record files that are the result of the a grid launch
in a remote or local site. Providing a copy of the schema
enables the parser to use the local copy instead of reaching
out to the Internet, and obtaining the latest version from
the Pegasus website dynamically.

Database Drivers For All Relational Catalogs

Table 13.15. Database Driver Properties

Property Key Description

Property Key: pegasus.catalog.*.db.driver
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Enumeration
Values : MySQL|PostGres|SQLite
Default : (no default)

The database driver class is dynamically loaded, as re-
quired by the schema. Currently, only MySQL 5.x, Post-
GreSQL >= 8.1 and SQlite are supported. Their respec-
tive JDBC3 driver is provided as part and parcel of the
PEGASUS.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.db.url
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Database URL
Default : (no default)

Each database has its own string to contact the database
on a given host, port, and database. Although most driver
URLs allow to pass arbitrary arguments, please use the
pegasus.catalog.[catalog-name].db.* keys or pegasus.cat-
alog.*.db.* to preload these arguments.

THE URL IS A MANDATORY PROPERTY FOR ANY
DBMS BACKEND.

Property Key: pegasus.catalog.*.db.user
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default :

In order to access a database, you must provide the name
of your account on the DBMS. This property is data-
base-independent. THIS IS A MANDATORY PROPER-
TY FOR MANY DBMS BACKENDS.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.db.password
Profile Key: N/A
Scope : Properties
Since : 2.0

In order to access a database, you must provide an option-
al password of your account on the DBMS. This proper-
ty is database-independent. THIS IS A MANDATORY

227

Configuration

Type : String
Default : (no default)

PROPERTY, IF YOUR DBMS BACKEND ACCOUNT
REQUIRES A PASSWORD.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.db.*
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : (no default)

Each database has a multitude of options to control in fine
detail the further behaviour. You may want to check the
JDBC3 documentation of the JDBC driver for your data-
base for details. The keys will be passed as part of the
connect properties by stripping the "pegasus.catalog.[cat-
alog-name].db." prefix from them. The catalog-name can
be replaced by the following values provenance for Prove-
nance Catalog (PTC), replica for Replica Catalog (RC)

Postgres >= 8.1 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.PGHOST
pegasus.catalog.*.db.PGPORT
pegasus.catalog.*.db.charSet
pegasus.catalog.*.db.compatible

MySQL 5.0 parses the following properties:

pegasus.catalog.*.db.user
pegasus.catalog.*.db.password
pegasus.catalog.*.db.databaseName
pegasus.catalog.*.db.serverName
pegasus.catalog.*.db.portNumber
pegasus.catalog.*.db.socketFactory
pegasus.catalog.*.db.strictUpdates
pegasus.catalog.*.db.ignoreNonTxTables
pegasus.catalog.*.db.secondsBeforeRetryMaster
pegasus.catalog.*.db.queriesBeforeRetryMaster
pegasus.catalog.*.db.allowLoadLocalInfile
pegasus.catalog.*.db.continueBatchOnError
pegasus.catalog.*.db.pedantic
pegasus.catalog.*.db.useStreamLengthsInPrepStmts
pegasus.catalog.*.db.useTimezone
pegasus.catalog.*.db.relaxAutoCommit
pegasus.catalog.*.db.paranoid
pegasus.catalog.*.db.autoReconnect
pegasus.catalog.*.db.capitalizeTypeNames
pegasus.catalog.*.db.ultraDevHack
pegasus.catalog.*.db.strictFloatingPoint
pegasus.catalog.*.db.useSSL
pegasus.catalog.*.db.useCompression
pegasus.catalog.*.db.socketTimeout
pegasus.catalog.*.db.maxReconnects
pegasus.catalog.*.db.initialTimeout
pegasus.catalog.*.db.maxRows
pegasus.catalog.*.db.useHostsInPrivileges
pegasus.catalog.*.db.interactiveClient
pegasus.catalog.*.db.useUnicode
pegasus.catalog.*.db.characterEncoding

MS SQL Server 2000 support the following properties
(keys are case-insensitive, e.g. both "user" and "User" are
valid):

pegasus.catalog.*.db.User
pegasus.catalog.*.db.Password
pegasus.catalog.*.db.DatabaseName

228

Configuration

pegasus.catalog.*.db.ServerName
pegasus.catalog.*.db.HostProcess
pegasus.catalog.*.db.NetAddress
pegasus.catalog.*.db.PortNumber
pegasus.catalog.*.db.ProgramName
pegasus.catalog.*.db.SendStringParametersAsUnicode
pegasus.catalog.*.db.SelectMethod

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

replica

Property Key: pegasus.catalog.*.timeout
 Profile Key: N/A
 Scope : Properties
 Since : 4.5.1
 Type : Integer
 Default : (no default)

This property sets a busy handler that sleeps for a specified
amount of time (in seconds) when a table is locked. This
property has effect only in a sqlite database.

The * in the property name can be replaced by a catalog
name to apply the property only for that catalog. Valid
catalog names are

master
workflow

Catalog Related Properties

Table 13.16. Replica Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.replica
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : File

Pegasus queries a Replica Catalog to discover the physi-
cal filenames (PFN) for input files specified in the DAX.
Pegasus can interface with various types of Replica Cata-
logs. This property specifies which type of Replica Cata-
log to use during the planning process.

JDBCRC In this mode, Pegasus queries a SQL
based replica catalog that is accessed via
JDBC. To use JDBCRC, the user addi-
tionally needs to set the following prop-
erties

1. pegasus.catalog.replica.db.driver =
mysql | postgres |sqlite

2. pegasus.catalog.replica.db.url = <jd-
bc url to the data-
base> e.g jdbc:mysql://data-
base-host.isi.edu/database-name | jd-
bc:sqlite:/shared/jdbcrc.db

3. pegasus.catalog.replica.db.user =
database-user

4. pegasus.catalog.replica.db.password
= database-password

File In this mode, Pegasus queries a file based
replica catalog. It is neither transaction-
ally safe, nor advised to use for produc-
tion purposes in any way. Multiple con-
current instances will clobber each oth-
er!. The site attribute should be specified

229

Configuration

whenever possible. The attribute key for
the site attribute is "site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

LFN PFN
LFN PFN a=b [..]
LFN PFN a="b" [..]
"LFN w/LWS" "PFN w/LWS" [..]

To use File, the user additionally needs
to specify pegasus.catalog.replica.file
property to specify the path to the file
based RC. IF not specified , defaults to
$PWD/rc.txt file.

Regex In this mode, Pegasus queries a file based
replica catalog. It is neither transactional-
ly safe, nor advised to use for production
purposes in any way. Multiple concurrent
access to the File will end up clobbering
the contents of the file. The site attribute
should be specified whenever possible.
The attribute key for the site attribute is
"site".

The LFN may or may not be quoted. If it
contains linear whitespace, quotes, back-
slash or an equality sign, it must be quot-
ed and escaped. Ditto for the PFN. The
attribute key-value pairs are separated by
an equality sign without any whitespaces.
The value may be in quoted. The LFN
sentiments about quoting apply.

In addition users can specifiy regular ex-
pression based LFN's. A regular expres-
sion based entry should be qualified with
an attribute named 'regex'. The attribute
regex when set to true identifies the cat-
alog entry as a regular expression based
entry. Regular expressions should follow
Java regular expression syntax.

For example, consider a replica catalog as
shown below.

Entry 1 refers to an entry which does
not use a resular expressions. This entry
would only match a file named 'f.a', and
nothing else. Entry 2 referes to an entry
which uses a regular expression. In this
entry f.a referes to files having name as
f[any-character]a i.e. faa, f.a, f0a, etc.

230

Configuration

f.a file:///Vol/input/f.a
 site="local"
f.a file:///Vol/input/f.a
 site="local" regex="true"

Regular expression based entries also
support substitutions. For example, con-
sider the regular expression based entry
shown below.

Entry 3 will match files with name al-
pha.csv, alpha.txt, alpha.xml. In addition,
values matched in the expression can be
used to generate a PFN.

For the entry below if the file being
looked up is alpha.csv, the PFN for
the file would be generated as file:///
Volumes/data/input/csv/alpha.csv. Simi-
lary if the file being lookedup was al-
pha.csv, the PFN for the file would
be generated as file:///Volumes/data/in-
put/xml/alpha.xml i.e. The section [0], [1]
will be replaced. Section [0] refers to the
entire string i.e. alpha.csv. Section [1]
refers to a partial match in the input i.e.
csv, or txt, or xml. Users can utilize as
many sections as they wish.

alpha\.(csv|txt|xml) file:///
Vol/input/[1]/[0] site="local"
 regex="true"

To use File, the user additionally needs to
specify pegasus.catalog.replica.file prop-
erty to specify the path to the file based
RC.

Directory In this mode, Pegasus does a directory
listing on an input directory to create the
LFN to PFN mappings. The directory list-
ing is performed recursively, resulting in
deep LFN mappings. For example, if an
input directory $input is specified with
the following structure

$input
$input/f.1
$input/f.2
$input/D1
$input/D1/f.3

Pegasus will create the mappings the fol-
lowing LFN PFN mappings internally

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
D1/f.3 file://$input/D2/f.3
 site="local"

231

Configuration

If you don't want the deep lfn's to be
created then, you can set pegasus.cata-
log.replica.directory.flat.lfn to true In that
case, for the previous example, Pegasus
will create the following LFN PFN map-
pings internally.

f.1 file://$input/f.1 site="local"
f.2 file://$input/f.2 site="local"
f.3 file://$input/D2/f.3
 site="local"

pegasus-plan has --input-dir option that
can be used to specify an input directory.

Users can optionally specify additional
properties to configure the behvavior of
this implementation.

pegasus.catalog.replica.directory to
specify the path to the directory contain-
ing the files

pegasus.catalog.replica.directory.site
to specify a site attribute other than local
to associate with the mappings.

pegasus.catalog.replica.directo-
ry.url.prefix to associate a URL prefix
for the PFN's constructed. If not speci-
fied, the URL defaults to file://

MRC In this mode, Pegasus queries multiple
replica catalogs to discover the file loca-
tions on the grid. To use it set

pegasus.catalog.replica MRC

Each associated replica catalog can be
configured via properties as follows.

The user associates a variable name re-
ferred to as [value] for each of the cata-
logs, where [value] is any legal identifier
(concretely [A-Za-z][_A-Za-z0-9]*) For
each associated replica catalogs the user
specifies the following properties.

pegasus.catalog.replica.mrc.[value]
 specifies the type of \

 replica catalog.
pegasus.catalog.replica.mrc.
[value].key specifies a property
 name\

 key for a particular catalog

pegasus.catalog.replica.mrc.directory1
 Directory
pegasus.catalog.replica.mrc.directory1.directory /
input/dir1

232

Configuration

pegasus.catalog.replica.mrc.directory1.directory.site
 siteX
pegasus.catalog.replica.mrc.directory2
 Directory
pegasus.catalog.replica.mrc.directory2.directory /
input/dir2
pegasus.catalog.replica.mrc.directory1.directory.site
 siteY

In the above example, directory1, direc-
tory2 are any valid identifier names and
url is the property key that needed to be
specified.

Property Key: pegasus.catalog.replica.chunk.size
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : 1000

The pegasus-rc-client takes in an input file containing the
mappings upon which to work. This property determines,
the number of lines that are read in at a time, and worked
upon at together. This allows the various operations like
insert, delete happen in bulk if the underlying replica im-
plementation supports it.

Property Key: pegasus.catalog.replica.cache.asrc
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : false

This Boolean property determines whether to treat the
cache file specified as a supplemental replica catalog
or not. User can specify on the command line to pega-
sus-plan a comma separated list of cache files using the --
cache option. By default, the LFN->PFN mappings con-
tained in the cache file are treated as cache, i.e if an entry
is found in a cache file the replica catalog is not queried.
This results in only the entry specified in the cache file to
be available for replica selection.
Setting this property to true, results in the cache files to
be treated as supplemental replica catalogs. This results in
the mappings found in the replica catalog (as specified by
pegasus.catalog.replica) to be merged with the ones found
in the cache files. Thus, mappings for a particular LFN
found in both the cache and the replica catalog are avail-
able for replica selection.

Property Key: pegasus.catalog.replica.dax.asrc
Profile Key : N/A
Scope : Properties
Since : 4.5.2
Default : false

This Boolean property determines whether to treat the lo-
cations of files recorded in the DAX as a supplemental
replica catalog or not. By default, the LFN->PFN map-
pings contained in the DAX file overrides any specified in
a replica catalog. This results in only the entry specified
in the DAX file to be available for replica selection.
Setting this property to true, results in the locations of files
recorded in the DAX files to be treated as a supplemental
replica catalog. This results in the mappings found in the
replica catalog (as specified by pegasus.catalog.replica) to
be merged with the ones found in the cache files. Thus,
mappings for a particular LFN found in both the DAX and
the replica catalog are available for replica selection.

Property Key: pegasus.catalog.replica.output.*
Profile Key : N/A
Scope : Properties
Since : 4.5.3
Default : None

Normally, the registration jobs in the executable work-
flow register to the replica catalog specified by the user in
the properties file . This property prefix allows the user to
specify a separate output replica catalog that is different
from the one used for discovery of input files. This is nor-
mally the case, when a Directory or MRC based replica
catalog backend that don't support insertion of entries are
used for discovery of input files. For example to specify
a separate file based output replica catalog, specify

pegasus.catalog.replica.output File
pegasus.catalog.replica.output.file /workflow/
output.rc

233

Configuration

Table 13.17. Site Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.site
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : XML

Pegasus supports two different types of site catalogs in
XML format conforming

• sc-3.0.xsd http://pegasus.isi.edu/schema/sc-3.0.xsd

• sc-4.0.xsd http://pegasus.isi.edu/schema/sc-4.0.xsd

Pegasus is able to auto-detect what schema a user site cat-
alog refers to. Hence, this property may no longer be set.

Property Key: pegasus.catalog.site.file
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : $PWD/sites.xml

The path to the site catalog file, that describes the various
sites and their layouts to Pegasus.

Table 13.18. Transformation Catalog Properties

Key Attributes Description

Property Key: pegasus.catalog.transformation
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : Text

The only recommended and supported version of Trans-
formation Catalog for Pegasus is Text. For the old File
based formats, users should use pegasus-tc-converter to
convert File format to Text Format.

Text In this mode, a multiline file based format is un-
derstood. The file is read and cached in memory.
Any modifications, as adding or deleting, causes
an update of the memory and hence to the file un-
derneath. All queries are done against the mem-
ory representation.

The file sample.tc.text in the etc directory con-
tains an example

Here is a sample textual format for transfoma-
tion catalog containing one transformation on
two sites

tr example::keg:1.0 {
#specify profiles that apply for all the
 sites for the transformation
#in each site entry the profile can be
 overriden
profile env "APP_HOME" "/tmp/karan"
profile env "JAVA_HOME" "/bin/app"
site isi {
profile env "me" "with"
profile condor "more" "test"
profile env "JAVA_HOME" "/bin/java.1.6"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"
osversion "4"
type "INSTALLED"
site wind {
profile env "me" "with"
profile condor "more" "test"
pfn "/path/to/keg"
arch "x86"
os "linux"
osrelease "fc"

234

Configuration

osversion "4"
type "STAGEABLE"

Property Key: pegasus.catalog.transformation
Profile Key : N/A
Scope : Properties
Since : 2.0
Default : $PWD/tc.txt

The path to the transformation catalog file, that describes
the locations of the executables.

Replica Selection Properties

Table 13.19. Replica Selection Properties

Key Attributes Description

Property Key: pegasus.selector.replica
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : Default
See Also : pegasus.selector.replica.*.ignore.stagein.sites
See Also : pegasus.selector.replica.*.prefer.stagein.sites

Each job in the DAX maybe associated with input LFN's
denoting the files that are required for the job to run. To
determine the physical replica (PFN) for a LFN, Pegasus
queries the replica catalog to get all the PFN's (replicas)
associated with a LFN. Pegasus then calls out to a replica
selector to select a replica amongst the various replicas
returned. This property determines the replica selector to
use for selecting the replicas.

Default The selector orders the various candi-
date replica's according to the following
rules

1. valid file URL's . That is URL's
that have the site attribute matching
the site where the executable pega-
sus-transfer is executed.

2. all URL's from preferred site (usually
the compute site)

3. all other remotely accessible (non
file) URL's

Regex This replica selector allows the user al-
lows the user to specific regular expres-
sions that can be used to rank various
PFN's returned from the Replica Cata-
log for a particular LFN. This replica se-
lector orders the replicas based on the
rank. Lower the rank higher the prefer-
ence.

The regular expressions are assigned
different rank, that determine the or-
der in which the expressions are em-
ployed. The rank values for the regex
can expressed in user properties using
the property.

pegasus.selector.replica.regex.rank.
[value] regex-expression

The value is an integer value that de-
notes the rank of an expression with a
rank value of 1 being the highest rank.

235

Configuration

Please note that before applying any
regular expressions on the PFN's, the
file URL's that dont match the preferred
site are explicitly filtered out.

Restricted This replica selector, allows the user
to specify good sites and bad sites for
staging in data to a particular compute
site. A good site for a compute site X,
is a preferred site from which replicas
should be staged to site X. If there are
more than one good sites having a par-
ticular replica, then a random site is se-
lected amongst these preferred sites.

A bad site for a compute site X, is
a site from which replica's should not
be staged. The reason of not accessing
replica from a bad site can vary from the
link being down, to the user not having
permissions on that site's data.

The good | bad sites are specified by the
properties

pegasus.replica.*.prefer.stagein.sites
pegasus.replica.*.ignore.stagein.sites

where the * in the property name de-
notes the name of the compute site. A *
in the property key is taken to mean all
sites.

The pegasus.replica.*.pre-
fer.stagein.sites property takes prece-
dence over pegasus.replica.*.ig-
nore.stagein.sites property i.e. if for a
site X, a site Y is specified both in the
ignored and the preferred set, then site
Y is taken to mean as only a preferred
site for a site X.

Local This replica selector prefers replicas
from the local host and that start with
a file: URL scheme. It is useful, when
users want to stagin files to a remote site
from your submit host using the Condor
file transfer mechanism.

Property Key: pegasus.selector.replica.*.ignore.stagein.sites
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)
See Also : pegasus.selector.replica
See Also : pegasus.selector.replica.*.prefer.stagein.sites

A comma separated list of storage sites from which to nev-
er stage in data to a compute site. The property can apply
to all or a single compute site, depending on how the * in
the property name is expanded.

The * in the property name means all compute sites unless
replaced by a site name.

For e.g setting pegasus.selector.replica.*.ig-
nore.stagein.sites to usc means that ignore all replicas
from site usc for staging in to any compute site. Setting

236

Configuration

pegasus.replica.isi.ignore.stagein.sites to usc means that
ignore all replicas from site usc for staging in data to site
isi.

Property Key: pegasus.selector.replica.*.prefer.stagein.sites
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)
See Also : pegasus.selector.replica
See Also : pegasus.selector.replica.*.ignore.stagein.sites

A comma separated list of preferred storage sites from
which to stage in data to a compute site. The property can
apply to all or a single compute site, depending on how
the * in the property name is expanded.

The * in the property name means all compute sites unless
replaced by a site name.

For e.g setting pegasus.selector.replica.*.pre-
fer.stagein.sites to usc means that prefer all replicas from
site usc for staging in to any compute site. Setting pega-
sus.replica.isi.prefer.stagein.sites to usc means that prefer
all replicas from site usc for staging in data to site isi.

Property Key: pegasus.selector.replica.regex.rank.[value]
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Default : (no default)
See Also : pegasus.selector.replica

Specifies the regex expressions to be applied on the PFNs
returned for a particular LFN. Refer to

http://java.sun.com/javase/6/docs/api/java/util/
regex/Pattern.html

on information of how to construct a regex expression.

The [value] in the property key is to be replaced by an int
value that designates the rank value for the regex expres-
sion to be applied in the Regex replica selector.

The example below indicates preference for file URL's
over URL's referring to gridftp server at example.isi.edu

pegasus.selector.replica.regex.rank.1 file://.*
pegasus.selector.replica.regex.rank.2 gsiftp://
example\.isi\.edu.*

Site Selection Properties

Table 13.20. Site Selection Properties

Key Attributes Description

Property Key: pegasus.selector.site
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : Random
See Also : pegasus.selector.site.path
See Also : pegasus.selector.site.timeout
See Also : pegasus.selector.site.keep.tmp
See Also : pegasus.selector.site.env.*

The site selection in Pegasus can be on basis of any of the
following strategies.

Random In this mode, the jobs will be ran-
domly distributed among the sites
that can execute them.

RoundRobin In this mode. the jobs will be as-
signed in a round robin manner
amongst the sites that can execute
them. Since each site cannot ex-
ecute everytype of job, the round
robin scheduling is done per lev-
el on a sorted list. The sorting is
on the basis of the number of jobs
a particular site has been assigned
in that level so far. If a job can-
not be run on the first site in the
queue (due to no matching entry

237

Configuration

in the transformation catalog for
the transformation referred to by
the job), it goes to the next one
and so on. This implementation
defaults to classic round robin in
the case where all the jobs in the
workflow can run on all the sites.

NonJavaCallout In this mode, Pegasus will call-
out to an external site selector.In
this mode a temporary file is pre-
pared containing the job informa-
tion that is passed to the site selec-
tor as an argument while invok-
ing it. The path to the site selector
is specified by setting the proper-
ty pegasus.site.selector.path. The
environment variables that need
to be set to run the site selector can
be specified using the properties
with a pegasus.site.selector.env.
prefix. The temporary file con-
tains information about the job
that needs to be scheduled. It con-
tains key value pairs with each
key value pair being on a new line
and separated by a =.

The following pairs are current-
ly generated for the site selector
temporary file that is generated in
the NonJavaCallout.

version is the version
of the site se-
lector api,cur-
rently 2.0.

transformation is the ful-
ly-qualified de-
finition iden-
tifier for the
transformation
(TR) name-
space::name:ver-
sion.

derivation is teh fully
qualified de-
finition iden-
tifier for the
derivation
(DV), name-
space::name:ver-
sion.

job.level is the job's
depth in the
tree of the
workflow
DAG.

238

Configuration

job.id is the job's ID,
as used in the
DAX file.

resource.id is a site han-
dle, followed
by whitespace,
followed by a
gridftp serv-
er. Typically,
each gridftp
server is enu-
merated once,
so you may
have multiple
occurances of
the same site.
There can be
multiple occur-
ances of this
key.

input.lfn is an input
LFN, optional-
ly followed by
a whitespace
and file size.
There can be
multiple oc-
curances of
this key,one
for each input
LFN required
by the job.

wf.name label of the
dax, as found
in the DAX's
root element.
wf.index is
the DAX in-
dex, that is in-
cremented for
each partition
in case of de-
ferred plan-
ning.

wf.time is the mtime of
the workflow.

wf.manager is the name of
the workflow
manager being
used .e.g con-
dor

vo.name is the name of
the virtual or-
ganization that
is running this
workflow. It is

239

Configuration

currently set to
NONE

vo.group unused at
present and is
set to NONE.

Group In this mode, a group of jobs will
be assigned to the same site that
can execute them. The use of the
PEGASUS profile key group in
the dax, associates a job with a
particular group. The jobs that do
not have the profile key associat-
ed with them, will be put in the
default group. The jobs in the de-
fault group are handed over to
the "Random" Site Selector for
scheduling.

Heft In this mode, a version of the
HEFT processor scheduling algo-
rithm is used to schedule jobs
in the workflow to multiple grid
sites. The implementation as-
sumes default data communica-
tion costs when jobs are not
scheduled on to the same site. Lat-
er on this may be made more con-
figurable.

The runtime for the jobs is speci-
fied in the transformation catalog
by associating the pegasus profile
key runtime with the entries.

The number of processors in a
site is picked up from the at-
tribute idle-nodes associated with
the vanilla jobmanager of the site
in the site catalog.

Property Key: pegasus.selector.site.path
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)

If one calls out to an external site selector using the Non-
JavaCallout mode, this refers to the path where the site se-
lector is installed. In case other strategies are used it does
not need to be set.

Property Key: pegasus.selector.site.env.*
Profile Key: N/A
Scope : Properties
Since : 2.0
Default : (no default)

The environment variables that need to be set while call-
out to the site selector. These are the variables that the user
would set if running the site selector on the command line.
The name of the environment variable is got by stripping
the keys of the prefix "pegasus.site.selector.env." prefix
from them. The value of the environment variable is the
value of the property.

e.g pegasus.site.selector.path.LD_LIBRARY_PATH /
globus/lib would lead to the site selector being called with
the LD_LIBRARY_PATH set to /globus/lib.

240

Configuration

Property Key: pegasus.selector.site.timeout
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Default : 60
See Also : pegasus.selector.site

It sets the number of seconds Pegasus waits to hear back
from an external site selector using the NonJavaCallout
interface before timing out.

Property Key: pegasus.selector.site.keep.tmp
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Values : onerror|always|never
Default : onerror
See Also : pegasus.selector.site

It determines whether Pegasus deletes the temporary input
files that are generated in the temp directory or not. These
temporary input files are passed as input to the external
site selectors.

A temporary input file is created for each that needs to be
scheduled.

Data Staging Configuration Properties

Table 13.21. Data Configuration Properties

Key Attributes Description

Property Key: pegasus.data.configuration
Profile Key: data.configuration
Scope : Properties, Site Catalog
Since : 4.0.0
Values : sharedfs|nonsharedfs|condorio
Default : sharedfs
See Also : pegasus.transfer.bypass.input.staging

This property sets up Pegasus to run in different environ-
ments. For Pegasus 4.5.0 and above, users can set the pe-
gasus profile data.configuration with the sites in their site
catalog, to run multisite workflows with each site having
a different data configuration.

sharedfs If this is set, Pegasus will be setup to
execute jobs on the shared filesystem
on the execution site. This assumes,
that the head node of a cluster and the
worker nodes share a filesystem. The
staging site in this case is the same
as the execution site. Pegasus adds a
create dir job to the executable work-
flow that creates a workflow specif-
ic directory on the shared filesystem .
The data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this di-
rectory.The compute jobs in the exe-
cutable workflow are launched in the
directory on the shared filesystem.

condorio If this is set, Pegasus will be setup to
run jobs in a pure condor pool, with the
nodes not sharing a filesystem. Data is
staged to the compute nodes from the
submit host using Condor File IO. The
planner is automatically setup to use
the submit host (site local) as the stag-
ing site. All the auxillary jobs added by
the planner to the executable workflow
(create dir, data stagein and stage-out,
cleanup) jobs refer to the workflow
specific directory on the local site. The
data transfer jobs in the executable
workflow (stage_in_ , stage_inter_ ,
stage_out_) transfer the data to this di-
rectory. When the compute jobs start,
the input data for each job is shipped

241

Configuration

from the workflow specific directory
on the submit host to compute/worker
node using Condor file IO. The output
data for each job is similarly shipped
back to the submit host from the com-
pute/worker node. This setup is par-
ticularly helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky.

pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

nonsharedfs If this is set, Pegasus will be setup to
execute jobs on an execution site with-
out relying on a shared filesystem be-
tween the head node and the work-
er nodes. You can specify staging site
(using --staging-site option to pega-
sus-plan) to indicate the site to use as
a central storage location for a work-
flow. The staging site is independant
of the execution sites on which a work-
flow executes. All the auxillary jobs
added by the planner to the executable
workflow (create dir, data stagein
and stage-out, cleanup) jobs refer to
the workflow specific directory on the
staging site. The data transfer jobs in
the executable workflow (stage_in_ ,
stage_inter_ , stage_out_) transfer
the data to this directory. When the
compute jobs start, the input data for
each job is shipped from the workflow
specific directory on the submit host
to compute/worker node using pega-
sus-transfer. The output data for each
job is similarly shipped back to the
submit host from the compute/work-
er node. The protocols supported are
at this time SRM, GridFTP, iRods,
S3. This setup is particularly help-
ful when running workflows on OSG
where most of the execution sites don't
have enough data storage. Only a few
sites have large amounts of data stor-
age exposed that can be used to place
data during a workflow run. This set-
up is also helpful when running work-
flows in the cloud environment where
setting up a shared filesystem across
the VM's may be tricky. On loading
this property, internally the following
properies are set

pegasus.gridstart
 PegasusLite
pegasus.transfer.worker.package
 true

242

Configuration

Property Key: pegasus.transfer.bypass.input.staging
Profile Key: N/A
Scope : Properties
Since : 4.3.0
Type : Boolean
Default : false
See Also : pegasus.data.configuration

When executiing in a non shared filesystem setup i.e data
configuration set to nonsharedfs or condorio, Pegasus al-
ways stages the input files through the staging site i.e the
stage-in job stages in data from the input site to the stag-
ing site. The PegasusLite jobs that start up on the worker
nodes, then pull the input data from the staging site for
each job.

This property can be used to setup the PegasusLite jobs
to pull input data directly from the input site without go-
ing through the staging server. This is based on the as-
sumption that the worker nodes can access the input site.
If users set this to true, they should be aware that the ac-
cess to the input site is no longer throttled (as in case of
stage in jobs). If large number of compute jobs start at the
same time in a workflow, the input server will see a con-
nection from each job.

Transfer Configuration Properties

Table 13.22. Transfer Configuration Properties

Key Attributes Description

Property Key: pegasus.transfer.*.impl
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Values : Transfer|GUC
Default : Transfer
See Also : pegasus.transfer.refiner

Each compute job usually has data products that are re-
quired to be staged in to the execution site, materialized
data products staged out to a final resting place, or staged
to another job running at a different site. This property
determines the underlying grid transfer tool that is used
to manage the transfers.

The * in the property name can be replaced to achieve
finer grained control to dictate what type of transfer jobs
need to be managed with which grid transfer tool.

Usually,the arguments with which the client is invoked
can be specified by

- the property pegasus.transfer.arguments
- associating the PEGASUS profile key
 transfer.arguments

The table below illustrates all the possible variations of
the property.

Property Name Applies to

pegasus.trans-
fer.stagein.impl

the stage in transfer jobs

pegasus.transfer.stage-
out.impl

the stage out transfer jobs

pegasus.transfer.inter.impl the inter site transfer jobs

pegasus.transfer.setup.im-
pl

the setup transfer job

pegasus.transfer.*.impl apply to types of transfer
jobs

243

Configuration

Note: Since version 2.2.0 the worker package is staged
automatically during staging of executables to the remote
site. This is achieved by adding a setup transfer job to the
workflow. The setup transfer job by default uses GUC to
stage the data. The implementation to use can be config-
ured by setting the property

pegasus.transfer.setup.impl

property. However, if you have pegasus.transfer.*.impl
set in your properties file, then you need to set pega-
sus.transfer.setup.impl to GUC

The various grid transfer tools that can be used to manage
data transfers are explained below

Transfer This results in pegasus-transfer to be
used for transferring of files. It is a
python based wrapper around various
transfer clients like globus-url-copy, lcg-
copy, wget, cp, ln . pegasus-transfer looks
at source and destination url and figures
out automatically which underlying client
to use. pegasus-transfer is distributed with
the PEGASUS and can be found at $PE-
GASUS_HOME/bin/pegasus-transfer.

For remote sites, Pegasus constructs the
default path to pegasus-transfer on the
basis of PEGASUS_HOME env profile
specified in the site catalog. To speci-
fy a different path to the pegasus-trans-
fer client , users can add an entry in-
to the transformation catalog with fully
qualified logical name as pegasus::pega-
sus-transfer

GUC This refers to the new guc client that
does multiple file transfers per invoca-
tion. The globus-url-copy client distrib-
uted with Globus 4.x is compatible with
this mode.

Property Key: pegasus.transfer.arguments
Profile Key: transfer.arguments
Scope : Properties
Since : 2.0.0
Type : String
Default : (no default)
See Also : pegasus.transfer.lite.arguments

This determines the extra arguments with which the trans-
fer implementation is invoked. The transfer executable
that is invoked is dependant upon the transfer mode that
has been selected. The property can be overloaded by as-
sociated the pegasus profile key transfer.arguments either
with the site in the site catalog or the corresponding trans-
fer executable in the transformation catalog.

Property Key: pegasus.transfer.threads
Profile Key: transfer.threads
Scope : Properties
Since : 4.4.0
Type : Integer
Default : 2

This property set the number of threads pegasus-transfer
uses to transfer the files. This property to applies to the
separate data transfer nodes that are added by Pegasus to
the executable workflow. The property can be overloaded
by associated the pegasus profile key transfer.threads ei-
ther with the site in the site catalog or the corresponding
transfer executable in the transformation catalog.

Property Key: pegasus.transfer.lite.arguments
Profile Key: transfer.lite.arguments
Scope : Properties
Since : 4.4.0

This determines the extra arguments with which the Pe-
gasusLite transfer implementation is invoked. The trans-
fer executable that is invoked is dependant upon the Pe-
gasusLite transfer implementation that has been selected.

244

Configuration

Type : String
Default : (no default)
See Also : pegasus.transfer.arguments

Property Key: pegasus.transfer.worker.package
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : Boolean
Default : false
See Also : pegasus.data.configuration

By default, Pegasus relies on the worker package to be
installed in a directory accessible to the worker nodes
on the remote sites . Pegasus uses the value of PE-
GASUS_HOME environment profile in the site catalog
for the remote sites, to then construct paths to pegasus
auxillary executables like kickstart, pegasus-transfer, se-
qexec etc.

If the Pegasus worker package is not installed on the re-
mote sites users can set this property to true to get Pegasus
to deploy worker package on the nodes.

In the case of sharedfs setup, the worker package is de-
ployed on the shared scratch directory for the workflow ,
that is accessible to all the compute nodes of the remote
sites.

When running in nonsharefs environments, the worker
package is first brought to the submit directory and then
transferred to the worker node filesystem using Condor
file IO.

 Property Key: pegasus.transfer.worker.package.autodownload
Profile Key: N/A
Scope : Properties
Since : 4.6.1
Type : Boolean
Default : true
See Also : pegasus.transfer.worker.package

If PegasusLite does not find a worker package install
matching the pegasus lite job on the worker node, it auto-
matically downloads the correct worker package from the
Pegasus website. However, this can mask user errors in
configuration. This property can be set to false to disable
auto downloads.

Property Key: pegasus.transfer.worker.package.strict
Profile Key: N/A
Scope : Properties
Since : 4.6.1
Type : Boolean
Default : true
See Also : pegasus.transfer.worker.package

In PegasusLite mode, the pegasus worker package for the
jobs is shipped along with the jobs. This property controls
whether PegasusLite will do a strict match against the ar-
chitecture and os on the local worker node, along with pe-
gasus version. If the strict match fails, then PegasusLite
will revert to the pegasus website to download the correct
worker package.

Property Key: pegasus.transfer.links
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : Boolean
Default : false

If this is set, and the transfer implementation is set to
Transfer i.e. using the transfer executable distributed with
the PEGASUS. On setting this property, if Pegasus while
fetching data from the Replica Catalog sees a "site" at-
tribute associated with the PFN that matches the execution
site on which the data has to be transferred to, Pegasus in-
stead of the URL returned by the Replica Catalog replaces
it with a file based URL. This is based on the assumption
that the if the "site" attributes match, the filesystems are
visible to the remote execution directory where input data
resides. On seeing both the source and destination urls as
file based URLs the transfer executable spawns a job that
creates a symbolic link by calling ln -s on the remote site.

Property Key: pegasus.transfer.*.remote.sites
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : comma separated list of sites
Default : (no default)

By default Pegasus looks at the source and destination
URL's for to determine whether the associated transfer job
runs on the submit host or the head node of a remote site,
with preference set to run a transfer job to run on submit
host.

245

Configuration

Pegasus will run transfer jobs on the remote sites

- if the file server for the compute site is a
 file server i.e url prefix file://
- symlink jobs need to be added that require
 the symlink transfer jobs to
be run remotely.

This property can be used to change the default behav-
iour of Pegasus and force pegasus to run different types
of transfer jobs for the sites specified on the remote site.

The table below illustrates all the possible variations of
the property.

Property Name Applies to

pegasus.transfer.stagein.re-
mote.sites

the stage in transfer jobs

pegasus.transfer.stage-
out.remote.sites

the stage out transfer jobs

pegasus.transfer.inter.re-
mote.sites

the inter site transfer jobs

pegasus.transfer.*.re-
mote.sites

apply to types of transfer
jobs

In addition * can be specified as a property value, to des-
ignate that it applies to all sites.

Property Key: pegasus.transfer.staging.delimiter
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : String
Default : :

Pegasus supports executable staging as part of the work-
flow. Currently staging of statically linked executables is
supported only. An executable is normally staged to the
work directory for the workflow/partition on the remote
site. The basename of the staged executable is derived
from the namespace,name and version of the transforma-
tion in the transformation catalog. This property sets the
delimiter that is used for the construction of the name of
the staged executable.

Property Key: pegasus.transfer.disable.chmod.sites
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : comma separated list of sites
Default : (no default)

During staging of executables to remote sites, chmod jobs
are added to the workflow. These jobs run on the remote
sites and do a chmod on the staged executable. For some
sites, this maynot be required. The permissions might be
preserved, or there maybe an automatic mechanism that
does it.

This property allows you to specify the list of sites, where
you do not want the chmod jobs to be executed. For those
sites, the chmod jobs are replaced by NoOP jobs. The
NoOP jobs are executed by Condor, and instead will im-
mediately have a terminate event written to the job log file
and removed from the queue.

Property Key: pegasus.transfer.setup.source.base.url
Profile Key: N/A
Scope : Properties
Since : 2.0.0
Type : URL
Default : (no default)

This property specifies the base URL to the directory con-
taining the Pegasus worker package builds. During Stag-
ing of Executable, the Pegasus Worker Package is also
staged to the remote site. The worker packages are by de-
fault pulled from the http server at pegasus.isi.edu. This
property can be used to override the location from where
the worker package are staged. This maybe required if the

246

Configuration

remote computes sites don't allows files transfers from a
http server.

Monitoring Properties

Table 13.23. Monitoring Properties

Key Attributes Description

Property Key: pegasus.monitord.events
Profile Key: N/A
Scope : Properties
Since : 3.0.2
Type : String
Default : true
See Also : pegasus.catalog.workflow.url

This property determines whether pegasus-monitord gen-
erates log events. If log events are disabled using this
property, no bp file, or database will be created, even if
the pegasus.monitord.output property is specified.

Property Key: pegasus.catalog.workflow.url
Profile Key: N/A
Scope : Properties
Since : 4.5
Type : String
Default : SQlite database in submit
 directory.
See Also : pegasus.monitord.events

This property specifies the destination for generated log
events in pegasus-monitord. By default, events are stored
in a sqlite database in the workflow directory, which
will be created with the workflow's name, and a ".stam-
pede.db" extension. Users can specify an alternative data-
base by using a SQLAlchemy connection string. Details
are available at:

http://www.sqlalchemy.org/docs/05/reference/
dialects/index.html

It is important to note that users will need to have the ap-
propriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface li-
brary (for instance), it does not provide a MySQL driver
itself. The Pegasus distribution includes both SQLAlche-
my and the SQLite Python driver. As a final note, it is im-
portant to mention that unlike when using SQLite databas-
es, using SQLAlchemy with other database servers, e.g.
MySQL or Postgres , the target database needs to exist.
Users can also specify a file name using this property in
order to create a file with the log events.

Example values for the SQLAlchemy connection string
for various end points are listed below

SQL Alchemy End Point Example Value

Netlogger BP File file:///submit/dir/mywork-
flow.bp

SQL Lite Database sqlite:///submit/dir/my-
workflow.db

MySQL Database mysql://user:pass-
word@host:port/database-
name

Property Key: pegasus.catalog.master.url
Profile Key: N/A
Scope : Properties
Since : 4.2
Type : String
Default : sqlite database in $HOME/.pegasus/workflow.db
See Also : pegasus.catalog.workflow.url

This property specifies the destination for the workflow
dashboard database. By default, the workflow dashboard
datbase defaults to a sqlite database named workflow.db
in the $HOME/.pegasus directory. This is database is
shared for all workflows run as a particular user. Users can
specify an alternative database by using a SQLAlchemy
connection string. Details are available at:

247

Configuration

http://www.sqlalchemy.org/docs/05/reference/
dialects/index.html

It is important to note that users will need to have the ap-
propriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface li-
brary (for instance), it does not provide a MySQL driver
itself. The Pegasus distribution includes both SQLAlche-
my and the SQLite Python driver. As a final note, it is im-
portant to mention that unlike when using SQLite databas-
es, using SQLAlchemy with other database servers, e.g.
MySQL or Postgres , the target database needs to exist.
Users can also specify a file name using this property in
order to create a file with the log events.

Example values for the SQLAlchemy connection string
for various end points are listed below

SQL Alchemy End Point Example Value

SQL Lite Database sqlite:///shared/mywork-
flow.db

MySQL Database mysql://user:pass-
word@host:port/database-
name

Property Key: pegasus.monitord.output
Profile Key: N/A
Scope : Properties
Since : 3.0.2
Type : String
Default : SQlite database in submit
 directory.
See Also : pegasus.monitord.events

This property has been deprecated in favore of pega-
sus.catalog.workflow.url that introduced in 4.5 release.
Support for this property will be dropped in future releas-
es.

Property Key: pegasus.dashboard.output
Profile Key: N/A
Scope : Properties
Since : 4.2
Type : String
Default : sqlite database in $HOME/.pegasus/workflow.db
See Also : pegasus.monitord.output

This property has been deprecated in favore of pega-
sus.catalog.master.url that introduced in 4.5 release. Sup-
port for this property will be dropped in future releases.

Property Key: pegasus.monitord.notifications
Profile Key: N/A
Scope : Properties
Since : 3.1.0
Type : Boolean
Default : true
See Also : pegasus.monitord.notifications.max
See Also : pegasus.monitord.notifications.timeout

This property determines how many notification scripts
pegasus-monitord will call concurrently. Upon reaching
this limit, pegasus-monitord will wait for one notification
script to finish before issuing another one. This is a way to
keep the number of processes under control at the submit
host. Setting this property to 0 will disable notifications
completely.

Property Key: pegasus.monitord.notifications.max
Profile Key: N/A
Scope : Properties
Since : 3.1.0
Type : Integer
Default : 10
See Also : pegasus.monitord.notifications
See Also : pegasus.monitord.notifications.timeout

This property determines whether pegasus-monitord
processes notifications. When notifications are enabled,
pegasus-monitord will parse the .notify file generated by
pegasus-plan and will invoke notification scripts whenev-
er conditions matches one of the notifications.

248

Configuration

Property Key: pegasus.monitord.notifications.timeout
Profile Key: N/A
Scope : Properties
Since : 3.1.0
Type : Integer
Default : true
See Also : pegasus.monitord.notifications.
See Also : pegasus.monitord.notifications.max

This property determines how long will pegasus-monitord
let notification scripts run before terminating them. When
this property is set to 0 (default), pegasus-monitord will
not terminate any notification scripts, letting them run in-
definitely. If some notification scripts missbehave, this
has the potential problem of starving pegasus-monitord's
notification slots (see the pegasus.monitord.notification-
s.max property), and block further notifications. In addi-
tion, users should be aware that pegasus-monitord will not
exit until all notification scripts are finished.

Property Key: pegasus.monitord.stdout.disable.parsing
Profile Key: N/A
Scope : Properties
Since : 3.1.1
Type : Boolean
Default : false

By default, pegasus-monitord parses the stdout/stderr sec-
tion of the kickstart to populate the applications captured
stdout and stderr in the job instance table for the stampede
schema. For large workflows, this may slow down moni-
tord especially if the application is generating a lot of out-
put to it's stdout and stderr. This property, can be used to
turn of the database population.

Property Key: pegasus.monitord.arguments
Profile Key: N/A
Scope : Properties
Since : 4.6
Type : String
Default : N/A

This property specifies additional command-line argu-
ments that should be passed to pegasus-monitord at start-
up. These additional arguments are appended to the argu-
ments given to pegasus-monitord.

Job Clustering Properties

Table 13.24. Job Clustering Properties

Key Attributes Description

Property Key: pegasus.clusterer.job.aggregator
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Values : seqexec|mpiexec
Default : seqexec

A large number of workflows executed through the Virtu-
al Data System, are composed of several jobs that run for
only a few seconds or so. The overhead of running any job
on the grid is usually 60 seconds or more. Hence, it makes
sense to collapse small independent jobs into a larger job.
This property determines, the executable that will be used
for running the larger job on the remote site.

seqexec In this mode, the executable used to run
the merged job is "pegasus-cluster" that runs
each of the smaller jobs sequentially on the
same node. The executable "pegasus-clus-
ter" is a PEGASUS tool distributed in the
PEGASUS worker package, and can be usu-
ally found at {pegasus.home}/bin/seqexec.

mpiexec In this mode, the executable used to run the
merged job is "pegasus-mpi-cluster" (PMC)
that runs the smaller jobs via mpi on n nodes
where n is the nodecount associated with the
merged job. The executable "pegasus-mpi-
cluster" is a PEGASUS tool distributed in the
PEGASUS distribution and is built only if
mpi compiler is available.

Property Key: pegasus.clusterer.job.aggregator.seqexec.log
Profile Key: N/A
Scope : Properties
Since : 2.3

The tool pegasus-cluster logs the progress of the jobs that
are being run by it in a progress file on the remote cluster
where it is executed.

249

Configuration

Type : Boolean
Default : false
See Also : pegasus.clusterer.job.aggregator
See Also : pegasus.clusterer.job.aggregator.seqexec.log.global

This property sets the Boolean flag, that indicates whether
to turn on the logging or not.

Property Key: pegasus.clusterer.job.aggregator.seqexec.log
Profile Key: N/A
Scope : Properties
Since : 2.3
Type : Boolean
Default : false
See Also : pegasus.clusterer.job.aggregator
See Also : pegasus.clusterer.job.aggregator.seqexec.log.global

The tool pegasus-cluster logs the progress of the jobs that
are being run by it in a progress file on the remote cluster
where it is executed. The progress log is useful for you to
track the progress of your computations and remote grid
debugging. The progress log file can be shared by multi-
ple pegasus-cluster jobs that are running on a particular
cluster as part of the same workflow. Or it can be per job.

This property sets the Boolean flag, that indicates whether
to have a single global log for all the pegasus-cluster jobs
on a particular cluster or progress log per job.

Property Key: pegasus.clusterer.job.aggregator.seqexec.firstjobfail
Profile Key: N/A
Scope : Properties
Since : 2.2
Type : Boolean
Default : true
See Also : pegasus.clusterer.job.aggregator

By default "pegasus-cluster" does not stop execution even
if one of the clustered jobs it is executing fails. This is
because "pegasus-cluster" tries to get as much work done
as possible.

This property sets the Boolean flag, that indicates whether
to make "pegasus-cluster" stop on the first job failure it
detects.

Property Key: pegasus.clusterer.label.key
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : String
Default : label

While clustering jobs in the workflow into larger jobs,
you can optionally label your graph to control which jobs
are clustered and to which clustered job they belong.
This done using a label based clustering scheme and is
done by associating a profile/label key in the PEGASUS
namespace with the jobs in the DAX. Each job that has
the same value/label value for this profile key, is put in
the same clustered job.

This property allows you to specify the PEGASUS pro-
file key that you want to use for label based clustering.

Logging Properties

Table 13.25. Logging Properties

Key Attributes Description

Property Key: pegasus.log.manager
Profile Key: N/A
Scope : Properties
Since : 2.2.0
Type : String
Values : Default|Log4J
Default : Default
See Also :pegasus.log.manager.formatter

This property sets the logging implementation to use for
logging.

Default This implementation refers to the legacy Pe-
gasus logger, that logs directly to stdout and
stderr. It however, does have the concept of
levels similar to log4j or syslog.

Log4j This implementation, uses Log4j to log mes-
sages. The log4j properties can be specified
in a properties file, the location of which is
specified by the property

pegasus.log.manager.log4j.conf

Property Key: pegasus.log.manager.formatter
Profile Key: N/A
Scope : Properties

This property sets the formatter to use for formatting the
log messages while logging.

250

Configuration

Since : 2.2.0
Type : String
Values : Simple|Netlogger
Default : Simple
See Also :pegasus.log.manager

Simple This formats the messages in a sim-
ple format. The messages are logged
as is with minimal formatting. Below
are sample log messages in this format
while ranking a dax according to perfor-
mance.

event.pegasus.ranking dax.id se18-
gda.dax - STARTED
event.pegasus.parsing.dax dax.id
 se18-gda-nested.dax - STARTED
event.pegasus.parsing.dax dax.id
 se18-gda-nested.dax - FINISHED
job.id jobGDA
job.id jobGDA query.name
 getpredicted performace time
 10.00
event.pegasus.ranking dax.id se18-
gda.dax - FINISHED

Netlogger This formats the messages in the Net-
logger format , that is based on key val-
ue pairs. The netlogger format is use-
ful for loading the logs into a database
to do some meaningful analysis. Below
are sample log messages in this format
while ranking a dax according to perfor-
mance.

ts=2008-09-06T12:26:20.100502Z
 event=event.pegasus.ranking.start
 \
msgid=6bc49c1f-112e-4cdb-
af54-3e0afb5d593c \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5 \
dax.id=se18-gda.dax prog=Pegasus
ts=2008-09-06T12:26:20.100750Z
 event=event.pegasus.parsing.dax.start
 \
msgid=fed3ebdf-68e6-4711-8224-
a16bb1ad2969 \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-
b11c-b49def0c5232\
dax.id=se18-gda-nested.dax
 prog=Pegasus
ts=2008-09-06T12:26:20.100894Z
 event=event.pegasus.parsing.dax.end
 \
msgid=a81e92ba-27df-451f-bb2b-
b60d232ed1ad \
eventId=event.pegasus.parsing.dax_887134a8-39cb-40f1-
b11c-b49def0c5232
ts=2008-09-06T12:26:20.100395Z
 event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-
ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5 \
job.id="jobGDA"
ts=2008-09-06T12:26:20.100395Z
 event=event.pegasus.ranking \
msgid=4dcecb68-74fe-4fd5-aa9e-
ea1cee88727d \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5 \
job.id="jobGDA"
 query.name="getpredicted
 performace" time="10.00"
ts=2008-09-06T12:26:20.102003Z
 event=event.pegasus.ranking.end \

251

Configuration

msgid=31f50f39-
efe2-47fc-9f4c-07121280cd64 \
eventId=event.pegasus.ranking_8d7c0a3c-9271-4c9c-
a0f2-1fb57c6394d5

Property Key: pegasus.log.*
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : file path
Default : no default

This property sets the path to the file where all the logging
for Pegasus can be redirected to. Both stdout and stderr
are logged to the file specified.

Property Key: pegasus.log.memory.usage
Profile Key: N/A
Scope : Properties
Since : 4.3.4
Type : Boolean
Default : false

This property if set to true, will result in the planner writ-
ing out JVM heap memory statistics at the end of the plan-
ning process at the INFO level. This is useful, if users
want to fine tune their java memory settings by setting JA-
VA_HEAPMAX and JAVA_HEAPMIN for large work-
flows.

Property Key: pegasus.metrics.app
Profile Key: N/A
Scope : Properties
Since : 4.3.0
Type : String
Default : (no default)

This property namespace allows users to pass application
level metrics to the metrics server. The value of this prop-
erty is the name of the application.

Additional application specific attributes can be passed by
using the prefix pegasus.metrics.app

pegasus.metrics.app.[arribute-name]
 attribute-value

Note: the attribute cannot be named name. This attribute
is automatically assigned the value from pegasus.metric-
s.app

Cleanup Properties

Table 13.26. Cleanup Properties

Key Attributes Description

Property Key: pegasus.file.cleanup.strategy
Profile Key: N/A
Scope : Properties
Since : 2.2-
Type : String
Default : InPlace

This property is used to select the strategy of how the
cleanup nodes are added to the executable workflow.

InPlace The default cleanup strategy. Adds
cleanup nodes per level of the work-
flow.

Constraint Adds cleanup nodes to constraint the
amount of storage space used by a work-
flow.

Note that this property is overridden by the --cleanup op-
tion used in pegasus-plan.

Property Key: pegasus.file.cleanup.impl
Profile Key: N/A
Scope : Properties
Since : 2.2
Type : String
Default : Cleanup

This property is used to select the executable that is used
to create the working directory on the compute sites.

Cleanup The default executable that is used to delete
files is the "pegasus-transfer" executable
shipped with Pegasus. It is found at $PE-
GASUS_HOME/bin/pegasus-transfer in the
Pegasus distribution. An entry for transfor-
mation pegasus::dirmanager needs to ex-
ist in the Transformation Catalog or the

252

Configuration

PEGASUS_HOME environment variable
should be specified in the site catalog for the
sites for this mode to work.

RM This mode results in the rm executable to be
used to delete files from remote directories.
The rm executable is standard on *nix sys-
tems and is usually found at /bin/rm location.

Property Key: pegasus.file.cleanup.clusters.num
Profile Key: N/A
Scope : Properties
Since : 4.2.0
Type : Integer

In case of the InPlace strategy for adding the cleanup
nodes to the workflow, this property specifies the maxi-
mum number of cleanup jobs that are added to the exe-
cutable workflow on each level.

Property Key: pegasus.file.cleanup.clusters.size
Profile Key: N/A
Scope : Properties
Since : 4.2.0
Type : Integer
Default : 2

In case of the InPlace strategy this property sets the
number of cleanup jobs that get clustered into a big-
ger cleanup job. This parameter is only used if pega-
sus.file.cleanup.clusters.num is not set.

Property Key: pegasus.file.cleanup.scope
Profile Key: N/A
Scope : Properties
Since : 2.3.0
Type : Enumeration
Value : fullahead|deferred
Default : fullahead

By default in case of deferred planning InPlace file
cleanup is turned OFF. This is because the cleanup algo-
rithm does not work across partitions. This property can
be used to turn on the cleanup in case of deferred planning.

fullahead This is the default scope. The pegasus
cleanup algorithm does not work across
partitions in deferred planning. Hence the
cleanup is always turned OFF , when de-
ferred planning occurs and cleanup scope
is set to full ahead.

deferred If the scope is set to deferred, then Pega-
sus will not disable file cleanup in case
of deferred planning. This is useful for
scenarios where the partitions themselves
are independant (i.e. dont share files).
Even if the scope is set to deferred, users
can turn off cleanup by specifying --no-
cleanup option to pegasus-plan.

Property Key: pegasus.file.cleanup.constraint.*.maxspace
Profile Key: N/A
Scope : Properties
Since : 4.6.0
Type : String
Default : 10737418240

This property is used to set the maximum avaialble space
(i.e., constraint) per site in Bytes. The * in the property
name denotes the name of the compute site. A * in the
property key is taken to mean all sites.

Property Key: pegasus.file.cleanup.constraint.deferstageins
Profile Key: N/A
Scope : Properties
Since : 4.6.0
Type : Boolean
Default : False

This property is used to determine whether stage in jobs
may be deferred. If this property is set to False (default),
all stage in jobs will be marked as executing on the current
compute site and will be executed before any task. This
property has no effect when running in a multi site case.

Property Key: pegasus.file.cleanup.constraint.csv
Profile Key: N/A
Scope : Properties
Since : 4.6.1
Type : String

This property is used to specify a CSV file with a list of
LFNs and their respective sizes in Bytes. The CSV file
must be composed of two columns: filename and length.

253

Configuration

Default : (no default)

Miscellaneous Properties

Table 13.27. Miscellaneous Properties

Key Attributes Description

Property Key: pegasus.code.generator
Profile Key: N/A
Scope : Properties
Since : 3.0
Type : String
Values : Condor|Shell|PMC
Default : Condor
See Also : pegasus.log.manager.formatter

This property is used to load the appropriate Code Gener-
ator to use for writing out the executable workflow.

Condor This is the default code generator for Pegasus .
This generator generates the executable work-
flow as a Condor DAG file and associated job
submit files. The Condor DAG file is passed
as input to Condor DAGMan for job execu-
tion.

Shell This Code Generator generates the executable
workflow as a shell script that can be executed
on the submit host. While using this code gen-
erator, all the jobs should be mapped to site
local i.e specify --sites local to pegasus-plan.

PMC This Code Generator generates the executable
workflow as a PMC task workflow. This is
useful to run on platforms where it not feasible
to run Condor such as the new XSEDE ma-
chines such as Blue Waters. In this mode, Pe-
gasus will generate the executable workflow
as a PMC task workflow and a sample PBS
submit script that submits this workflow.

Property Key: pegasus.condor.concurrency.limits
Profile Key: N/A
Scope : Properties
Since : 4.5.3
Type : Boolean
Default : False

This Boolean property is used to determine whether Pega-
sus associates default HTCondor concurrency limits with
jobs or not. Setting this property to true, allows you to
throttle jobs across workflows, if the workflow are set to
run in pure condor environment.

Property Key: pegasus.register
Profile Key: N/A
Scope : Properties
Since : 4.1.-
Type : Boolean
Default : true

Pegasus creates registration jobs to register the output files
in the replica catalog. An output file is registered only if

1) a user has configured a replica catalog in the properties
2) the register flags for the output files in the DAX are set
to true

This property can be used to turn off the creation of the
registration jobs even though the files maybe marked to
be registered in the replica catalog.

Property Key: pegasus.register.deep
Profile Key: N/A
Scope : Properties
Since : 4.5.3.-
Type : Boolean
Default : true

By default, Pegasus always registers the complete LFN
that is associated with the output files in the DAX i.e if
the LFN has / in it, then lfn registered in the replica cata-
log has the whole part. For example, if in your DAX you
have rupture/0001.rx as the name attribute for the uses tag,
then in the Replica Catalog the LFN is registered as rup-
ture/0001.rx

On setting this property to false, only the basename is
considered while registering in the replica catalog. In the

254

Configuration

above case, 0001.rx will be registered instead of rup-
ture/0001.rx

Property Key: pegasus.data.reuse.scope
Profile Key: N/A
Scope : Properties
Since : 4.5.0
Type : Enumeration
Value : none|partial|full
Default : full

This property is used to control the behavior of the data
reuse algorithm in Pegasus

none This is same as disabling data reuse. It is
equivalent to passing the --force option to
pegasus-plan on the command line.

partial In this case, only certain jobs (those that
have pegasus profile key enable_for_da-
ta_reuse set to true) are checked for pres-
ence of output files in the replica catalog.
This gives users control over what jobs are
deleted as part of the data reuse algorithm.

full This is the default behavior, where all the
jobs output files are looked up in the replica
catalog.

Property Key: pegasus.catalog.transformation.mapper
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Enumeration
Value : All|Installed|Staged|Submit
Default : All

Pegasus supports transfer of statically linked executables
as part of the executable workflow. At present, there is
only support for staging of executables referred to by the
compute jobs specified in the DAX file. Pegasus deter-
mines the source locations of the binaries from the trans-
formation catalog, where it searches for entries of type
STATIC_BINARY for a particular architecture type. The
PFN for these entries should refer to a globus-url-copy
valid and accessible remote URL. For transfer of executa-
bles, Pegasus constructs a soft state map that resides on
top of the transformation catalog, that helps in determin-
ing the locations from where an executable can be staged
to the remote site.

This property determines, how that map is created.

All In this mode, all sources with entries
of type STATIC_BINARY for a partic-
ular transformation are considered valid
sources for the transfer of executables.
This the most general mode, and results
in the constructing the map as a result of
the cartesian product of the matches.

Installed In this mode, only entries that are of type
INSTALLED are used while constructing
the soft state map. This results in Pegasus
never doing any transfer of executables as
part of the workflow. It always prefers the
installed executables at the remote sites.

Staged In this mode, only entries that are of type
STATIC_BINARY are used while con-
structing the soft state map. This results
in the concrete workflow referring only
to the staged executables, irrespective of
the fact that the executables are already
installed at the remote end.

Submit In this mode, only entries that are of type
STATIC_BINARY and reside at the sub-

255

Configuration

mit host ("site" local), are used while con-
structing the soft state map. This is espe-
cially helpful, when the user wants to use
the latest compute code for his computa-
tions on the grid and that relies on his sub-
mit host.

Property Key: pegasus.selector.transformation
Profile Key: N/A
Scope : Properties
Since : 2.0
Type : Enumeration
Value : Random|Installed|Staged|Submit
Default : Random

In case of transfer of executables, Pegasus could have var-
ious transformations to select from when it schedules to
run a particular compute job at a remote site. For e.g it can
have the choice of staging an executable from a particular
remote site, from the local (submit host) only, use the one
that is installed on the remote site only.

This property determines, how a transformation amongst
the various candidate transformations is selected, and is
applied after the property pegasus.tc has been applied.
For e.g specifying pegasus.tc as Staged and then pe-
gasus.transformation.selector as INSTALLED does not
work, as by the time this property is applied, the soft state
map only has entries of type STAGED.

Random In this mode, a random matching can-
didate transformation is selected to be
staged to the remote execution site.

Installed In this mode, only entries that are of type
INSTALLED are selected. This means
that the concrete workflow only refers to
the transformations already pre installed
on the remote sites.

Staged In this mode, only entries that are of type
STATIC_BINARY are selected, ignoring
the ones that are installed at the remote
site.

Submit In this mode, only entries that are of type
STATIC_BINARY and reside at the sub-
mit host ("site" local), are selected as
sources for staging the executables to the
remote execution sites.

Property Key: pegasus.parser.dax.preserver.linebreaks
Profile Key: N/A
Scope : Properties
Since : 2.2.0
Type : Boolean
Default : false

The DAX Parser normally does not preserve line breaks
while parsing the CDATA section that appears in the ar-
guments section of the job element in the DAX. On setting
this to true, the DAX Parser preserves any line line breaks
that appear in the CDATA section.

Property Key: pegasus.parser.dax.data.dependencies
Profile Key: N/A
Scope : Properties
Since : 4.4.0
Type : Boolean
Default : true

If this property is set to true, then the planner will auto-
matically add edges between jobs in the DAX on the basis
of exisitng data dependencies between jobs. For example,
if a JobA generates an output file that is listed as input
for JobB, then the planner will automatically add an edge
between JobA and JobB.

256

Chapter 14. Submit Directory Details
This chapter describes the submit directory content after Pegasus has planned a workflow. Pegasus takes in an abstract
workflow (DAX) and generates an executable workflow (DAG) in the submit directory.

This document also describes the various Replica Selection Strategies in Pegasus.

Layout
Each executable workflow is associated with a submit directory, and includes the following:

1. <daxlabel-daxindex>.dag

This is the Condor DAGMman dag file corresponding to the executable workflow generated by Pegasus. The dag
file describes the edges in the DAG and information about the jobs in the DAG. Pegasus generated .dag file usually
contains the following information for each job

a. The job submit file for each job in the DAG.

b. The post script that is to be invoked when a job completes. This is usually located at $PEGASUS_HOME/bin/
exitpost and parses the kickstart record in the job's.out file and determines the exitcode.

c. JOB RETRY - the number of times the job is to be retried in case of failure. In Pegasus, the job postscript exits
with a non zero exitcode if it determines a failure occurred.

2. <daxlabel-daxindex>.dag.dagman.out

When a DAG (.dag file) is executed by Condor DAGMan , the DAGMan writes out it's output to the <daxla-
bel-daxindex>.dag.dagman.out file . This file tells us the progress of the workflow, and can be used to determine
the status of the workflow. Most of pegasus tools mine the dagman.out or jobstate.log to determine the progress
of the workflows.

3. <daxlabel-daxindex>.static.bp

This file contains netlogger events that link jobs in the DAG with the jobs in the DAX. This file is parsed by
pegasus-monitord when a workflow starts and populated to the stampede backend.

4. <daxlabel-daxindex>.notify

This file contains all the notifications that need to be set for the workflow and the jobs in the executable workflow.
The format of notify file is described here

5. <daxlabel-daxindex>.replica.store

This is a file based replica catalog, that only lists file locations are mentioned in the DAX.

6. <daxlabel-daxindex>.dot

Pegasus creates a dot file for the executable workflow in addition to the .dag file. This can be used to visualize the
executable workflow using the dot program.

7. <job>.sub

Each job in the executable workflow is associated with it's own submit file. The submit file tells Condor how to
execute the job.

8. <job>.out.00n

The stdout of the executable referred in the job submit file. In Pegasus, most jobs are launched via kickstart. Hence,
this file contains the kickstart XML provenance record that captures runtime provenance on the remote node where
the job was executed. n varies from 1-N where N is the JOB RETRY value in the .dag file. The exitpost executable

257

Submit Directory Details

is invoked on the <job>.out file and it moves the <job>.out to <job>.out.00n so that the the job's .out files are
preserved across retries.

9. <job>.err.00n

The stderr of the executable referred in the job submit file. In case of Pegasus, mostly the jobs are launched via
kickstart. Hence, this file contains stderr of kickstart. This is usually empty unless there in an error in kickstart
e.g. kickstart segfaults , or kickstart location specified in the submit file is incorrect. The exitpost executable is
invoked on the <job>.out file and it moves the <job>.err to <job>.err.00n so that the the job's .out files are
preserved across retries.

10.jobstate.log

The jobstate.log file is written out by the pegasus-monitord daemon that is launched when a workflow is submit-
ted for execution by pegasus-run. The pegasus-monitord daemon parses the dagman.out file and writes out the
jobstate.log that is easier to parse. The jobstate.log captures the various states through which a job goes during the
workflow. There are other monitoring related files that are explained in the monitoring chapter.

11.braindump.txt

Contains information about pegasus version, dax file, dag file, dax label.

Condor DAGMan File
The Condor DAGMan file (.dag) is the input to Condor DAGMan (the workflow executor used by Pegasus) .

Pegasus generated .dag file usually contains the following information for each job:

1. The job submit file for each job in the DAG.

2. The post script that is to be invoked when a job completes. This is usually found in $PEGASUS_HOME/bin/
exitpost and parses the kickstart record in the job's .out file and determines the exitcode.

3. JOB RETRY - the number of times the job is to be retried in case of failure. In case of Pegasus, job postscript exits
with a non zero exitcode if it determines a failure occurred.

4. The pre script to be invoked before running a job. This is usually for the dax jobs in the DAX. The pre script is
pegasus-plan invocation for the subdax.

In the last section of the DAG file the relations between the jobs (that identify the underlying DAG structure) are
highlighted.

Sample Condor DAG File
###
PEGASUS WMS GENERATED DAG FILE
DAG blackdiamond
Index = 0, Count = 1
##

JOB create_dir_blackdiamond_0_isi_viz create_dir_blackdiamond_0_isi_viz.sub
SCRIPT POST create_dir_blackdiamond_0_isi_viz /pegasus/bin/pegasus-exitcode \
 /submit-dir/create_dir_blackdiamond_0_isi_viz.out
RETRY create_dir_blackdiamond_0_isi_viz 3

JOB create_dir_blackdiamond_0_local create_dir_blackdiamond_0_local.sub
SCRIPT POST create_dir_blackdiamond_0_local /pegasus/bin/pegasus-exitcode
 /submit-dir/create_dir_blackdiamond_0_local.out

JOB pegasus_concat_blackdiamond_0 pegasus_concat_blackdiamond_0.sub

JOB stage_in_local_isi_viz_0 stage_in_local_isi_viz_0.sub
SCRIPT POST stage_in_local_isi_viz_0 /pegasus/bin/pegasus-exitcode \
 /submit-dir/stage_in_local_isi_viz_0.out

JOB chmod_preprocess_ID000001_0 chmod_preprocess_ID000001_0.sub
SCRIPT POST chmod_preprocess_ID000001_0 /pegasus/bin/pegasus-exitcode \
 /submit-dir/chmod_preprocess_ID000001_0.out

258

Submit Directory Details

JOB preprocess_ID000001 preprocess_ID000001.sub
SCRIPT POST preprocess_ID000001 /pegasus/bin/pegasus-exitcode \
 /submit-dir/preprocess_ID000001.out

JOB subdax_black_ID000002 subdax_black_ID000002.sub
SCRIPT PRE subdax_black_ID000002 /pegasus/bin/pegasus-plan \
 -Dpegasus.user.properties=/submit-dir/./dag_1/test_ID000002/
pegasus.3862379342822189446.properties\
 -Dpegasus.log.*=/submit-dir/subdax_black_ID000002.pre.log \
 -Dpegasus.dir.exec=app_domain/app -Dpegasus.dir.storage=duncan -Xmx1024 -Xms512\
 --dir /pegasus-features/dax-3.2/dags \
 --relative-dir user/pegasus/blackdiamond/run0005/user/pegasus/blackdiamond/run0005/./dag_1 \
 --relative-submit-dir user/pegasus/blackdiamond/run0005/./dag_1/test_ID000002\
 --basename black --sites dax_site \
 --output local --force --nocleanup \
 --verbose --verbose --verbose --verbose --verbose --verbose --verbose \
 --verbose --monitor --deferred --group pegasus --rescue 0 \
 --dax /submit-dir/./dag_1/test_ID000002/dax/blackdiamond_dax.xml

JOB stage_out_local_isi_viz_0_0 stage_out_local_isi_viz_0_0.sub
SCRIPT POST stage_out_local_isi_viz_0_0 /pegasus/bin/pegasus-exitcode /submit-dir/
stage_out_local_isi_viz_0_0.out

SUBDAG EXTERNAL subdag_black_ID000003 /Users/user/Pegasus/work/dax-3.2/black.dag DIR /duncan/test

JOB clean_up_stage_out_local_isi_viz_0_0 clean_up_stage_out_local_isi_viz_0_0.sub
SCRIPT POST clean_up_stage_out_local_isi_viz_0_0 /lfs1/devel/Pegasus/pegasus/bin/pegasus-exitcode \
 /submit-dir/clean_up_stage_out_local_isi_viz_0_0.out

JOB clean_up_preprocess_ID000001 clean_up_preprocess_ID000001.sub
SCRIPT POST clean_up_preprocess_ID000001 /lfs1/devel/Pegasus/pegasus/bin/pegasus-exitcode \
 /submit-dir/clean_up_preprocess_ID000001.out

PARENT create_dir_blackdiamond_0_isi_viz CHILD pegasus_concat_blackdiamond_0
PARENT create_dir_blackdiamond_0_local CHILD pegasus_concat_blackdiamond_0
PARENT stage_out_local_isi_viz_0_0 CHILD clean_up_stage_out_local_isi_viz_0_0
PARENT stage_out_local_isi_viz_0_0 CHILD clean_up_preprocess_ID000001
PARENT preprocess_ID000001 CHILD subdax_black_ID000002
PARENT preprocess_ID000001 CHILD stage_out_local_isi_viz_0_0
PARENT subdax_black_ID000002 CHILD subdag_black_ID000003
PARENT stage_in_local_isi_viz_0 CHILD chmod_preprocess_ID000001_0
PARENT stage_in_local_isi_viz_0 CHILD preprocess_ID000001
PARENT chmod_preprocess_ID000001_0 CHILD preprocess_ID000001
PARENT pegasus_concat_blackdiamond_0 CHILD stage_in_local_isi_viz_0
##
End of DAG
##

Kickstart XML Record
Kickstart is a light weight C executable that is shipped with the pegasus worker package. All jobs are launced via
Kickstart on the remote end, unless explicitly disabled at the time of running pegasus-plan.

Kickstart does not work with:

1. Condor Standard Universe Jobs

2. MPI Jobs

Pegasus automatically disables kickstart for the above jobs.

Kickstart captures useful runtime provenance information about the job launched by it on the remote note, and puts in
an XML record that it writes to its own stdout. The stdout appears in the workflow submit directory as <job>.out.00n .
The following information is captured by kickstart and logged:

1. The exitcode with which the job it launched exited.

2. The duration of the job

3. The start time for the job

4. The node on which the job ran

259

Submit Directory Details

5. The stdout and stderr of the job

6. The arguments with which it launched the job

7. The environment that was set for the job before it was launched.

8. The machine information about the node that the job ran on

Amongst the above information, the dagman.out file gives a coarser grained estimate of the job duration and start time.

Reading a Kickstart Output File
The kickstart file below has the following fields highlighted:

1. The host on which the job executed and the ipaddress of that host

2. The duration and start time of the job. The time here is in reference to the clock on the remote node where the
job is executed.

3. The exitcode with which the job executed

4. The arguments with which the job was launched.

5. The directory in which the job executed on the remote site

6. The stdout of the job

7. The stderr of the job

8. The environment of the job

<?xml version="1.0" encoding="ISO-8859-1"?>

<invocation xmlns="http://pegasus.isi.edu/schema/invocation" \
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" \
 xsi:schemaLocation="http://pegasus.isi.edu/schema/invocation http://pegasus.isi.edu/schema/
iv-2.0.xsd" \
 version="2.0" start="2009-01-30T19:17:41.157-06:00" duration="0.321"
 transformation="pegasus::dirmanager"\
 derivation="pegasus::dirmanager:1.0" resource="cobalt" wf-label="scb" \
 wf-stamp="2009-01-30T17:12:55-08:00" hostaddr="141.142.30.219" hostname="co-
login.ncsa.uiuc.edu"\
 pid="27714" uid="29548" user="vahi" gid="13872" group="bvr" umask="0022">

<mainjob start="2009-01-30T19:17:41.426-06:00" duration="0.052" pid="27783">

<usage utime="0.036" stime="0.004" minflt="739" majflt="0" nswap="0" nsignals="0" nvcsw="36"
 nivcsw="3"/>

<status raw="0"><regular exitcode="0"/></status>

<statcall error="0">
<!-- deferred flag: 0 -->
<file name="/u/ac/vahi/SOFTWARE/pegasus/default/bin/dirmanager">23212F7573722F62696E2F656E762070</
file>
<statinfo mode="0100755" size="8202" inode="85904615883" nlink="1" blksize="16384" \
 blocks="24" mtime="2008-09-22T18:52:37-05:00" atime="2009-01-30T14:54:18-06:00" \
 ctime="2009-01-13T19:09:47-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<argument-vector>
<arg nr="1">--create</arg>
<arg nr="2">--dir</arg>
<arg nr="3">/u/ac/vahi/globus-test/EXEC/vahi/pegasus/scb/run0001</arg>
</argument-vector>

</mainjob>

<cwd>/u/ac/vahi/globus-test/EXEC</cwd>

<usage utime="0.012" stime="0.208" minflt="4232" majflt="0" nswap="0" nsignals="0" nvcsw="15"
 nivcsw="74"/>
<machine page-size="16384" provider="LINUX">

260

Submit Directory Details

<stamp>2009-01-30T19:17:41.157-06:00</stamp>
<uname system="linux" nodename="co-login" release="2.6.16.54-0.2.5-default" machine="ia64">#1 SMP
 Mon Jan 21\
 13:29:51 UTC 2008</uname>
<ram total="148299268096" free="123371929600" shared="0" buffer="2801664"/>
<swap total="1179656486912" free="1179656486912"/>
<boot idle="1315786.920">2009-01-15T10:19:50.283-06:00</boot>
<cpu count="32" speed="1600" vendor=""></cpu>
<load min1="3.50" min5="3.50" min15="2.60"/>
<proc total="841" running="5" sleeping="828" stopped="5" vmsize="10025418752" rss="2524299264"/>
<task total="1125" running="6" sleeping="1114" stopped="5"/>
</machine>
<statcall error="0" id="stdin">
<!-- deferred flag: 0 -->
<file name="/dev/null"/>
<statinfo mode="020666" size="0" inode="68697" nlink="1" blksize="16384" blocks="0" \
 mtime="2007-05-04T05:54:02-05:00" atime="2007-05-04T05:54:02-05:00" \
 ctime="2009-01-15T10:21:54-06:00" uid="0" user="root" gid="0" group="root"/>
</statcall>

<statcall error="0" id="stdout">
<temporary name="/tmp/gs.out.s9rTJL" descriptor="3"/>
<statinfo mode="0100600" size="29" inode="203420686" nlink="1" blksize="16384" blocks="128" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00"\
 ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
<data>mkdir finished successfully.
</data>
</statcall>
<statcall error="0" id="stderr">
<temporary name="/tmp/gs.err.kobn3S" descriptor="5"/>
<statinfo mode="0100600" size="0" inode="203420689" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00" \
ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<statcall error="0" id="gridstart">
<!-- deferred flag: 0 -->
<file name="/u/ac/vahi/SOFTWARE/pegasus/default/bin/kickstart">7F454C46020101000000000000000000</
file>
<statinfo mode="0100755" size="255445" inode="85904615876" nlink="1" blksize="16384" blocks="504" \
 mtime="2009-01-30T18:06:28-06:00" atime="2009-01-30T19:17:41-06:00"\
 ctime="2009-01-30T18:06:28-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>
<statcall error="0" id="logfile">
<descriptor number="1"/>
<statinfo mode="0100600" size="0" inode="53040253" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:39-06:00" atime="2009-01-30T19:17:39-06:00" \
ctime="2009-01-30T19:17:39-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>
<statcall error="0" id="channel">
<fifo name="/tmp/gs.app.Ien1m0" descriptor="7" count="0" rsize="0" wsize="0"/>
<statinfo mode="010640" size="0" inode="203420696" nlink="1" blksize="16384" blocks="0" \
 mtime="2009-01-30T19:17:41-06:00" atime="2009-01-30T19:17:41-06:00" \
ctime="2009-01-30T19:17:41-06:00" uid="29548" user="vahi" gid="13872" group="bvr"/>
</statcall>

<environment>
<env key="GLOBUS_GRAM_JOB_CONTACT">https://co-login.ncsa.uiuc.edu:50001/27456/1233364659/</env>
<env key="GLOBUS_GRAM_MYJOB_CONTACT">URLx-nexus://co-login.ncsa.uiuc.edu:50002/</env>
<env key="GLOBUS_LOCATION">/usr/local/prews-gram-4.0.7-r1/</env>
....
</environment>

<resource>
<soft id="RLIMIT_CPU">unlimited</soft>
<hard id="RLIMIT_CPU">unlimited</hard>
<soft id="RLIMIT_FSIZE">unlimited</soft>
....
</resource>
</invocation>

Jobstate.Log File
The jobstate.log file logs the various states that a job goes through during workflow execution. It is created by the
pegasus-monitord daemon that is launched when a workflow is submitted to Condor DAGMan by pegasus-run.

261

Submit Directory Details

pegasus-monitord parses the dagman.out file and writes out the jobstate.log file, the format of which is more amenable
to parsing.

Note

The jobstate.log file is not created if a user uses condor_submit_dag to submit a workflow to Condor DAG-
Man.

The jobstate.log file can be created after a workflow has finished executing by running pegasus-monitord on the .dag-
man.out file in the workflow submit directory.

Below is a snippet from the jobstate.log for a single job executed via condorg:

1239666049 create_dir_blackdiamond_0_isi_viz SUBMIT 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz EXECUTE 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz GLOBUS_SUBMIT 3758.0 isi_viz - 1
1239666059 create_dir_blackdiamond_0_isi_viz GRID_SUBMIT 3758.0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz JOB_TERMINATED 3758.0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz JOB_SUCCESS 0 isi_viz - 1
1239666064 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_STARTED - isi_viz - 1
1239666069 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_TERMINATED 3758.0 isi_viz - 1
1239666069 create_dir_blackdiamond_0_isi_viz POST_SCRIPT_SUCCESS - isi_viz - 1

Each entry in jobstate.log has the following:

1. The ISO timestamp for the time at which the particular event happened.

2. The name of the job.

3. The event recorded by DAGMan for the job.

4. The condor id of the job in the queue on the submit node.

5. The pegasus site to which the job is mapped.

6. The job time requirements from the submit file.

7. The job submit sequence for this workflow.

Table 14.1. The job lifecycle when executed as part of the workflow

STATE/EVENT DESCRIPTION

SUBMIT job is submitted by condor schedd for execution.

EXECUTE condor schedd detects that a job has started execution.

GLOBUS_SUBMIT the job has been submitted to the remote resource. It's only
written for GRAM jobs (i.e. gt2 and gt4).

GRID_SUBMIT same as GLOBUS_SUBMIT event. The
ULOG_GRID_SUBMIT event is written for all grid uni-
verse jobs./

JOB_TERMINATED job terminated on the remote node.

JOB_SUCCESS job succeeded on the remote host, condor id will be zero
(successful exit code).

JOB_FAILURE job failed on the remote host, condor id will be the job's
exit code.

POST_SCRIPT_STARTED post script started by DAGMan on the submit host, usually
to parse the kickstart output

POST_SCRIPT_TERMINATED post script finished on the submit node.

POST_SCRIPT_SUCCESS | POST_SCRIPT_FAILURE post script succeeded or failed.

262

Submit Directory Details

There are other monitoring related files that are explained in the monitoring chapter.

Pegasus Workflow Job States and Delays
The various job states that a job goes through (as caputured in the dagman.out and jobstate.log file) during it's lifecycle
are illustrated below. The figure below highlights the various local and remote delays during job lifecycle.

Braindump File
The braindump file is created per workflow in the submit file and contains metadata about the workflow.

Table 14.2. Information Captured in Braindump File

KEY DESCRIPTION

user the username of the user that ran pegasus-plan

grid_dn the Distinguished Name in the proxy

submit_hostname the hostname of the submit host

root_wf_uuid the workflow uuid of the root workflow

wf_uuid the workflow uuid of the current workflow i.e the one
whose submit directory the braindump file is.

dax the path to the dax file

dax_label the label attribute in the adag element of the dax

dax_index the index in the dax.

dax_version the version of the DAX schema that DAX referred to.

pegasus_wf_name the workflow name constructed by pegasus when plan-
ning

timestamp the timestamp when planning occured

basedir the base submit directory

submit_dir the full path for the submit directory

properties the full path to the properties file in the submit directory

263

Submit Directory Details

planner the planner used to construct the executable workflow. al-
ways pegasus

planner_version the versions of the planner

pegasus_build the build timestamp

planner_arguments the arguments with which the planner is invoked.

jsd the path to the jobstate file

rundir the rundir in the numbering scheme for the submit direc-
tories

pegasushome the root directory of the pegasus installation

vogroup the vo group to which the user belongs to. Defaults to pe-
gasus

condor_log the full path to condor common log in the submit directory

notify the notify file that contains any notifications that need to
be sent for the workflow.

dag the basename of the dag file created

type the type of executable workflow. Can be dag | shell

A Sample Braindump File is displayed below:

user vahi
grid_dn null
submit_hostname obelix
root_wf_uuid a4045eb6-317a-4710-9a73-96a745cb1fe8
wf_uuid a4045eb6-317a-4710-9a73-96a745cb1fe8
dax /data/scratch/vahi/examples/synthetic-scec/Test.dax
dax_label Stampede-Test
dax_index 0
dax_version 3.3
pegasus_wf_name Stampede-Test-0
timestamp 20110726T153746-0700
basedir /data/scratch/vahi/examples/synthetic-scec/dags
submit_dir /data/scratch/vahi/examples/synthetic-scec/dags/vahi/pegasus/Stampede-Test/run0005
properties pegasus.6923599674234553065.properties
planner /data/scratch/vahi/software/install/pegasus/default/bin/pegasus-plan
planner_version 3.1.0cvs
pegasus_build 20110726221240Z
planner_arguments "--conf ./conf/properties --dax Test.dax --sites local --output local --dir dags
 --force --submit "
jsd jobstate.log
rundir run0005
pegasushome /data/scratch/vahi/software/install/pegasus/default
vogroup pegasus
condor_log Stampede-Test-0.log
notify Stampede-Test-0.notify
dag Stampede-Test-0.dag
type dag

Pegasus static.bp File
Pegasus creates a workflow.static.bp file that links jobs in the DAG with the jobs in the DAX. The contents of the file
are in netlogger format. The purpose of this file is to be able to link an invocation record of a task to the corresponding
job in the DAX

The workflow is replaced by the name of the workflow i.e. same prefix as the .dag file

In the file there are five types of events:

• task.info

This event is used to capture information about all the tasks in the DAX(abstract workflow)

• task.edge

264

Submit Directory Details

This event is used to capture information about the edges between the tasks in the DAX (abstract workflow)

• job.info

This event is used to capture information about the jobs in the DAG (executable workflow generated by Pegasus)

• job.edge

This event is used to capture information about edges between the jobs in the DAG (executable workflow).

• wf.map.task_job

This event is used to associate the tasks in the DAX with the corresponding jobs in the DAG.

265

Chapter 15. Jupyter Notebooks
Introduction

The Jupyter Notebook [http://jupyter.org/] is an open-source web application that allows you to create and share doc-
uments that contain live code, equations, visualizations and explanatory text. Its flexible and portable format resulted
in a rapidly adoption by the research community to share and interact with experiments. Jupyter Notebooks has a
strong potential to reduce the gap between researchers and the complex knowledge required to run large-scale scien-
tific workflows via a programmatic high-level interface to access/manage workflow capabilities.

The Pegasus-Jupyter integration aims to facilitate the usage of Pegasus via Jupyter notebooks. In addition to easiness
of usage, notebooks foster reproducibility (all the information to run an experiment is in a unique place) and reuse
(notebooks are portable if running in equivalent environments). Since Pegasus 4.8.0 [/downloads], a Python API to
declare and manage Pegasus workflows via Jupyter has been provided. The user can create a notebook and declare
a workflow using the Pegasus DAX API, and then create an instance of the workflow for execution. This API en-
capsulates most of Pegasus commands (e.g., plan, run, statistics, among others), and also allows workflow creation,
execution, and monitoring. The API also provides mechanisms to define Pegasus catalogs (sites, replica, and trans-
formation), as well as to generate tutorial example workflows.

Requirements
In order to run Pegasus workflows via Jupyter the following software packages are required:

1. Python 2.7 or superior (Jupyter requires version 2.7+)

2. Java 1.6 or superior

3. Pegasus 4.8.0 or superior (submit node)

4. Jupyter (see installation notes [http://jupyter.org/install.html])

The Pegasus DAX and Jupyter Python APIs
The first step to enable Jupyter to use the Pegasus API is to import the Python Pegasus Jupyter API. The instance
module will automatically load the Pegasus DAX3 API and the catalogs APIs.

from Pegasus.jupyter.instance import *

By default, the API automatically creates a folder in the user's $HOME directory based on the workflow name. How-
ever, a predefined path for the workflow files can also be defined as follows:

workflow_dir = '/home/pegasus/wf-split-tutorial'

Creating an Abstract Workflow
Workflow creation within Jupyter follows the same steps to generate a DAX with the DAX Generator API.

Creating the Catalogs
The Replica Catalog (RC) tells Pegasus where to find each of the input files for the workflow. We provide a Python API
for creating the RC programmatically. For detailed information on how the RC works and its semantics can be found
here, and the auto-generated python documentation for this API can be found here [python/replica_catalog.html].

rc = ReplicaCatalog(workflow_dir)
rc.add('pegasus.html', 'file:///home/pegasus/pegasus.html', site='local')

The Transformation Catalog (TC) describes all of the executables (called "transformations") used by the workflow.
The Python Jupyter API also provides methods to manage this catalog. A detailed description of the TC properties

266

http://jupyter.org/
http://jupyter.org/
/downloads
/downloads
http://jupyter.org/install.html
http://jupyter.org/install.html
python/replica_catalog.html
python/replica_catalog.html

Jupyter Notebooks

can be found here, and the auto-generated python documentation for this API can be found here [python/transforma-
tion_catalog.html].

e_split = Executable('split', arch=Arch.X86_64, os=OSType.LINUX, installed=True)
e_split.addPFN(PFN('file:///usr/bin/split', 'condorpool'))

e_wc = Executable('wc', arch=Arch.X86_64, os=OSType.LINUX, installed=True)
e_wc.addPFN(PFN('file:///usr/bin/wc', 'condorpool'))

tc = TransformationCatalog(workflow_dir)
tc.add(e_split)
tc.add(e_wc)

The Site Catalog (SC) describes the sites where the workflow jobs are to be executed. A detailed description of the SC
properties and handlers can be found here, and the auto-generated python documentation for this API can be found
here [python/sites_catalog.html].

sc = SitesCatalog(workflow_dir)
sc.add_site('condorpool', arch=Arch.X86_64, os=OSType.LINUX)
sc.add_site_profile('condorpool', namespace=Namespace.PEGASUS, key='style', value='condor')
sc.add_site_profile('condorpool', namespace=Namespace.CONDOR, key='universe', value='vanilla')

Workflow Execution
Workflow execution and management are performed using an Instance object. An instance receives a DAX object
(created with the DAX Generator API), and the catalogs objects (replica, transformation, and site). A path to the
workflow directory can also be provided:

instance = Instance(dax, replica_catalog=rc, transformation_catalog=tc, sites_catalog=sc,
 workflow_dir=workflow_dir)

An instance object represents a workflow run, from where the workflow execution can be launched, monitored, and
managed. The run method starts the workflow execution.

instance.run(site='condorpool')

After the workflow has been submitted you can monitor it using the status() method. This method takes two arguments:

1. loop: whether the status command should be invoked once or continuously until the workflow is completed or a
failure is detected.

2. delay: The delay (in seconds) the status will be refreshed. Default value is 10s.

instance.status(loop=True, delay=5)

JupyterHub
The Pegasus Jupyter API can also be used with JupyterHub [https://jupyterhub.readthedocs.io] portals. Due to the
strict requirement of Python 3 for running the multi-user hub, our API requires the Python future [https://pyp-
i.python.org/pypi/future] package in order to be compatible with Python 3.

API Reference
Refer to the auto-generated python documentation explaining the Jupyter API (instance) [python/instance.html], and
for the catalogs (sites [python/sites_catalog.html], replica [python/replica_catalog.html], and transformation [python/
transformation_catalog.html]).

Tutorial Example Notebook
The Pegasus Tutorial VM is configured with Jupyter and the example Pegasus Tutorial Jupyter Notebook. To start
Jupyter, use the following command in the VM terminal:

$ jupyter-notebook --browser=firefox

267

python/transformation_catalog.html
python/transformation_catalog.html
python/transformation_catalog.html
python/sites_catalog.html
python/sites_catalog.html
https://jupyterhub.readthedocs.io
https://jupyterhub.readthedocs.io
https://pypi.python.org/pypi/future
https://pypi.python.org/pypi/future
https://pypi.python.org/pypi/future
python/instance.html
python/instance.html
python/sites_catalog.html
python/sites_catalog.html
python/replica_catalog.html
python/replica_catalog.html
python/transformation_catalog.html
python/transformation_catalog.html
python/transformation_catalog.html

Jupyter Notebooks

This command will open the browser with a tab to the Jupyter dashboard, which will show your $HOME directory
list of files. The Pegasus Tutorial Notebook can be found into the 'jupyter' folder.

268

Chapter 16. API Reference
DAX XML Schema

The DAX format is described by the XML schema instance document dax-3.6.xsd [schemas/dax-3.6/dax-3.6.xsd].
A local copy of the schema definition is provided in the “etc” directory. The documentation of the XML schema
and its elements can be found in dax-3.6.html [schemas/dax-3.6/dax-3.6.html] as well as locally in doc/schemas/
dax-3.6/dax-3.6.html in your Pegasus distribution.

DAX XML Schema In Detail
The DAX file format has four major sections, with the second section divided into more sub-sections. The DAX
format works on the abstract or logical level, letting you focus on the shape of the workflows, what to do and what
to work upon.

1. Workflow level Metadata

Metadata that is associated with the whole workflow. These are defined in the Metadata section.

2. Workflow-level Notifications

Very simple workflow-level notifications. These are defined in the Notification section.

3. Catalogs

The first section deals with included catalogs. While we do recommend to use external replica- and transformation
catalogs, it is possible to include some replicas and transformations into the DAX file itself. Any DAX-included
entry takes precedence over regular replica catalog (RC) and transformation catalog (TC) entries.

The first section (and any of its sub-sections) is completely optional.

a. The first sub-section deals with included replica descriptions.

b. The second sub-section deals with included transformation descriptions.

c. The third sub-section declares multi-item executables.

4. Job List

The jobs section defines the job- or task descriptions. For each task to conduct, a three-part logical name declares the
task and aides identifying it in the transformation catalog or one of the executable section above. During planning,
the logical name is translated into the physical executable location on the chosen target site. By declaring jobs
abstractly, physical layout consideration of the target sites do not matter. The job's id uniquley identifies the job
within this workflow.

The arguments declare what command-line arguments to pass to the job. If you are passing filenames, you should
refer to the logical filename using the file element in the argument list.

Important for properly planning the task is the list of files consumed by the task, its input files, and the files produced
by the task, its output files. Each file is described with a uses element inside the task.

Elements exist to link a logical file to any of the stdio file descriptors. The profile element is Pegasus's way to
abstract site-specific data.

Jobs are nodes in the workflow graph. Other nodes include unplanned workflows (DAX), which are planned and
then run when the node runs, and planned workflows (DAG), which are simply executed.

5. Control-flow Dependencies

The third section lists the dependencies between the tasks. The relationships are defined as child parent relation-
ships, and thus impacts the order in which tasks are run. No cyclic dependencies are permitted.

269

schemas/dax-3.6/dax-3.6.xsd
schemas/dax-3.6/dax-3.6.xsd
schemas/dax-3.6/dax-3.6.html
schemas/dax-3.6/dax-3.6.html

API Reference

Dependencies are directed edges in the workflow graph.

XML Intro

If you have seen the DAX schema before, not a lot of new items in the root element. However, we did retire the (old)
attributes ending in Count.

<?xml version="1.0" encoding="UTF-8"?>
<!-- generated: 2011-07-28T18:29:57Z -->
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/
dax-3.6.xsd"
 version="3.6"
 name="diamond"
 index="0"
 count="1">

The following attributes are supported for the root element adag.

Table 16.1. Root element attributes

attribute optional? type meaning

version required VersionPattern Version number of DAX in-
stance document. Must be
3.6.

name required string name of this DAX (or set of
DAXes).

count optional positiveInteger size of list of DAXes with
this name. Defaults to 1.

index optional nonNegativeInteger current index of DAX with
same name. Defaults to 0.

fileCount removed nonNegativeInteger Old 2.1 attribute, removed,
do not use.

jobCount removed positiveInteger Old 2.1 attribute, removed,
do not use.

childCount removed nonNegativeInteger Old 2.1 attribute, removed,
do not use.

The version attribute is restricted to the regular expression \d+(\.\d+(\.\d+)?)?.This expression represents
the VersionPattern type that is used in other places, too. It is a more restrictive expression than before, but allows us
to compute comparable version number using the following formula:

version1: a.b.c version2: d.e.f

n = a * 1,000,000 + b * 1,000 + c m = d * 1,000,000 + e * 1,000 + f

version1 > version2 if n > m

Workflow-level Metadata

Metadata associated with the whole workflow.

 <metadata key="name">diamond</metadata>
 <metadata key="createdBy">Karan Vahi</metadata>

The workflow level metadata maybe used to control the Pegasus Mapper behaviour at planning time or maybe pro-
pogated to external services while querying for job characteristics.

Workflow-level Notifications

Notifications that are generated when workflow level events happened.

270

API Reference

 <!-- part 1.1: invocations -->
 <invoke when="at_end">/bin/date -Ins >> my.log</invoke>

The above snippet will append the current time to a log file in the current directory. This is with regards to the
pegasus-monitord instance acting on the notification.

The Catalogs Section

The initial section features three sub-sections:

1. a catalog of files used,

2. a catalog of transformations used, and

3. compound transformation declarations.

The Replica Catalog Section

The file section acts as in in-file replica catalog (RC). Any files declared in this section take precedence over files in
external replica catalogs during planning.

 <!-- part 1.2: included replica catalog -->
 <file name="example.a" >
 <!-- profiles are optional -->
 <!-- The "stat" namespace is ONLY AN EXAMPLE -->
 <profile namespace="stat" key="size">/* integer to be defined */</profile>
 <profile namespace="stat" key="md5sum">/* 32 char hex string */</profile>
 <profile namespace="stat" key="mtime">/* ISO-8601 timestamp */</profile>

 <!-- Metadata will be supported 4.6 onwards-->
 <metadata key="timestamp" >/* ISO-8601 *or* 20100417134523:int */</metadata>
 <metadata key="origin" >ocean</metadata>

 <!-- PFN to by-pass replica catalog -->
 <!-- The "site attribute is optional -->
 <pfn url="file:///tmp/example.a" site="local">
 <profile namespace="stat" key="owner">voeckler</profile>
 </pfn>
 <pfn url="file:///storage/funky.a" site="local"/>
 </file>

 <!-- a more typical example from the black diamond -->
 <file name="f.a">
 <pfn url="file:///Users/voeckler/f.a" site="local"/>
 </file>

The first file entry above is an example of a data file with two replicas. The file element requires a logical file name.
Each logical filename may have additional information associated with it, enumerated by profile elements. Each file
entry may have 0 or more metadata associated with it. Each piece of metadata has a key string and type attribute
describing the element's value.

Warning

The metadata element is not support as of this writing! Details may change in the future.

The file element can provide 0 or more pfn locations, taking precedence over the replica catalog. A file element that
does not name any pfn children-elements will still require look-ups in external replica catalogs. Each pfn element
names a concrete location of a file. Multiple locations constitute replicas of the same file, and are assumed to be
usable interchangably. The url attribute is mandatory, and typically would use a file schema URL. The site attribute
is optional, and defaults to value local if missing. A pfn element may have profile children-elements, which refer to
attributes of the physical file. The file-level profiles refer to attributes of the logical file.

Note

The stat profile namespace is ony an example, and details about stat are not yet implemented. The proper
namespaces pegasus, condor, dagman, env, hints, globus and selector enjoy full support.

271

API Reference

The second file entry above shows a usage example from the black-diamond example workflow that you are more
likely to encouter or write.

The presence of an in-file replica catalog lets you declare a couple of interesting advanced features. The DAG and
DAX file declarations are just files for all practical purposes. For deferred planning, the location of the site catalog
(SC) can be captured in a file, too, that is passed to the job dealing with the deferred planning as logical filename.

 <file name="black.dax" >
 <!-- specify the location of the DAX file -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/blackdiamond_dax.xml" site="local"/>
 </file>

 <file name="black.dag" >
 <!-- specify the location of the DAG file -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/blackdiamond.dag" site="local"/>
 </file>

 <file name="sites.xml" >
 <!-- specify the location of a site catalog to use for deferred planning -->
 <pfn url="file:///Users/vahi/Pegasus/work/dax-3.0/conf/sites.xml" site="local"/>
 </file>

The Transformation Catalog Section

The executable section acts as an in-file transformation catalog (TC). Any transformations declared in this section
take precedence over the external transformation catalog during planning.

 <!-- part 1.3: included transformation catalog -->
 <executable namespace="example" name="mDiffFit" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <!-- profiles are optional -->
 <!-- The "stat" namespace is ONLY AN EXAMPLE! -->
 <profile namespace="stat" key="size">5000</profile>
 <profile namespace="stat" key="md5sum">AB454DSSDA4646DS</profile>
 <profile namespace="stat" key="mtime">2010-11-22T10:05:55.470606000-0800</profile>

 <!-- metadata will be supported in 4.6 -->
 <metadata key="timestamp" >/* see above */</metadata>
 <metadata key="origin">ocean</metadata>

 <!-- PFN to by-pass transformation catalog -->
 <!-- The "site" attribute is optional -->
 <pfn url="file:///tmp/mDiffFit" site="local"/>
 <pfn url="file:///tmp/storage/mDiffFit" site="local"/>
 </executable>

 <!-- to be used in compound transformation later -->
 <executable namespace="example" name="mDiff" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <pfn url="file:///tmp/mDiff" site="local"/>
 </executable>

 <!-- to be used in compound transformation later -->
 <executable namespace="example" name="mFitplane" version="1.0"
 arch="x86_64" os="linux" installed="true" >
 <pfn url="file:///tmp/mDiffFitplane" site="local">
 <profile namespace="stat" key="md5sum">0a9c38b919c7809cb645fc09011588a6</profile>
 </pfn>
 <invoke when="at_end">/path/to/my_send_email some args</invoke>
 </executable>

 <!-- a more likely example from the black diamond -->
 <executable namespace="diamond" name="preprocess" version="2.0"
 arch="x86_64"
 os="linux"
 osversion="2.6.18">
 <pfn url="file:///opt/pegasus/default/bin/keg" site="local" />
 </executable>

Logical filenames pertaining to a single executables in the transformation catalog use the executable element. Any
executable element features the optional namespace attribute, a mandatory name attribute, and an optional version
attribute. The version attribute defaults to "1.0" when absent. An executable typically needs additional attributes to
describe it properly, like the architecture, OS release and other flags typically seen with transformations, or found in
the transformation catalog.

272

API Reference

Table 16.2. executable element attributes

attribute optional? type meaning

name required string logical transformation name

namespace optional string namespace of logical trans-
formation, default to null
value.

version optional VersionPattern version of logical transfor-
mation, defaults to "1.0".

installed optional boolean whether to stage the file
(false), or not (true, default).

arch optional Architecture restricted set of tokens, see
schema definition file.

os optional OSType restricted set of tokens, see
schema definition file.

osversion optional VersionPattern kernel version as beginning
of `uname -r`.

glibc optional VersionPattern version of libc.

The rationale for giving these flags in the executable element header is that PFNs are just identical replicas or instances
of a given LFN. If you need a different 32/64 bit-ed-ness or OS release, the underlying PFN would be different, and
thus the LFN for it should be different, too.

Note

We are still discussing some details and implications of this decision.

The initial examples come with the same caveats as for the included replica catalog.

Warning

The metadata element is not support as of this writing! Details may change in the future.

Similar to the replica catalog, each executable element may have 0 or more profile elements abstracting away site-
specific details, zero or more metadata elements, and zero or more pfn elements. If there are no pfn elements, the
transformation must still be searched for in the external transformation catalog. As before, the pfn element may have
profile children-elements, referring to attributes of the physical filename itself.

Each executable element may also feature invoke elements. These enable notifications at the appropriate point when
every job that uses this executable reaches the point of notification. Please refer to the notification section for details
and caveats.

The last example above comes from the black diamond example workflow, and presents the kind and extend of
attributes you are most likely to see and use in your own workflows.

The Compound Transformation Section

The compound transformation section declares a transformation that comprises multiple plain transformation. You
can think of a compound transformation like a script interpreter and the script itself. In order to properly run the
application, you must start both, the script interpreter and the script passed to it. The compound transformation helps
Pegasus to properly deal with this case, especially when it needs to stage executables.

 <transformation namespace="example" version="1.0" name="mDiffFit" >
 <uses name="mDiffFit" />
 <uses name="mDiff" namespace="example" version="2.0" />
 <uses name="mFitPlane" />
 <uses name="mDiffFit.config" executable="false" />
 </transformation>

273

API Reference

A transformation element declares a set of purely logical entities, executables and config (data) files, that are all
required together for the same job. Being purely logical entities, the lookup happens only when the transformation
element is referenced (or instantiated) by a job element later on.

The namespace and version attributes of the transformation element are optional, and provide the defaults for the inner
uses elements. They are also essential for matching the transformation with a job.

The transformation is made up of 1 or more uses element. Each uses has a boolean attribute executable, true by
default, or false to indicate a data file. The name is a mandatory attribute, refering to an LFN declared previously
in the File Catalog (executable is false), Executable Catalog (executable is true), or to be looked up as necessary
at instantiation time. The lookup catalog is determined by the executable attribute.

After uses elements, any number of invoke elements may occur to add a notification each whenever this transformation
is instantiated.

The namespace and version attributes' default values inside uses elements are inherited from the transformation at-
tributes of the same name. There is no such inheritance for uses elements with executable attribute of false.

Graph Nodes

The nodes in the DAX comprise regular job nodes, already instantiated sub-workflows as dag nodes, and still to
be instantiated dax nodes. Each of the graph nodes can has a mandatory id attribute. The id attribute is currently a
restriction of type NodeIdentifierPattern type, which is a restriction of the xs:NMTOKEN type to letters, digits, hyphen
and underscore.

The level attribute is deprecated, as the planner will trust its own re-computation more than user input. Please do not
use nor produce any level attribute.

The node-label attribute is optional. It applies to the use-case when every transformation has the same name, but its
arguments determine what it really does. In the presence of a node-label value, a workflow grapher could use the label
value to show graph nodes to the user. It may also come in handy while debugging.

Any job-like graph node has the following set of children elements, as defined in the AbstractJobType declaration
in the schema definition:

• 0 or 1 argument element to declare the command-line of the job's invocation.

• 0 or more profile elements to abstract away site-specific or job-specific details.

• 0 or 1 stdin element to link a logical file the the job's standard input.

• 0 or 1 stdout element to link a logical file to the job's standard output.

• 0 or 1 stderr element to link a logical file to the job's standard error.

• 0 or more uses elements to declare consumed data files and produced data files.

• 0 or more invoke elements to solicit notifications whence a job reaches a certain state in its life-cycle.

Job Nodes

A job element has a number of attributes. In addition to the id and node-label described in (Graph Nodes)above,
the optional namespace, mandatory name and optional version identify the transformation, and provide the look-
up handle: first in the DAX's transformation elements, then in the executable elements, and finally in an external
transformation catalog.

 <!-- part 2: definition of all jobs (at least one) -->
 <job id="ID000001" namespace="example" name="mDiffFit" version="1.0"
 node-label="preprocess" >
 <argument>-a top -T 6 -i <file name="f.a"/> -o <file name="f.b1"/></argument>

 <!-- profiles are optional -->
 <profile namespace="execution" key="site">isi_viz</profile>
 <profile namespace="condor" key="getenv">true</profile>

 <uses name="f.a" link="input" transfer="true" register="true">
 <metadata key="size">1024</metadata>

274

API Reference

 </uses>
 <uses name="f.b" link="output" register="false" transfer="true" type="data" />

 <!-- 'WHEN' enumeration: never, start, on_error, on_success, at_end, all -->
 <!-- PEGASUS_* env-vars: event, status, submit dir, wf/job id, stdout, stderr -->
 <invoke when="start">/path/to arg arg</invoke>
 <invoke when="on_success"><![CDATA[/path/to arg arg]]></invoke>
 <invoke when="at_end"><![CDATA[/path/to arg arg]]></invoke>
 </job>

The argument element contains the complete command-line that is needed to invoke the executable. The only variable
components are logical filenames, as included file elements.

The profile argument lets you encapsulate site-specific knowledge .

The stdin, stdout and stderr element permits you to connect a stdio file descriptor to a logical filename. Note that you
will still have to declare these files in the uses section below.

The uses element enumerates all the files that the task consumes or produces. While it is not necessary nor required
to have all files appear on the command-line, it is imperative that you declare even hidden files that your task requires
in this section, so that the proper ancilliary staging- and clean-up tasks can be generated during planning.

The invoke element may be specified multiple times, as needed. It has a mandatory when attribute with the following
value set:

Table 16.3. invoke element attributes

keyword job life-cycle state meaning

never never (default). Never notify of anything.
This is useful to temporarily disable
an existing notifications.

start submit create a notification when the job is
submitted.

on_error end after a job finishes with failure (exit-
code != 0).

on_success end after a job finishes with success (exit-
code == 0).

at_end end after a job finishes, regardless of exit-
code.

all always like start and at_end combined.

Warning

In clustered jobs, a notification can only be sent at the start or end of the clustered job, not for each member.

Each invoke is a simple local invocation of an executable or script with the specified arguments. The executable inside
the invoke body will see the following environment variables:

Table 16.4. invoke/executable environment variables

variable job life-cycle state meaning

PEGASUS_EVENT always The value of the when attribute

PEGASUS_STATUS end The exit status of the graph node. Only
available for end notifications.

PEGASUS_SUBMIT_DIR always In which directory to find the job (or
workflow).

PEGASUS_JOBID always The job (or workflow) identifier. This
is potentially more than merely the
value of the id attribute.

275

API Reference

variable job life-cycle state meaning

PEGASUS_STDOUT always The filename where stdout goes.
Empty and possibly non-existent at
submit time (though we still have the
filename). The kickstart record for job
nodes.

PEGASUS_STDERR always The filename where stderr goes. Emp-
ty and possibly non-existent at sub-
mit time (though we still have the file-
name).

Generators should use CDATA encapsulated values to the invoke element to minimize interference. Unfortunately,
CDATA cannot be nested, so if the user invocation contains a CDATA section, we suggest that they use careful XML-
entity escaped strings. The notifications section describes these in further detail.

DAG Nodes

A workflow that has already been concretized, either by an earlier run of Pegasus, or otherwise constructed for DAG-
Man execution, can be included into the current workflow using the dag element.

 <dag id="ID000003" name="black.dag" node-label="foo" >
 <profile namespace="dagman" key="DIR">/dag-dir/test</profile>
 <invoke> <!-- optional, should be possible --> </invoke>
 <uses file="sites.xml" link="input" register="false" transfer="true" type="data"/>
 </dag>

The id and node-label attributes were described previously. The name attribute refers to a file from the File Catalog
that provides the actual DAGMan DAG as data content. The dag element features optional profile elements. These
would most likely pertain to the dagman and env profile namespaces. It should be possible to have the optional
notify element in the same manner as for jobs.

A graph node that is a dag instead of a job would just use a different submit file generator to create a DAGMan
invocation. There can be an argument element to modify the command-line passed to DAGMan.

DAX Nodes

A still to be planned workflow incurs an invocation of the Pegasus planner as part of the workflow. This still abstract
sub-workflow uses the dax element.

 <dax id="ID000002" name="black.dax" node-label="bar" >
 <profile namespace="env" key="foo">bar</profile>
 <argument>-Xmx1024 -Xms512 -Dpegasus.dir.storage=storagedir -Dpegasus.dir.exec=execdir -o local
 --dir ./datafind -vvvvv --force -s dax_site </argument>
 <invoke> <!-- optional, may not be possible here --> </invoke>
 <uses file="sites.xml" link="input" register="false" transfer="true" type="data" />
 </dax>

In addition to the id and node-label attributes, See Graph Nodes. The name attribute refers to a file from the File
Catalog that provides the to be planned DAX as external file data content. The dax element features optional profile
elements. These would most likely pertain to the pegasus, dagman and env profile namespaces. It may be possible
to have the optional notify element in the same manner as for jobs.

A graph node that is a dax instead of a job would just use yet another submit file and pre-script generator to create a
DAGMan invocation. The argument string pertains to the command line of the to-be-generated DAGMan invocation.

Inner ADAG Nodes

While completeness would argue to have a recursive nesting of adag elements, such recursive nestings are currently
not supported, not even in the schema. If you need to nest workflows, please use the dax or dag element to achieve
the same goal.

The Dependency Section

This section describes the dependencies between the jobs.

 <!-- part 3: list of control-flow dependencies -->

276

API Reference

 <child ref="ID000002">
 <parent ref="ID000001" edge-label="edge1" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" edge-label="edge2" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" edge-label="edge3" />
 <parent ref="ID000003" edge-label="edge4" />
 </child>

Each child element contains one or more parent element. Either element refers to a job, dag or dax element id attribute
using the ref attribute. In this version, we relaxed the xs:IDREF constraint in favor of a restriction on the xs:NM-
TOKEN type to permit a larger set of identifiers.

The parent element has an optional edge-label attribute.

Warning

The edge-label attribute is currently unused.

Its goal is to annotate edges when drawing workflow graphs.

Closing

As any XML element, the root element needs to be closed.

</adag>

DAX XML Schema Example
The following code example shows the XML instance document representing the diamond workflow.

<?xml version="1.0" encoding="UTF-8"?>
<adag xmlns="http://pegasus.isi.edu/schema/DAX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pegasus.isi.edu/schema/DAX http://pegasus.isi.edu/schema/dax-3.6.xsd"
 version="3.6" name="diamond" index="0" count="1">
 <!-- part 1.1: invocations -->
 <invoke when="on_error">/bin/mailx -s 'diamond failed' use@some.domain</invoke>

 <!-- part 1.2: included replica catalog -->
 <file name="f.a">
 <pfn url="file:///lfs/voeckler/src/svn/pegasus/trunk/examples/grid-blackdiamond-perl/f.a"
 site="local" />
 </file>

 <!-- part 1.3: included transformation catalog -->
 <executable namespace="diamond" name="preprocess" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>
 <executable namespace="diamond" name="analyze" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>
 <executable namespace="diamond" name="findrange" version="2.0" arch="x86_64" os="linux"
 installed="false">
 <profile namespace="globus" key="maxtime">2</profile>
 <profile namespace="dagman" key="RETRY">3</profile>
 <pfn url="file:///opt/pegasus/latest/bin/keg" site="local" />
 </executable>

 <!-- part 2: definition of all jobs (at least one) -->
 <job namespace="diamond" name="preprocess" version="2.0" id="ID000001">
 <argument>-a preprocess -T60 -i <file name="f.a" /> -o <file name="f.b1" /> <file name="f.b2" /
></argument>
 <uses name="f.b2" link="output" register="false" transfer="true" />
 <uses name="f.b1" link="output" register="false" transfer="true" />

277

API Reference

 <uses name="f.a" link="input" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000002">
 <argument>-a findrange -T60 -i <file name="f.b1" /> -o <file name="f.c1" /></argument>
 <uses name="f.b1" link="input" register="false" transfer="true" />
 <uses name="f.c1" link="output" register="false" transfer="true" />
 </job>
 <job namespace="diamond" name="findrange" version="2.0" id="ID000003">
 <argument>-a findrange -T60 -i <file name="f.b2" /> -o <file name="f.c2" /></argument>
 <uses name="f.b2" link="input" register="false" transfer="true" />
 <uses name="f.c2" link="output" register="false" transfer="true" />
 </job>
 <job namespace="diamond" name="analyze" version="2.0" id="ID000004">
 <argument>-a analyze -T60 -i <file name="f.c1" /> <file name="f.c2" /> -o <file name="f.d" /></
argument>
 <uses name="f.c2" link="input" register="false" transfer="true" />
 <uses name="f.d" link="output" register="false" transfer="true" />
 <uses name="f.c1" link="input" register="false" transfer="true" />
 </job>

 <!-- part 3: list of control-flow dependencies -->
 <child ref="ID000002">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000003">
 <parent ref="ID000001" />
 </child>
 <child ref="ID000004">
 <parent ref="ID000002" />
 <parent ref="ID000003" />
 </child>
</adag>

The above workflow defines the black diamond from the abstract workflow section of the Introduction chapter. It will
require minimal configuration, because the catalog sections include all necessary declarations.

The file element defines the location of the required input file in terms of the local machine. Please note that

• The file element declares the required input file "f.a" in terms of the local machine. Please note that if you plan the
workflow for a remote site, the has to be some way for the file to be staged from the local site to the remote site.
While Pegasus will augment the workflow with such ancillary jobs, the site catalog as well as local and remote site
have to be set up properlyl. For a locally run workflow you don't need to do anything.

• The executable elements declare the same executable keg that is to be run for each the logical transformation in
terms of the remote site futuregrid. To declare it for a local site, you would have to adjust the site attribute's value
to local. This section also shows that the same executable may come in different guises as transformation.

• The job elements define the workflow's logical constituents, the way to invoke the keg command, where to put
filenames on the commandline, and what files are consumed or produced. In addition to the direction of files, further
attributes determine whether to register the file with a replica catalog and whether to transfer it to the output site in
case of a product. We are only interested in the final data product "f.d" in this workflow, and not any intermediary
files. Typically, you would also want to register the data products in the replica catalog, especially in larger scenarios.

• The child elements define the control flow between the jobs.

DAX Generator API
The DAX generating APIs support Java, Perl, Python, and R. This section will show in each language the necessary
code, using Pegasus-provided libraries, to generate the diamond DAX example above. There may be minor differences
in details, e.g. to show-case certain features, but effectively all generate the same basic diamond.

The Java DAX Generator API
The Java DAX API provided with the Pegasus distribution allows easy creation of complex and huge workflows. This
API is used by several applications to generate their abstract DAX. SCEC, which is Southern California Earthquake
Center, uses this API in their CyberShake workflow generator to generate huge DAX containing 10’s of
thousands of tasks with 100’s of thousands of input and output files. The Java API [javadoc/index.html] is
well documented using Javadoc for ADAGs [javadoc/edu/isi/pegasus/planner/dax/ADAG.html] .

278

javadoc/index.html
javadoc/index.html
javadoc/edu/isi/pegasus/planner/dax/ADAG.html
javadoc/edu/isi/pegasus/planner/dax/ADAG.html

API Reference

The steps involved in creating a DAX using the API are

1. Create a new ADAG object

2. Add any metadata attributes associated with the whole workflow.

3. Add any Workflow notification elements

4. Create File objects as necessary. You can augment the files with physical information, if you want to include them
into your DAX. Otherwise, the physical information is determined from the replica catalog.

5. (Optional) Create Executable objects, if you want to include your transformation catalog into your DAX. Otherwise,
the translation of a job/task into executable location happens with the transformation catalog.

6. Create a new Job object.

7. Add arguments, files, profiles, notifications and other information to the Job object

8. Add the job object to the ADAG object

9. Repeat step 4-6 as necessary.

10.Add all dependencies to the ADAG object.

11.Call the writeToFile() method on the ADAG object to render the XML DAX file.

An example Java code that generates the diamond dax show above is listed below. This same code can be found in the
Pegasus distribution in the examples/grid-blackdiamond-java directory as BlackDiamonDAX.java:

/**
 * Copyright 2007-2008 University Of Southern California
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import edu.isi.pegasus.planner.dax.*;

/**
 * An example class to highlight how to use the JAVA DAX API to generate a diamond
 * DAX.
 *
 */
public class Diamond {

 public class Diamond {

 public ADAG generate(String site_handle, String pegasus_location) throws Exception {

 java.io.File cwdFile = new java.io.File (".");
 String cwd = cwdFile.getCanonicalPath();

 ADAG dax = new ADAG("diamond");
 dax.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addMetadata("name", "diamond");
 dax.addMetadata("createdBy", "Karan Vahi");

279

API Reference

 File fa = new File("f.a");
 fa.addPhysicalFile("file://" + cwd + "/f.a", "local");
 fa.addMetaData("size", "1024");
 dax.addFile(fa);

 File fb1 = new File("f.b1");
 File fb2 = new File("f.b2");
 File fc1 = new File("f.c1");
 File fc2 = new File("f.c2");
 File fd = new File("f.d");
 fd.setRegister(true);

 Executable preprocess = new Executable("pegasus", "preprocess", "4.0");
 preprocess.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 preprocess.setInstalled(true);
 preprocess.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);
 preprocess.addMetaData("size", "2048");

 Executable findrange = new Executable("pegasus", "findrange", "4.0");
 findrange.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 findrange.setInstalled(true);
 findrange.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 Executable analyze = new Executable("pegasus", "analyze", "4.0");
 analyze.setArchitecture(Executable.ARCH.X86).setOS(Executable.OS.LINUX);
 analyze.setInstalled(true);
 analyze.addPhysicalFile("file://" + pegasus_location + "/bin/keg", site_handle);

 dax.addExecutable(preprocess).addExecutable(findrange).addExecutable(analyze);

 // Add a preprocess job
 Job j1 = new Job("j1", "pegasus", "preprocess", "4.0");
 j1.addArgument("-a preprocess -T 60 -i ").addArgument(fa);
 j1.addArgument("-o ").addArgument(fb1);
 j1.addArgument(" ").addArgument(fb2);
 j1.addMetadata("time", "60");
 j1.uses(fa, File.LINK.INPUT);
 j1.uses(fb1, File.LINK.OUTPUT);
 j1.uses(fb2, File.LINK.OUTPUT);
 j1.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j1.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j1);

 // Add left Findrange job
 Job j2 = new Job("j2", "pegasus", "findrange", "4.0");
 j2.addArgument("-a findrange -T 60 -i ").addArgument(fb1);
 j2.addArgument("-o ").addArgument(fc1);
 j2.addMetadata("time", "60");
 j2.uses(fb1, File.LINK.INPUT);
 j2.uses(fc1, File.LINK.OUTPUT);
 j2.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j2.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j2);

 // Add right Findrange job
 Job j3 = new Job("j3", "pegasus", "findrange", "4.0");
 j3.addArgument("-a findrange -T 60 -i ").addArgument(fb2);
 j3.addArgument("-o ").addArgument(fc2);
 j3.addMetadata("time", "60");
 j3.uses(fb2, File.LINK.INPUT);
 j3.uses(fc2, File.LINK.OUTPUT);
 j3.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j3.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j3);

 // Add analyze job
 Job j4 = new Job("j4", "pegasus", "analyze", "4.0");
 j4.addArgument("-a analyze -T 60 -i ").addArgument(fc1);
 j4.addArgument(" ").addArgument(fc2);
 j4.addArgument("-o ").addArgument(fd);
 j4.addMetadata("time", "60");

280

API Reference

 j4.uses(fc1, File.LINK.INPUT);
 j4.uses(fc2, File.LINK.INPUT);
 j4.uses(fd, File.LINK.OUTPUT);
 j4.addNotification(Invoke.WHEN.start,"/pegasus/libexec/notification/email -t
 notify@example.com");
 j4.addNotification(Invoke.WHEN.at_end,"/pegasus/libexec/notification/email -t
 notify@example.com");
 dax.addJob(j4);

 dax.addDependency("j1", "j2");
 dax.addDependency("j1", "j3");
 dax.addDependency("j2", "j4");
 dax.addDependency("j3", "j4");
 return dax;
 }

 /**
 * Create an example DIAMOND DAX
 * @param args
 */
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: java GenerateDiamondDAX <pegasus_location> ");
 System.exit(1);
 }

 try {
 Diamond diamond = new Diamond();
 String pegasusHome = args[0];
 String site = "TestCluster";
 ADAG dag = diamond.generate(site, pegasusHome);
 dag.writeToSTDOUT();
 //generate(args[0], args[1]).writeToFile(args[2]);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 }
}

Of course, you will have to set up some catalogs and properties to run this example. The details are catpured in the
examples directory examples/grid-blackdiamond-java.

The Python DAX Generator API
Refer to the auto-generated python documentation [python/] explaining this API.

#!/usr/bin/env python

from Pegasus.DAX3 import *

Create a DAX
diamond = ADAG("diamond")

Add some metadata
diamond.metadata("name", "diamond")
diamond.metadata("createdby", "Gideon Juve")

Add input file to the DAX-level replica catalog
a = File("f.a")
a.addPFN(PFN("gsiftp://site.com/inputs/f.a","site"))
a.metadata("size", "1024")
diamond.addFile(a)

Add executables to the DAX-level replica catalog
e_preprocess = Executable(namespace="diamond", name="preprocess", version="4.0", os="linux",
 arch="x86_64")
e_preprocess.metadata("size", "2048")
e_preprocess.addPFN(PFN("gsiftp://site.com/bin/preprocess","site"))
diamond.addExecutable(e_preprocess)

e_findrange = Executable(namespace="diamond", name="findrange", version="4.0", os="linux",
 arch="x86_64")

281

python/
python/

API Reference

e_findrange.addPFN(PFN("gsiftp://site.com/bin/findrange","site"))
diamond.addExecutable(e_findrange)

e_analyze = Executable(namespace="diamond", name="analyze", version="4.0", os="linux",
 arch="x86_64")
e_analyze.addPFN(PFN("gsiftp://site.com/bin/analyze","site"))
diamond.addExecutable(e_analyze)

Add a preprocess job
preprocess = Job(e_preprocess)
preprocess.metadata("time", "60")
b1 = File("f.b1")
b2 = File("f.b2")
preprocess.addArguments("-a preprocess","-T60","-i",a,"-o",b1,b2)
preprocess.uses(a, link=Link.INPUT)
preprocess.uses(b1, link=Link.OUTPUT, transfer=True)
preprocess.uses(b2, link=Link.OUTPUT, transfer=True)
diamond.addJob(preprocess)

Add left Findrange job
frl = Job(e_findrange)
frl.metadata("time", "60")
c1 = File("f.c1")
frl.addArguments("-a findrange","-T60","-i",b1,"-o",c1)
frl.uses(b1, link=Link.INPUT)
frl.uses(c1, link=Link.OUTPUT, transfer=True)
diamond.addJob(frl)

Add right Findrange job
frr = Job(e_findrange)
frr.metadata("time", "60")
c2 = File("f.c2")
frr.addArguments("-a findrange","-T60","-i",b2,"-o",c2)
frr.uses(b2, link=Link.INPUT)
frr.uses(c2, link=Link.OUTPUT, transfer=True)
diamond.addJob(frr)

Add Analyze job
analyze = Job(e_analyze)
analyze.metadata("time", "60")
d = File("f.d")
analyze.addArguments("-a analyze","-T60","-i",c1,c2,"-o",d)
analyze.uses(c1, link=Link.INPUT)
analyze.uses(c2, link=Link.INPUT)
analyze.uses(d, link=Link.OUTPUT, transfer=True, register=True)
diamond.addJob(analyze)

Add dependencies
diamond.depends(parent=preprocess, child=frl)
diamond.depends(parent=preprocess, child=frr)
diamond.depends(parent=frl, child=analyze)
diamond.depends(parent=frr, child=analyze)

Write the DAX to stdout
import sys
diamond.writeXML(sys.stdout)

Write the DAX to a file
f = open("diamond.dax","w")
diamond.writeXML(f)
f.close()

The Perl DAX Generator
The Perl API example below can be found in file blackdiamond.pl in directory examples/grid-black-
diamond-perl. It requires that you set the environment variable PEGASUS_HOME to the installation directory of
Pegasus, and include into PERL5LIB the path to the directory lib/perl of the Pegasus installation. The actual
code is longer, and will not require these settings, only the example below does. The Perl API is documented using
perldoc [perl/]. For each of the modules you can invoke perldoc, if your PERL5LIB variable is set.

The steps to generate a DAX from Perl are similar to the Java steps. However, since most methods to the classes are
deeply within the Perl class modules, the convenience module Perl::DAX::Factory makes most constructors
accessible without you needing to type your fingers raw:

282

perl/
perl/

API Reference

1. Create a new ADAG object.

2. Create Job objects as necessary.

3. As example, the required input file "f.a" is declared as File object and linked to the ADAG object.

4. The first job arguments and files are filled into the job, and the job is added to the ADAG object.

5. Repeat step 4 for the remaining jobs.

6. Add dependencies for all jobs. You have the option of assigning label text to edges, though these are not used (yet).

7. To generate the DAX file, invoke the toXML() method on the ADAG object. The first argument is an opened file
handle or IO::Handle descriptor scalar to write to, the second the default indentation for the root element, and
the third the XML namespace to use for elements and attributes. The latter is typically unused unless you want to
include your output into another XML document.

#!/usr/bin/env perl
#
use 5.006;
use strict;
use IO::Handle;
use Cwd;
use File::Spec;
use File::Basename;
use Sys::Hostname;
use POSIX ();

BEGIN { $ENV{'PEGASUS_HOME'} ||= `pegasus-config --nocrlf --home` }
use lib File::Spec->catdir($ENV{'PEGASUS_HOME'}, 'lib', 'perl');

use Pegasus::DAX::Factory qw(:all);
use constant NS => 'diamond';

my $adag = newADAG(name => NS);

Workflow MetaData
my $meta = newMetaData('name', 'diamond');
$adag->addMetaData($meta);
$adag->metaData('createdBy', 'Rajiv Mayani');

my $job1 = newJob(namespace => NS, name => 'preprocess', version => '2.0');
my $job2 = newJob(namespace => NS, name => 'findrange', version => '2.0');
my $job3 = newJob(namespace => NS, name => 'findrange', version => '2.0');
my $job4 = newJob(namespace => NS, name => 'analyze', version => '2.0');

create "f.a" locally
my $fn = "f.a";
open(F, ">$fn") || die "FATAL: Unable to open $fn: $!\n";
my @now = gmtime();
printf F "%04u-%02u-%02u %02u:%02u:%02uZ\n",
 $now[5]+1900, $now[4]+1, @now[3,2,1,0];
close F;

my $file = newFile(name => 'f.a');
$file->addPFN(newPFN(url => 'file://' . Cwd::abs_path($fn),
 site => 'local'));
$file->metaData('size', '1024');
$adag->addFile($file);

follow this path, if the PEGASUS_HOME was determined
if (exists $ENV{'PEGASUS_HOME'}) {
 my $keg = File::Spec->catfile($ENV{'PEGASUS_HOME'}, 'bin', 'keg');
 my @os = POSIX::uname();
 # $os[2] =~ s/^(\d+(\.\d+(\.\d+)?)?).*/$1/; ## create a proper osversion
 $os[4] =~ s/i.86/x86/;

 # add Executable instances to DAX-included TC. This will only work,
 # if we know how to access the keg executable. HOWEVER, for a grid
 # workflow, these entries are not used, and you need to
 # [1] install the work tools remotely
 # [2] create a TC with the proper entries
 if (-x $keg) {
 for my $j ($job1, $job2, $job4) {
 my $app = newExecutable(namespace => $j->namespace,

283

API Reference

 name => $j->name,
 version => $j->version,
 installed => 'false',
 arch => $os[4],
 os => lc($^O));
 $app->addProfile('globus', 'maxtime', '2');
 $app->addProfile('dagman', 'RETRY', '3');
 $app->addPFN(newPFN(url => "file://$keg", site => 'local'));
 $app1->metaData('size', '2048');
 $adag->addExecutable($app);
 }
 }
}

my %hash = (link => LINK_OUT, register => 'false', transfer => 'true');
my $fna = newFilename(name => $file->name, link => LINK_IN);
my $fnb1 = newFilename(name => 'f.b1', %hash);
my $fnb2 = newFilename(name => 'f.b2', %hash);
$job1->addArgument('-a', $job1->name, '-T60', '-i', $fna,
 '-o', $fnb1, $fnb2);
$job1->metaData('time', '60');
$adag->addJob($job1);

my $fnc1 = newFilename(name => 'f.c1', %hash);
$fnb1->link(LINK_IN);
$job2->addArgument('-a', $job2->name, '-T60', '-i', $fnb1,
 '-o', $fnc1);
$job2->metaData('time', '60');
$adag->addJob($job2);

my $fnc2 = newFilename(name => 'f.c2', %hash);
$fnb2->link(LINK_IN);
$job3->addArgument('-a', $job3->name, '-T60', '-i', $fnb2,
 '-o', $fnc2);
$job3->metaData('time', '60');
$adag->addJob($job3);
a convenience function -- you can specify multiple dependents
$adag->addDependency($job1, $job2, $job3);

my $fnd = newFilename(name => 'f.d', %hash);
$fnc1->link(LINK_IN);
$fnc2->link(LINK_IN);
$job4->separator(''); # just to show the difference wrt default
$job4->addArgument('-a ', $job4->name, ' -T60 -i ', $fnc1, ' ', $fnc2,
 ' -o ', $fnd);
$job4->metaData('time', '60');
$adag->addJob($job4);
this is a convenience function adding parents to a child.
it is clearer than overloading addDependency
$adag->addInverse($job4, $job2, $job3);

workflow level notification in case of failure
refer to Pegasus::DAX::Invoke for details
my $user = $ENV{USER} || $ENV{LOGNAME} || scalar getpwuid($>);
$adag->invoke(INVOKE_ON_ERROR,
 "/bin/mailx -s 'blackdiamond failed' $user");

my $xmlns = shift;
$adag->toXML(*STDOUT, '', $xmlns);

The R DAX Generator API
The R DAX API provided with the Pegasus distribution allows easy creation of complex and large workflows in
R environments. The API follows the Google' R style guide [http://google.github.io/styleguide/Rguide.xml], and all
objects and methods are defined using the S3 OOP system.

The API can be installed as follows:

1. Installing from source package (.tar.gz) in an R environment:

install.packages("/path/to/source/package.tar.gz", repo=NULL)

The source package can be obtained using pegasus-config --r or from the Pegasus' downloads [http://
pegasus.isi.edu/downloads] page.

284

http://google.github.io/styleguide/Rguide.xml
http://google.github.io/styleguide/Rguide.xml
http://pegasus.isi.edu/downloads
http://pegasus.isi.edu/downloads
http://pegasus.isi.edu/downloads

API Reference

The R API is well documented using Roxygen [http://http://roxygen.org]. In an R environment, it can be accessed
using help(package=dax3). A PDF manual [r/dax3-manual.pdf] is also available.

The steps involved in creating a DAX using the API are

1. Create a new ADAG object

2. Add any metadata attributes associated with the whole workflow.

3. Add any Workflow notification elements.

4. Create File objects as necessary. You can augment the files with physical information, if you want to include them
into your DAX. Otherwise, the physical information is determined from the replica catalog.

5. (Optional) Create Executable objects, if you want to include your transformation catalog into your DAX. Otherwise,
the translation of a job/task into executable location happens with the transformation catalog.

6. Create a new Job object.

7. Add arguments, files, profiles, notifications and other information to the Job object

8. Add the job object to the ADAG object

9. Repeat step 4-6 as necessary.

10.Add all dependencies to the ADAG object.

11.Call the WriteXML() method on the ADAG object to render the XML DAX file.

An example R code that generates the diamond dax show previously is listed below. A workflow example code can be
found in the Pegasus distribution in the examples/grid-blackdiamond-r directory as blackdiamond.R:

#!/usr/bin/Rscript
#
library(dax3)

Create a DAX
diamond <- ADAG("diamond")

Add some metadata
diamond <- Metadata(diamond, "name", "diamond")
diamond <- Metadata(diamond, "createdby", "Rafael Ferreira da Silva")

Add input file to the DAX-level replica catalog
a <- File("f.a")
a <- AddPFN(a, PFN("gsiftp://site.com/inputs/f.a","site"))
a <- Metadata(a, "size", "1024")
diamond <- AddFile(diamond, a)

Add executables to the DAX-level replica catalog
e_preprocess <- Executable(namespace="diamond", name="preprocess", version="4.0", os="linux",
 arch="x86_64")
e_preprocess <- Metadata(e_preprocess, "size", "2048")
e_preprocess <- AddPFN(e_preprocess, PFN("gsiftp://site.com/bin/preprocess","site"))
diamond <- AddExecutable(diamond, e_preprocess)

e_findrange <- Executable(namespace="diamond", name="findrange", version="4.0", os="linux",
 arch="x86_64")
e_findrange <- AddPFN(e_findrange, PFN("gsiftp://site.com/bin/findrange","site"))
diamond <- AddExecutable(diamond, e_findrange)

e_analyze <- Executable(namespace="diamond", name="analyze", version="4.0", os="linux",
 arch="x86_64")
e_analyze <- AddPFN(e_analyze, PFN("gsiftp://site.com/bin/analyze","site"))
diamond <- AddExecutable(diamond, e_analyze)

Add a preprocess job
preprocess <- Job(e_preprocess)
preprocess <- Metadata(preprocess, "time", "60")
b1 <- File("f.b1")
b2 <- File("f.b2")
preprocess <- AddArguments(preprocess, list("-a preprocess","-T60","-i",a,"-o",b1,b2))

285

http://http://roxygen.org
http://http://roxygen.org

API Reference

preprocess <- Uses(preprocess, a, link=DAX3.Link$INPUT)
preprocess <- Uses(preprocess, b1, link=DAX3.Link$OUTPUT, transfer=TRUE)
preprocess <- Uses(preprocess, b2, link=DAX3.Link$OUTPUT, transfer=TRUE)
diamond <- AddJob(diamond, preprocess)

Add left Findrange job
frl <- Job(e_findrange)
frl <- Metadata(frl, "time", "60")
c1 <- File("f.c1")
frl <- AddArguments(frl, list("-a findrange","-T60","-i",b1,"-o",c1))
frl <- Uses(frl, b1, link=DAX3.Link$INPUT)
frl <- Uses(frl, c1, link=DAX3.Link$OUTPUT, transfer=TRUE)
diamond <- AddJob(diamond, frl)

Add right Findrange job
frr <- Job(e_findrange)
frr <- Metadata(frr, "time", "60")
c2 <- File("f.c2")
frr <- AddArguments(frr, list("-a findrange","-T60","-i",b2,"-o",c2))
frr <- Uses(frr, b2, link=DAX3.Link$INPUT)
frr <- Uses(frr, c2, link=DAX3.Link$OUTPUT, transfer=TRUE)
diamond <- AddJob(diamond, frr)

Add Analyze job
analyze <- Job(e_analyze)
analyze <- Metadata(analyze, "time", "60")
d <- File("f.d")
analyze <- AddArguments(analyze, list("-a analyze","-T60","-i",c1,c2,"-o",d))
analyze <- Uses(analyze, c1, link=DAX3.Link$INPUT)
analyze <- Uses(analyze, c2, link=DAX3.Link$INPUT)
analyze <- Uses(analyze, d, link=DAX3.Link$OUTPUT, transfer=TRUE)
diamond <- AddJob(diamond, analyze)

Add dependencies
diamond <- Depends(diamond, parent=preprocess, child=frl)
diamond <- Depends(diamond, parent=preprocess, child=frr)
diamond <- Depends(diamond, parent=frl, child=analyze)
diamond <- Depends(diamond, parent=frr, child=analyze)

Get generated diamond dax
WriteXML(diamond, stdout())

DAX Generator without a Pegasus DAX API
If you are using some other scripting or programming environment, you can directly write out the DAX format using
the provided schema using any language. For instance, LIGO, the Laser Interferometer Gravitational Wave Observa-
tory, generate their DAX files as XML using their own Python code, not using our provided API.

If you write your own XML, you must ensure that the generated XML is well formed and valid with respect to the
DAX schema. You can use the pegasus-dax-validator to verify the validity of your generated file. Typically, you
generate a smallish test file to, validate that your generator creates valid XML using the validator, and then ramp it up
to produce the full workflow(s) you want to run. At this point the pegasus-dax-validator is a very simple program
that will only take exactly one argument, the name of the file to check.The following snippet checks a black-diamond
file that uses an improper osversion attribute in its executable element:

$ pegasus-dax-validator blackdiamond.dax
ERROR: cvc-pattern-valid: Value '2.6.18-194.26.1.el5' is not facet-valid
 with respect to pattern '[0-9]+(\.[0-9]+(\.[0-9]+)?)?' for type 'VersionPattern'.
ERROR: cvc-attribute.3: The value '2.6.18-194.26.1.el5' of attribute 'osversion'
 on element 'executable' is not valid with respect to its type, 'VersionPattern'.

0 warnings, 2 errors, and 0 fatal errors detected.

We are working on improving this program, e.g. provide output with regards to the line number where the issue
occurred. However, it will return with a non-zero exit code whenever errors were detected.

Monitoring
Monitoring REST API allows developers to query a Pegasus workflow's STAMPEDE database.

286

API Reference

Resource Definition

Root Workflow
{
 "wf_id" : <int:wf_id>,
 "wf_uuid" : <string:wf_uuid>,
 "submit_hostname" : <string:submit_hostname>,
 "submit_dir" : <string:submit_dir>,
 "planner_arguments" : <string:planner_arguments>,
 "planner_version" : <string:planner_version>,
 "user" : <string:user>,
 "grid_dn" : <string:grid_dn>,
 "dax_label" : <string:dax_label>,
 "dax_version" : <string:dax_version>,
 "dax_file" : <string:dax_file>,
 "dag_file_name" : <string:dag_file_name>,
 "timestamp" : <int:timestamp>,
 "workflow_state" : <object:workflow_state>,
 "_links" : {
 "workflow" : <href:workflow>
 }
}

Workflow
{
 "wf_id" : <int:wf_id>,
 "root_wf_id" : <int:root_wf_id>,
 "parent_wf_id" : <int:parent_wf_id>,
 "wf_uuid" : <string:wf_uuid>,
 "submit_hostname" : <string:submit_hostname>,
 "submit_dir" : <string:submit_dir>,
 "planner_arguments" : <string:planner_arguments>,
 "planner_version" : <string:planner_version>,
 "user" : <string:user>,
 "grid_dn" : <string:grid_dn>,
 "dax_label" : <string:dax_label>,
 "dax_version" : <string:dax_version>,
 "dax_file" : <string:dax_file>,
 "dag_file_name" : <string:dag_file_name>,
 "timestamp" : <int:timestamp>,
 "_links" : {
 "workflow_meta" : <href:workflow_meta>,
 "workflow_state" : <href:workflow_state>,
 "job" : <href:job>,
 "task" : <href:task>,
 "host" : <href:host>,
 "invocation" : <href:invocation>
 }
}

Workflow Metadata

{
 "key" : <string:key>,
 "value" : <string:value>,
 "_links" : {
 "workflow" : <href:workflow>
 }
}

Workflow Files

{
 "wf_id" : <int:wf_id>,
 "lfn_id" : <string:lfn_id>,
 "lfn" : <string:lfn>,
 "pfns" : [
 {
 "pfn_id" : <int:pfn_id>,
 "pfn" : <string:pfn>,

287

API Reference

 "site" : <string:site>
 }
],
 "meta" : [
 {
 "meta_id" : <int:meta_id>,
 "key" : <string:key>,
 "value" : <string:value>
 }
],
 "_links" : {
 "workflow" : <href:workflow>
 }
}

Workflow State
{
 "wf_id" : int:wf_id,
 "state" : <string:state>,
 "status" : <int:status>,
 "restart_count" : <int:restart_count>,
 "timestamp" : <datetime:timestamp>,
 "_links" : {
 "workflow" : "<href:workflow>"
 }
}

Job
{
 "job_id" : <int: job_id>,
 "exec_job_id" : <string: exec_job_id>,
 "submit_file" : <string: submit_file>,
 "type_desc" : <string: type_desc>,
 "max_retries" : <int: max_retries>,
 "clustered" : <bool: clustered>,
 "task_count" : <int: task_count>,
 "executable" : <string: executable>,
 "argv" : <string: argv>,
 "task_count" : <int:task_count>,
 "_links" : {
 "workflow" : <href:workflow>,
 "task" : <href:task>,
 "job_instance" : <href:job_instance>
 }
}

Host
{
 "host_id" : <int:host_id>,
 "site_name" : <string:site_name>,
 "hostname" : <string:hostname>,
 "ip" : <string:ip>,
 "uname" : <string:uname>,
 "total_memory" : <string:total_memory>,
 "_links" : {
 "workflow" : <href:workflow>
 }
}

Job State
{
 "job_instance_id" : <int:job_instance_id>,
 "state" : <string:state>,
 "jobstate_submit_seq" : <int:jobstate_submit_seq>,
 "timestamp" : <int:timestamp>,
 "_links" : {
 "job_instance" : "href:job_instance"
 }
}

288

API Reference

Task
{
 "task_id" : <int:task_id>,
 "abs_task_id" : <string:abs_task_id>,
 "type_desc" : <string: type_desc>,
 "transformation" : <string:transformation>,
 "argv" : <string:argv>,
 "_links" : {
 "workflow" : <href:workflow>,
 "job" : <href:job>,
 "task_meta" : <href:task_meta>
 }
}

Task Metadata

{
 "key" : <string:key>,
 "value" : <string:value>,
 "_links" : {
 "task" : <href:task>
 }
}

Job Instance
{
 "job_instance_id" : <int:job_instance_id>,
 "host_id" : <int:host_id>,
 "job_submit_seq" : <int:job_submit_seq>,
 "sched_id" : <string:sched_id>,
 "site_name" : <string:site_name>,
 "user" : <string:user>,
 "work_dir" : <string:work_dir>,
 "cluster_start" : <int:cluster_start>,
 "cluster_duration" : <int:cluster_duration>,
 "local_duration" : <int:local_duration>,
 "subwf_id" : <int:subwf_id>,
 "stdout_text" : <string:stdout_text>,
 "stderr_text" : <string:stderr_text>,
 "stdin_file" : <string:stdin_file>,
 "stdout_file" : <string:stdout_file>,
 "stderr_file" : <string:stderr_file>,
 "multiplier_factor" : <int:multiplier_factor>,
 "exitcode" : <int:exitcode>,
 "_links" : {
 "job_state" : <href:job_state>,
 "host" : <href:host>,
 "invocation" : <href:invocation>,
 "job" : <href:job>
 }
}

Invocation
{
 "invocation_id" : <int:invocation_id>,
 "job_instance_id" : <int:job_instance_id>,
 "abs_task_id" : <string:abs_task_id>,
 "task_submit_seq" : <int:task_submit_seq>,
 "start_time" : <int:start_time>,
 "remote_duration" : <int:remote_duration>,
 "remote_cpu_time" : <int:remote_cpu_time>,
 "exitcode" : <int:exitcode>,
 "transformation" : <string:transformation>,
 "executable" : <string:executable>,
 "argv" : <string:argv>,
 "_links" : {
 "workflow" : <href:workflow>,
 "job_instance" : <href:job_instance>
 }
}

289

API Reference

RC LFN

{
 "lfn_id" : <int:pfn_id>,
 "lfn" : <string:pfn>
}

RC PFN

{
 "pfn_id" : <int:pfn_id>,
 "pfn" : <string:pfn>,
 "site" : <string:site>
}

RC Metadata

{
 "meta_id" : <int:meta_id>,
 "key" : <string:key>,
 "value" : <string:value>
}

Endpoints
All URIs are prefixed by/api/v1/user/<string:user>.

All endpoints return response with content-type as application/json.

All endpoints support `pretty-print` query argument, to return a formatted JSON response.

All endpoints return status code 401 forAuthentication failure.

All endpoints return status code 403 forAuthorization failure.

GET /root OR POST /root/query

Returns a collection of the Root Workflow resource.

Table 16.5. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.6. Returns

Status Code Description

200 OK

204 No content; when no workflows found.

400 Bad request

GET /root/<m_wf_id>

Returns a Root Workflow resource identified by m_wf_id.

290

API Reference

Table 16.7. Returns

Status Code Description

200 OK

404 Not found

GET /root/<m_wf_id>/workflow OR POST /root/<m_wf_id>/workflow/query

Returns a collection of the Workflow resource.

Table 16.8. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.9. Returns

Status Code Description

200 OK

204 No content; when no workflows found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>

Returns a Workflow resource identified by m_wf_id, wf_id.

Table 16.10. Returns

Status Code Description

200 OK

404 Not found

GET /root/<m_wf_id>/workflow/<wf_id>/meta OR POST /root/<m_wf_id>/
workflow/<wf_id>/meta/query

Returns a collection of the WorkflowMetadata resource.

Table 16.11. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.12. Returns

Status Code Description

200 OK

291

API Reference

Status Code Description

204 No content; when no workflows found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/files OR POST /root/<m_wf_id>/
workflow/<wf_id>/files/query

Returns a collection of the WorkflowFiles resource.

Table 16.13. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.14. Returns

Status Code Description

200 OK

204 No content; when no workflows found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/state[;recent=true] OR POST /root/
<m_wf_id>/workflow/<wf_id>/state[;recent=true]/query

Returns a collection of the Workflow State resource.

Table 16.15. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

recent Get most recent results. See Recent.

Table 16.16. Returns

Status Code Description

200 OK

204 No content; when no workflow-state found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/host OR POST /root/<m_wf_id>/
workflow/<wf_id>/host/query

Returns a collection of the Host resource.

292

API Reference

Table 16.17. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.18. Returns

Status Code Description

200 OK

204 No content; when no hosts found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/host/<host_id>

Returns a Host resource identified by m_wf_id, wf_id, host_id.

Table 16.19. Returns

Status Code Description

200 OK

404 Not found

GET /root/<m_wf_id>/workflow/<wf_id>/task OR POST /root/<m_wf_id>/
workflow/<wf_id>/task/query

Returns a collection of the Task resource.

Table 16.20. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.21. Returns

Status Code Description

200 OK

204 No content; when no tasks found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/task/<task_id>

Returns a Task resource identified by m_wf_id, wf_id, task_id.

293

API Reference

Table 16.22. Returns

Status Code Description

200 OK

404 Not found

GET /root/<m_wf_id>/workflow/<wf_id>/task/<task_id>/meta OR POST /root/
<m_wf_id>/workflow/<wf_id>/task/<task_id>/meta/query

Returns a collection of the TaskMetadata resource.

Table 16.23. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.24. Returns

Status Code Description

200 OK

204 No content; when no workflows found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/invocation OR POST /root/
<m_wf_id>/workflow/<wf_id>/invocation/query

Returns a collection of the Invocation resource.

Table 16.25. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.26. Returns

Status Code Description

200 OK

204 No content; when no invocations found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/invocation/<invocation_id>

Returns a Invocation resource identified by m_wf_id, wf_id, invocation_id.

294

API Reference

Table 16.27. Returns

Status Code Description

200 OK

404 Not found

GET /root/<m_wf_id>/workflow/<wf_id>/job OR POST /root/<m_wf_id>/work-
flow/<wf_id>/job/query

Returns a collection of the Job resource.

Table 16.28. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.29. Returns

Status Code Description

200 OK

204 No content; when no jobs found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>

Returns a Job resource identified by m_wf_id, wf_id, job_id.

Table 16.30. Returns

Status Code Description

200 OK

404 Not foun

GET /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>/task OR POST /root/
<m_wf_id>/workflow/<wf_id>/job/<job_id>/task/query

Returns a collection of the Task resource.

Table 16.31. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

295

API Reference

Table 16.32. Returns

Status Code Description

200 OK

204 No content; when no tasks found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>/job-instance[;recen-
t=true] OR POST /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>/job-in-
stance[;recent=true]/query

Returns a collection of the Job Instance resource.

Table 16.33. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

recent Get most recent results. See Recent.

Table 16.34. Returns

Status Code Description

200 OK

204 No content; when no job-instances found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>/job-instance/<job_in-
stance_id>

Returns a Job Instance resource identified by m_wf_id, wf_id, job_id, job_instance_id.

Table 16.35. Returns

Status Code Description

200 OK

404 Not found

GET /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>/job-instance/<job_in-
stance_id>/state[;recent=true] OR POST /root/<m_wf_id>/workflow/<wf_id>/
job/<job_id>/job-instance/<job_instance_id>/state[;recent=true]/query

Returns a collection of the Job State resource.

Table 16.36. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

296

API Reference

Argument Description

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

recent Get most recent results. See Recent.

Table 16.37. Returns

Status Code Description

200 OK

204 No content; when no job-state found.

400 Bad request

GET /root/<m_wf_id>/workflow/<wf_id>/job/<job_id>/job-instance/<job_in-
stance_id>/invocation OR POST /root/<m_wf_id>/workflow/<wf_id>/job/
<job_id>/job-instance/<job_instance_id>/invocation/query

Returns a collection of the Invocation resource.

Table 16.38. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.39. Returns

Status Code Description

200 OK

204 No content; when no invocations found.

400 Bad request

POST /batch

Returns an array of responses; one entry for each request.

Batch Request

[
 {
 "method" : <string:method>,
 "path" : <string:path>,
 "body" : <dict:body>
 },
 {
 "method" : <string:method>,
 "path" : <string:path>,
 "body" : <dict:body>
 }
]

Batch Response

297

API Reference

[
 {
 "status" : <int:status_code>,
 "response" : <string:response>
 },
 {
 "status" : <int:status_code>,
 "response" : <string:response>
 }
]

Table 16.40. Returns

Status Code Description

207 Multi status

GET /root/<m_wf_id>/workflow/<wf_id>/job/<[running|successful|failed|fail-
ing]> OR POST /root/<m_wf_id>/workflow/<wf_id>/job/<[running|success-
ful|failed|failing]>/query

Returns a collection of running, successful, failed, or failing Job resource.

Note: Queries, Sorting can include fields from Job and JobInstance resource.

Table 16.41. Options

Argument Description

start-index Return results starting from record <start-index> (0 in-
dexed)

max-results Return a maximum of <max-results> records

query Search criteria. See Querying.

order Order criteria. See Ordering.

Table 16.42. Returns

Status Code Description

200 OK

204 No content; when no jobs found.

400 Bad request

Querying
Querying is supported through query string argument `query`.

Querying is supported only on endpoints returning collections.

Syntax

Query clauses are rudimentary and must follow some rules.

• Supported comparators are =, !=, <, <=, >, >=, LIKE, IN.

• Supported operators are AND, OR.

• Comparision clauses must have the form <FIELDNAME> SPACE <COMPARATOR> SPACE <STRING LITER-
AL OR INTEGER LITERAL OR FLOAT LITERAL>

• <FIELDNAME> must be prefixed with resource query prefix Example: r.wf_id is valid, but wf_id is not.

298

API Reference

• <FIELDNAMES> which can be used in a query caluse depends on the resource being queries. Example: For end-
point /api/v1/user/user-a/root/1/workflow/1/job/2/state query clause can only contain fields from the Job State re-
source.

• Only exceptions for the previous rules are

Querying Root Workflow where fields from both Root Workflow and Workflow State can be included.

Querying the /api/v1/user/user-a/root/1/workflow/1/files where fields from RC LFN, RC PFN, an RC Metadata can
be included.

Views endpoint /api/v1/user/user-a/root/1/workflow/1/job/<[running|successful|failed|failing]> where fields from
Job and JobInstance resource can be included.

Example

For Root Workflow https://www.domain.com/api/v1/user/user-a/root?query<QUERY>

Where QUERY can be(r.wf_id >= 5 AND r.planner_version LIKE '4.5%') OR (r.wf_id IN (1, 2))

Resource - Query Prefix

Table 16.43. Query Prefix

Resource Query Prefix Example

Root Workflow r r.wf_id

Workflow w w.wf_uuid

Workflow Metadata wm wm.key

Workflow Files wf wf.lfn

Workflow State ws ws.state

Job j j.type_desc

Host h h.site

Job State js js.state

Task t t.abs_task_id

Task Metadata tm tm.value

Job Instance ji ji.exitcode

Job i i.argv

RC LFN l l.lfn

RC PFN p p.pfn

RC Metadata rm rm.key

Recent

Workflow State, Job State, and Job Instance resources have historical records.

For use cases where developers need to get the most recent record, we set path argument `recent` to true. Recent
argument is always true when requesting for root-workflow's resource.

Ordering
Ordering is supported through query string argument `order`.

Ordering is supported only on endpoints returning collections.

Order clause can only contain fields which are part of the resource being returned. Fields may or may not be prefixed
by the Resource Query Prefix

299

API Reference

Example: Order clause for an endpoint returning a Workflow resource can only contain fields that are part of the
Workflow resource.

Syntax

Order clause consists of one or more field names optionally followed by order direction (ASC or DESC), separated
by commas.

https://www.domain.com/api/v1/user/user-a/root?order=r.submit_hostname ASC, wf_id DESC

Examples

Resource - Single
$ curl --request GET \
 --user user-a:user-a-password \
 https://www.domain.com/api/v1/user/user-a/root/1/workflow/1?pretty-print=true

HTTP/1.1 200 OK

{
 "wf_id" : 1,
 "root_wf_id" : 1,
 "parent_wf_id" : null,
 "wf_uuid" : "7193de8c-a28d-4eca-b576-1b1c3c4f668b",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/submit/",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir dags --dax
 dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1421432530.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/1/workflow/1/state",
 "job" : "/user/user-a/root/1/workflow/1/job",
 "task" : "/user/user-a/root/1/workflow/1/task",
 "host" : "/user/user-a/root/1/workflow/1/host",
 "invocation" : "/user/user-a/root/1/workflow/1/job"
 }
}

Resource - Collection
$ curl --request POST \
 --user user-a:user-a-password \
 --data 'pretty-print=true' \
 https://www.domain.com/api/v1/user/user-a/root/1/workflow/query

HTTP/1.1 200 OK

{
 "records" : [
 {
 "wf_id" : 1,
 "root_wf_id" : 1,
 "parent_wf_id" : null,
 "wf_uuid" : "7193de8c-a28d-4eca-b576-1b1c3c4f668b",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150116T102210-0800",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",

300

API Reference

 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1421432530.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/1/workflow/1/state",
 "job" : "/user/user-a/root/1/workflow/1/job",
 "task" : "/user/user-a/root/1/workflow/1/task",
 "host" : "/user/user-a/root/1/workflow/1/host",
 "invocation" : "/user/user-a/root/1/workflow/1/job"
 }
 },
 {
 "wf_id" : 2,
 "root_wf_id" : 2,
 "parent_wf_id" : null,
 "wf_uuid" : "41920a57-7882-4990-854e-658b7a797745",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150330T165231-0700",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1427759551.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/2/workflow/1/state",
 "job" : "/user/user-a/root/2/workflow/1/job",
 "task" : "/user/user-a/root/2/workflow/1/task",
 "host" : "/user/user-a/root/2/workflow/1/host",
 "invocation" : "/user/user-a/root/2/workflow/1/job"
 }
 },
 {
 "wf_id" : 3,
 "root_wf_id" : 3,
 "parent_wf_id" : null,
 "wf_uuid" : "fce67b41-df67-4b3c-8fa4-d77e6e2b9769",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150330T170228-0700",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1427760148.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/3/workflow/1/state",
 "job" : "/user/user-a/root/3/workflow/1/job",
 "task" : "/user/user-a/root/3/workflow/1/task",
 "host" : "/user/user-a/root/3/workflow/1/host",
 "invocation" : "/user/user-a/root/3/workflow/1/job"
 }

 }
],
 "_meta" : {
 "records_total" : 3,
 "records_filtered" : 3
 }
}

Querying
$ curl --request GET \
 --get \
 --data-urlencode "pretty-print=true" \
 --data-urlencode "query=w.wf_uuid = '41920a57-7882-4990-854e-658b7a797745'" \
 --user user-a:user-a-password \

301

API Reference

 https://www.domain.com/api/v1/user/user-a/root/1/workflow

HTTP/1.1 200 OK

{
 "records" : [
 {
 "wf_id" : 2,
 "root_wf_id" : 2,
 "parent_wf_id" : null,
 "wf_uuid" : "41920a57-7882-4990-854e-658b7a797745",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150330T165231-0700",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1427759551.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/2/workflow/1/state",
 "job" : "/user/user-a/root/2/workflow/1/job",
 "task" : "/user/user-a/root/2/workflow/1/task",
 "host" : "/user/user-a/root/2/workflow/1/host",
 "invocation" : "/user/user-a/root/2/workflow/1/job"
 }
 }
],
 "_meta" : {
 "records_total" : 3,
 "records_filtered" : 1
 }
}

Ordering

$ curl --request GET \
 --user user-a:user-a-password \
 https://www.domain.com/api/v1/user/user-a/root/1/workflow?pretty-print=true&order=wf_id desc

HTTP/1.1 200 OK

{
 "records" : [
 {
 "wf_id" : 3,
 "root_wf_id" : 3,
 "parent_wf_id" : null,
 "wf_uuid" : "fce67b41-df67-4b3c-8fa4-d77e6e2b9769",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150330T170228-0700",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1427760148.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/3/workflow/1/state",
 "job" : "/user/user-a/root/3/workflow/1/job",
 "task" : "/user/user-a/root/3/workflow/1/task",
 "host" : "/user/user-a/root/3/workflow/1/host",
 "invocation" : "/user/user-a/root/3/workflow/1/job"
 }
 },
 {
 "wf_id" : 2,
 "root_wf_id" : 2,

302

API Reference

 "parent_wf_id" : null,
 "wf_uuid" : "41920a57-7882-4990-854e-658b7a797745",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150330T165231-0700",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1427759551.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/2/workflow/1/state",
 "job" : "/user/user-a/root/2/workflow/1/job",
 "task" : "/user/user-a/root/2/workflow/1/task",
 "host" : "/user/user-a/root/2/workflow/1/host",
 "invocation" : "/user/user-a/root/2/workflow/1/job"
 }
 },
 {
 "wf_id" : 1,
 "root_wf_id" : 1,
 "parent_wf_id" : null,
 "wf_uuid" : "7193de8c-a28d-4eca-b576-1b1c3c4f668b",
 "submit_hostname" : "isis.isi.edu",
 "submit_dir" : "/home/tutorial/dags/20150116T102210-0800",
 "planner_arguments" : "--conf pegasusrc --sites condorpool --output-site local --dir
 dags --dax dax.xml --submit",
 "planner_version" : "4.5.0dev",
 "user" : "user-a",
 "grid_dn" : null,
 "dax_label" : "hello_world",
 "dax_version" : "3.5",
 "dax_file" : "/home/tutorial/hello-world.xml",
 "dag_file_name" : "hello_world-0.dag",
 "timestamp" : 1421432530.0,
 "_links" : {
 "workflow_state" : "/user/user-a/root/1/workflow/1/state",
 "job" : "/user/user-a/root/1/workflow/1/job",
 "task" : "/user/user-a/root/1/workflow/1/task",
 "host" : "/user/user-a/root/1/workflow/1/host",
 "invocation" : "/user/user-a/root/1/workflow/1/job"
 }
 }
],
 "_meta" : {
 "records_total" : 3,
 "records_filtered" : 3
 }
}

Recent

$ curl --request GET \
 --user user-a:user-a-password \
 https://www.domain.com/api/v1/user/user-a/root/1/workflow/1/state;recent=true?pretty-
print=true

HTTP/1.1 200 OK

{
 "records": [
 {
 "wf_id": 1,
 "state": "WORKFLOW_TERMINATED",
 "status": 1,
 "restart_count": 3,
 "timestamp": 1421885063.0,
 "_links": {
 "workflow": "/api/v1/user/user-a/root/1/workflow/1"
 }
 }
],

303

API Reference

 "_meta": {
 "records_total": 8,
 "records_filtered": 1
 }
}

Batch Request

Example

$ curl --request POST \
 --user user-a:user-a-password \
 --header "Content-Type: application/json" \
 --data '[
 {
 "path" : "/api/v1/user/user-a/root?query=r.wf_id = 1&pretty-print=True",
 "method" : "GET"
 },
 {
 "path" : "/api/v1/user/user-a/root",
 "method" : "POST",
 "body" : {
 "query" : "r.wf_id = 2",
 "pretty-print" : "True"
 }
 }
]' \
 https://www.domain.com/api/v1/user/user-a/batch

[
 {
 "status" : 200,
 "response" : {
 "records" : [
 {
 "wf_id" : 1,
 "wf_uuid" : "7193de8c-a28d-4eca-b576-1b1c3c4f668b",
 ..
 "_links" : {
 "workflow" : "/api/v1/user/user-a/root/1/workflow"
 }
 }
],
 "_meta" : {
 "records_total" : 5,
 "records_filtered" : 1
 }
 }
 },
 {
 "status" : 200,
 "response" : {
 "records" : [
 {
 "wf_id" : 2,
 "wf_uuid" : "41920a57-7882-4990-854e-658b7a797745",
 ..
 "_links" : {
 "workflow" : "/api/v1/user/user-a/root/2/workflow"
 }
 }
],
 "_meta" : {
 "records_total" : 5,
 "records_filtered" : 1
 }
 }
 }
]

304

Chapter 17. Command Line Tools

305

Command Line Tools

Name
pegasus-analyzer — debugs a workflow.

Synopsis
pegasus-analyzer [--help|-h] [--quiet|-q] [--strict|-s]
 [--monitord|-m|-t] [--verbose|-v]
 [--output-dir|-o output_dir]
 [--dag dag_filename] [--dir|-d|-i input_dir]
 [--print|-p print_options] [--type workflow_type]
 [--debug-job job][--debug-dir debug_dir]
 [--local-executable local user executable]
 [--conf|-c property_file] [--files]
 [--top-dir dir_name] [--recurse|-r]
 [workflow_directory]

Description
pegasus-analyzer is a command-line utility for parsing the jobstate.log file and reporting successful and failed jobs.
When executed without any options, it will query the SQLite or MySQL database and retrieve failed job information
for the particular workflow. When invoked with the --files option, it will retrieve information from several log files,
isolating jobs that did not complete successfully, and printing their stdout and stderr so that users can get detailed
information about their workflow runs.

Options
-h , --help Prints a usage summary with all the available command-line options.

-q , --quiet Only print the the output and error filenames instead of their contents.

-s , --strict Get jobs' output and error filenames from the job’s submit file.

-m , -t , --monitord Invoke pegasus-monitord before analyzing the jobstate.log file. Although pe-
gasus-analyzer can be executed during the workflow execution as well as after
the workflow has already completed execution, pegasus-monitord" is always
invoked with the --replay option. Since multiple instances of pegasus-mon-
itord" should not be executed simultaneously in the same workflow directo-
ry, the user should ensure that no other instances of pegasus-monitord are
running. If the run_directory is writable, pegasus-analyzer will create a job-
state.log file there, rotating an older log, if it is found. If the run_directory is
not writable (e.g. when the user debugging the workflow is not the same user
that ran the workflow), pegasus-analyzer will exit and ask the user to provide
the --output-dir option, in order to provide an alternative location for pega-
sus-monitord log files.

-v , --verbose Sets the log level for pegasus-analyzer. If omitted, the default level will be set
to WARNING. When this option is given, the log level is changed to INFO. If
this option is repeated, the log level will be changed to DEBUG.

-o output_dir , --output-dir out-
put_dir

This option provides an alternative location for all monitoring log files for a
particular workflow. It is mainly used when an user does not have write privi-
leges to a workflow directory and needs to generate the log files needed by pe-
gasus-analyzer. If this option is used in conjunction with the --monitord op-
tion, it will invoke pegasus-monitord using output_dir to store all output files.
Because workflows can have sub-workflows, pegasus-monitord will create its
files prepending the workflow wf_uuid to each filename. This way, multiple
workflow files can be stored in the same directory. pegasus-analyzer has built-
in logic to find the specific jobstate.log file by looking at the workflow brain-
dump.txt file first and figuring out the corresponding wf_uuid. If output_dir
does not exist, it will be created.

306

Command Line Tools

--dag 'dag_filename In this option, dag_filename specifies the path to the DAG file to use. pega-
sus-analyzer will get the directory information from the dag_filename. This
option overrides the --dir option below.

-d input_dir , -i input_dir , --dir
input_dir

Makes pegasus-analyzer look for the jobstate.log file in the input_dir directo-
ry. If this option is omitted, pegasus-analyzer will look in the current directory.

-p print_options , --print print_op-
tions

Tells pegasus-analyzer what extra information it should print for failed jobs.
print_options is a comma-delimited list of options, that include pre, invoca-
tion, and/or all, which activates all printing options. With the pre option, pega-
sus-analyzer will print the pre-script information for failed jobs. For the invo-
cation option, pegasus-analyzer will print the invocation command, so users
can manually run the failed job.

--debug-job job When given this option, pegasus-analyzer turns on its debug_mode, when it
can be used to debug a particular Pegasus Lite job. In this mode, pegasus-ana-
lyzer will create a shell script in the debug_dir (see below, for specifying it) and
copy all necessary files to this local directory and then execute the job locally.

--debug-dir debug_dir When in debug_mode, pegasus-analyzer will create a temporary debug direc-
tory. Users can give this option in order to specify a particular debug_dir di-
rectory to be used instead.

--local-executable local user exe-
cutable

When in debug job mode for Pegasus Lite jobs, pegasus-analyzer creates a shell
script to execute the Pegasus Lite job locally in a debug directory. The Pegasus
Lite script refers to remote user executable path. This option can be used to pass
the local path to the user executable on the submit host. If the path to the user
executable in the Pegasus Lite job is same as the local installation.

--type workflow_type In this options, users specify what workflow_type they want to debug. At this
moment, the only workflow_type available is condor and it is the default value
if this option is not specified.

-c property_file , --conf proper-
ty_file

This option is used to specify an alternative property file, which may contain the
path to the database to be used by pegasus-analyzer. If this option is not spec-
ified, the config file specified in the braindump.txt file will take precedence.

--files This option allows users to run pegasus-analyzer using the files in the work-
flow directory instead of the database as the source of information. pegasus-an-
alyzer will output the same information, this option only changes where the
data comes from.

--top-dir dir_name This option enables pegasus-analyzer to show information about sub-work-
flows when using the database mode. When debugging a top-level workflow
with failures in sub-workflows, the analyzer will automatically print the com-
mand users should use to debug a failed sub-workflow. This allows the analyzer
to find the database it needs to access.

-r , --recurse This option sets pegasus-analyzer to automatically recurse into sub workflows
in case of failure. By default, if a workflow has a sub workflow in it, and that sub
workflow fails , pegasus-analyzer reports that the sub workflow node failed,
and lists a command invocation that the user must execute to determine what
jobs in the sub workflow failed. If this option is set, then the analyzer automat-
ically issues the command invocation and in addition displays the failed jobs
in the sub workflow.

Environment Variables
pegasus-analyzer does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus' bin directory.

307

Command Line Tools

Example
The simplest way to use pegasus-analyzer is to go to the run_directory and invoke the analyzer:

$ pegasus-analyzer .

which will cause pegasus-analyzer to print information about the workflow in the current directory.

pegasus-analyzer output contains a summary, followed by detailed information about each job that either failed, or
is in an unknown state. Here is the summary section of the output:

**************************Summary***************************

 Total jobs : 75 (100.00%)
 # jobs succeeded : 41 (54.67%)
 # jobs failed : 0 (0.00%)
 # jobs held : 1 (1.33%)
 # jobs unsubmitted : 33 (44.00%)
 # jobs unknown : 1 (1.33%)

jobs_succeeded are jobs that have completed successfully. jobs_failed are jobs that have finished, but that did not
complete successfully. jobs_unsubmitted are jobs that are listed in the dag_file, but no information about them was
found in the jobstate.log file. jobs_held are jobs that were in HTCondor HELD state on the last retry of the job. With
default, pegasus added periodic_remove expression with the jobs, a held job can eventually fail. In that case, held job
appears as a failed job also. Finally, jobs_unknown are jobs that have started, but have not reached completion.

After the summary section, pegasus-analyzer will display information about each job in the job_failed and job_un-
known categories.

*******************************Held jobs' details*******************************

====================================sleep_j2====================================

 submit file : sleep_j2.sub
 last_job_instance_id : 7
 reason : Error from slot1@corbusier.isi.edu:
 STARTER at 128.9.64.188 failed to
 send file(s) to
 <128.9.64.188:62639>: error reading from
 /opt/condor/8.4.8/local.corbusier/execute/dir_76205/f.out:
 (errno 2) No such file or directory;
 SHADOW failed to receive file(s) from <128.9.64.188:62653>

In the above example, the sleep_j2 job was held, and the analyzer displays the reason why it was held, as determined
from the dagman.out file for the workflow. The last_job_instance_id is the database id for the job in the job instance
table of the monitoring database.

******************Failed jobs' details**********************

=======================findrange_j3=========================

 last state: POST_SCRIPT_FAILURE
 site: local
 submit file: /home/user/diamond-submit/findrange_j3.sub
 output file: /home/user/diamond-submit/findrange_j3.out.000
 error file: /home/user/diamond-submit/findrange_j3.err.000

--------------------Task #1 - Summary-----------------------

 site : local
 hostname : server-machine.domain.com
 executable : (null)
 arguments : -a findrange -T 60 -i f.b2 -o f.c2
 error : 2
 working dir :

In the example above, the findrange_j3 job has failed, and the analyzer displays information about the job, showing that
the job finished with a POST_SCRIPT_FAILURE, and lists the submit, output and error files for this job. Whenever
pegasus-analyzer detects that the output file contains a kickstart record, it will display the breakdown containing each
task in the job (in this case we only have one task). Because pegasus-analyzer was not invoked with the --quiet flag,

308

Command Line Tools

it will also display the contents of the output and error files (or the stdout and stderr sections of the kickstart record),
which in this case are both empty.

In the case of SUBDAG and subdax jobs, pegasus-analyzer will indicate it, and show the command needed for the
user to debug that sub-workflow. For example:

=================subdax_black_ID000009=====================

 last state: JOB_FAILURE
 site: local
 submit file: /home/user/run1/subdax_black_ID000009.sub
 output file: /home/user/run1/subdax_black_ID000009.out
 error file: /home/user/run1/subdax_black_ID000009.err
 This job contains sub workflows!
 Please run the command below for more information:
 pegasus-analyzer -d /home/user/run1/blackdiamond_ID000009.000

-----------------subdax_black_ID000009.out-----------------

Executing condor dagman ...

-----------------subdax_black_ID000009.err-----------------

tells the user the subdax_black_ID000009 sub-workflow failed, and that it can be debugged by using the indicated
pegasus-analyzer command.

See Also
pegasus-status(1), pegasus-monitord(1), pegasus-statistics(1).

Authors
Fabio Silva <fabio at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

309

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-cluster — run a list of applications

Synopsis
pegasus-cluster [-d] [-e | -f] [-S ec] [-s fn] [-R fn] [-n nr] [inputfile]

Description
The pegasus-cluster tool executes a list of application in the order specified (assuming sequential mode.) It is generally
used to do horizontal clustering of independent application, and does not care about any application failures. Such
failures should be caught by using pegasus-kickstart to start application.

In vertical clustering mode, the hard failure mode is encouraged, ending execution as soon as one application fails.
When running a complex workflow through pegasus-cluster , the order of applications in the input file must be
topologically sorted.

Applications are usually using pegasus-kickstart to execute. In the pegasus-kickstart case, all invocations of pega-
sus-kickstart except the first should add the pegasus-kickstart option -H to supress repeating the XML preamble
and certain other headers of no interest when repeated.

pegasus-cluster permits shell-style quoting. One level of quoting is removed from the arguments. Please note that
pegasus-kickstart will also remove one level of quoting.

Arguments
-d This option increases the debug level. Debug message are generated on stdout . By default, debug-

ging is minimal.

-e This flag turns on the old behavior of pegasus-cluster to always run everything and return success
no matter what. The -e flag is mutually exclusive with the -f flag. By default, all applications are
executed regardles of failures. Any detected application failure results in a non-zero exit status
from pegasus-cluster.

-f In hard failure mode, as soon as one application fails, either through a non-zero exit code, or by
dying on a signal, further execution is stopped. In parallel execution mode, one or more other
applications later in the sequence file may have been started already by the time failure is detected.
Pegasus-cluster will wait for the completion of these applications, but not start new ones. The -f
flag is mutually exclusive with the -e flag. By default, all applications are executed regardless of
failures. Any detected application failure results in a non-zero exit status from pegasus-cluster.

-h This option prints the help message and exits the program.

-s fn This option will send protocol message (for Mei) to the specified file. By default, all message are
written to stdout .

-R fn The progress reporting feature, if turned on, will write one event record whenever an application
is started, and one event record whenever an application finished. This is to enable tracking of
jobs in progress. By default, track logs are not written, unless the environment variable SEQEX-
EC_PROGRESS_REPORT is set. If set, progress reports are appended to the file pointed to by the
environment variable.

-S ec This option is a multi-option, which may be used multiple times. For each given non-zero exit-code
of an application, mark it as a form of success. In -f mode, this means that pegasus-cluster will
not fail when seeing this exit code from any application it runs. By default, all non-zero exit code
constitute failure.

-n nr This option determines the amount of parallel execution. Typically, parallel execution is only rec-
ommended on multi-core systems, and must be deployed rather carefully, i.e. only completely in-
dependent jobs across of whole inputfile should ever be attempted to be run in parallel. The argu-

310

Command Line Tools

ment nr is the number of parallel jobs that should be used. In addition to a non-negative integer,
the word auto is also understood. When auto is specified, pegasus-cluster will attempt to auto-
matically determine the number of cores available in the system. Strictly sequential execution, as
if nr was 1, is the default. If the environment variable SEQEXEC_CPUS is set, it will determine
the default number of CPUs.

inputfile The input file specifies a list of application to run, one per line. Comments and empty lines are
permitted. The comment character is the octothorpe (#), and extends to the end of line. By default,
pegasus-cluster uses stdin to read the list of applications to execute.

Return Value
The pegasus-cluster tool returns 1, if an illegal option was used. It returns 2, if the status file from option -s cannot be
opened. It returns 3, if the input file cannot be opened. It does not return any failure for failed applications in old-exit
-e mode. In default and hard failure -f mode, it will return 5 for true failure. The determination of failure is modified
by the -S option.

All other internal errors being absent, pegasus-cluster will always return 0 when run without -f . Unlike shell, it will
not return the last application’s exit code. In default mode, it will return 5, if any application failed. Unlike shell, it
will not return the last application’s exit code. However, it will execute all applications. The determination of failure
is modified by the -S flag. In -f mode, *pegasus-cluster returns either 0 if all main sequence applications succeeded,
or 5 if one failed; or more than one in parallel execution mode. It will run only as long as applications were successful.
As before, the *-S flag determines what constitutes a failure.

The pegasus-cluster application will also create a small summary on stdout for each job, and one for itself, about the
success and failure. The field failed reports any exit code that was not zero or a signal of death termination. It does
not include non-zero exit codes that were marked as success using the -S option.

Task Summary
Each task executed by pegasus-cluster generates a record bracketed by square brackets like this (each entry is broken
over two lines for readability):

[cluster-task id=1, start="2011-04-27T14:31:25.340-07:00", duration=0.521,
 status=0, line=1, pid=18543, app="/bin/usleep"]
[cluster-task id=2, start="2011-04-27T14:31:25.342-07:00", duration=0.619,
 status=0, line=2, pid=18544, app="/bin/usleep"]
[cluster-task id=3, start="2011-04-27T14:31:25.862-07:00", duration=0.619,
 status=0, line=3, pid=18549, app="/bin/usleep"]

Each record is introduced by the string cluster-task with the following constituents, where strings are quoted:

id This is a numerical value for main sequence application, indicating the application’s place in the
sequence file. The setup task uses the string setup , and the cleanup task uses the string cleanup .

start is the ISO 8601 time stamp, with millisecond resolution, when the application was started. This
string is quoted.

duration is the application wall-time duration in seconds, with millisecond resolution.

status is the raw exit status as returned by the wait family of system calls. Typically, the exit code is found
in the high byte, and the signal of death in the low byte. Typically, 0 indicates a successful execution,
and any other value a problem. However, details could differ between systems, and exit codes are
only meaningful on the same os and architecture.

line is the line number where the task was found in the main sequence file. Setup- and cleanup tasks
don’t have this attribute.

pid is the process id under which the application had run.

app is the path to the application that was started. As with the progress record, any pegasus-kickstart
will be parsed out so that you see the true application.

311

Command Line Tools

pegasus-cluster Summary
The final summary of counts is a record bracketed by square brackets like this (broken over two lines for readability):

[cluster-summary stat="ok", lines=3, tasks=3, succeeded=3, failed=0, extra=0,
 duration=1.143, start="2011-04-27T14:31:25.338-07:00", pid=18542, app="./seqexec"]

The record is introduced by the string cluster-summary with the following constituents:

stat The string fail when pegasus-cluster would return with an exit status of 5. Concretely, this is any
failure in default mode, and first failure in -f mode. Otherwise, it will always be the string ok , if
the record is produced.

lines is the stopping line number of the input sequence file, indicating how far processing got. Up to the
number of cores additional lines may have been parsed in case of -f mode.

tasks is the number of tasks processed.

succeeded is the number of main sequence jobs that succeeded.

failed is the number of main sequence jobs that failed. The failure condition depends on the -S settings,
too.

extra is 0, 1 or 2, depending on the existence of setup- and cleanup jobs.

duration is the duration in seconds, with millisecond resolution, how long *pegasus-cluster ran.

start is the start time of pegasus-cluster as ISO 8601 time stamp.

See Also
pegasus-kickstart(1)

Caveats
The -S option sets success codes globally. It is not possible to activate success codes only for one specific application,
and doing so would break the shell compatibility. Due to the global nature, use success codes sparingly as last resort
emergency handler. In better plannable environments, you should use an application wrapper instead.

Example
The following shows an example input file to pegasus-cluster making use of pegasus-kickstart to track applications.

#
mkdir
/path/to/pegasus-kickstart -R HPC -n mkdir /bin/mkdir -m 2755 -p split-corpus split-ne-corpus
#
drop-dian
/path/to/pegasus-kickstart -H -R HPC -n drop-dian -o '^f-new.plain' /path/to/drop-dian /path/to/f-
tok.plain /path/to/f-tok.NE
#
split-corpus
/path/to/pegasus-kickstart -H -R HPC -n split-corpus /path/to/split-seq-new.pl 23 f-new.plain split-
corpus/corpus.
#
split-corpus
/path/to/pegasus-kickstart -H -R HPC -n split-corpus /path/to/split-seq-new.pl 23 /path/to/f-tok.NE
 split-ne-corpus/corpus.

Environment Variables
A number of environment variables permits to influence the behavior of pegasus-cluster during run-time.

SEQEXEC_PROGRESS_RE-
PORT

If this variable is set, and points to a writable file location, progress report
records are appended to the file. While care is taken to atomically append

312

Command Line Tools

records to the log file, in case concurrent instances of pegasus-cluster are run-
ning, broken Linux NFS may still garble some content.

SEQEXEC_CPUS If this variable is set to a non-negative integer, that many CPUs are attempted
to be used. The special value auto permits to auto-detect the number of CPUs
available to pegasus-cluster on the system.

SEQEXEC_SETUP If this variable is set, and contains a single fully-qualified path to an executable
and arguments, this executable will be run before any jobs are started. The exit
code of this setup job will have no effect upon the main job sequence. Success
or failure will not be counted towards the summary.

SEQEXEC_CLEANUP If this variable is set, and contains a single fully-qualified path to an executable
and arguments, this executable will be before pegasus-cluster quits. Failure of
any previous job will have no effect on the ability to run this job. The exit code
of the cleanup job will have no effect on the overall success or failure state.
Success or failure will not be counted towards the summary.

History
As you may have noticed, pegasus-cluster had the name seqexec in previous incantations. We are slowly moving to
the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

313

Command Line Tools

Name
pegasus-configure-glite — install Pegasus-specific glite configuration

Synopsis
pegasus-configure-glite [GLITE_LOCATION]

Description
pegasus-configure-glite installs the Pegasus-specific scripts and configuration used by Pegasus to submit jobs via
Glite. It installs:

1. *_local_submit_attributes.sh scripts that map Pegasus profiles to batch system-specifc job requirements.

2. Scripts for Moab and modifications to batch_gahp.config to enable Moab job submission.

Options
GLITE_LOCATION The directory where glite is installed. If this is not provided, then condor_config_val will

be called to get the value of GLITE_LOCATION from the Condor configuration files.

Authors
Pegasus Team http://pegasus.isi.edu

314

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-config — Can be used to find installed Pegasus tools and libraries.

Synopsis
pegasus-config [-h] [--help] [-V] [--version] [--noeoln]
 [--perl-dump] [--perl-hash] [--python-dump] [--sh-dump]
 [--bin] [--conf] [--java] [--perl] [--python]
 [--python-externals] [--r] [--schema] [--classpath]
 [--local-site] [--full-local]

Description
pegasus-config is used to find locations of Pegasus system components. The tool is used internally in Pegasus and by
users who need to find paths for DAX generator libraries and schemas.

Options
-h , --help Prints help and exits.

-V , --version Prints Pegasus version information

--perl-dump Dumps all settings in perl format as separate variables.

--perl-hash Dumps all settings in perl format as single perl hash.

--python-dump Dumps all settings in python format.

--sh-dump Dumps all settings in shell format.

--bin Print the directory containing Pegasus binaries.

--conf Print the directory containing configuration files.

--java Print the directory containing the jars.

--perl Print the directory to include into your PERL5LIB.

--python Print the directory to include into your PYTHONLIB.

--python-externals Print the directory to the external Python libraries.

--r Print the path to the R DAX API source package.

--schema Print the directory containing schemas.

--classpath Builds a classpath containing the Pegasus jars.

--noeoln Do not produce a end-of-line after output. This is useful when being called from non-
shell backticks in scripts. However, order is important for this option: If you intend
to use it, specify it first.

--local-site [d] Create a site catalog entry for site "local". This is only an XML snippet without root
element nor XML headers. The optional argument "d" points to the mount point to
use. If not specified, defaults to the user’s $HOME directory.

--full-local [d] Create a complete site catalog with only site "local". The an XML snippet without
root element nor XML headers. The optional argument "d" points to the mount point
to use. If not specified, defaults to the user’s $HOME directory.

315

Command Line Tools

Example
To set the PYTHONPATH variable in your shell for using the Python DAX API:

export PYTHONPATH=`pegasus-config --python`

To set the same path inside Python:

config = subprocess.Popen("pegasus-config --python-dump", stdout=subprocess.PIPE,
 shell=True).communicate()[0]
exec config

To set the PERL5LIB variable in your shell for using the Perl DAX API:

export PERL5LIB=`pegasus-config --perl`

To set the same path inside Perl:

eval `pegasus-config --perl-dump`;
die("Unable to eval pegasus-config output: $@") if $@;

will set variables a number of lexically local-scoped my variables with prefix "pegasus_" and expand Perl’s search
path for this script.

Alternatively, you can fail early and collect all Pegasus-related variables into a single global %pegasus variable for
convenience:

BEGIN {
 eval `pegasus-config --perl-hash`;
 die("Unable to eval pegasus-config output: $@") if $@;
}

Author
Pegasus Team http://pegasus.isi.edu

316

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-dagman — Wrapper around *condor_dagman*. Not to be run by user.

Description
The pegasus-dagman is a python wrapper that invokes pegasus-monitord and condor_dagman both. This is started
automatically by pegasus-submit-dag and ultimately condor_submit_dag. DO NOT USE DIRECTLY

Return Value
If the condor_dagman and pegasus-monitord exit successfully, pegasus-dagman exits with 0, else exits with non-
zero.

Environment Variables
PATH The path variable is used to locate binary for condor_dagman and pegasus-monitord

See Also
pegasus-run(1) pegasus-monitord(1) pegasus-submit-dag(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

317

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-dax-validator — determines if a given DAX file is valid.

Synopsis
pegasus-dax-validator daxfile [verbose]

Description
The pegasus-dax-validator is a simple application that determines, if a given DAX file is valid XML. For this, it
parses the file with as many XML validity checks that the Apache Xerces XML parser framework supports.

Options
daxfile The location of the file containing the DAX.

verbose If any kind of second argument was specified, not limited to the string verbose, the verbose output
mode is switched on.

Return Value
If the DAX was parsed successfully, or only warning’s were issued, the exit code is 0. Any 'error or fatal error will
result in an exit code of 1.

Additionally, a summary statistics with counts of warnings, errors, and fatal errors will be displayed.

Example
The following shows the parsing of a DAX file that uses the wrong kind of value for certain enumerations. The output
shows the errors with the respective line number and column number of the input DAX file, so that one can find and
fix them more easily. (The lines in the example were broken to fit the manpage format.)

$ pegasus-dax-validator bd.dax
ERROR in line 14, col 110: cvc-enumeration-valid: Value 'i386' is not
 facet-valid with respect to enumeration '[x86, x86_64, ppc, ppc_64,
 ia64, sparcv7, sparcv9, amd64]'. It must be a value from the
 enumeration.
ERROR in line 14, col 110: cvc-attribute.3: The value 'i386' of
 attribute 'arch' on element 'executable' is not valid with respect to
 its type, 'ArchitectureType'.
ERROR in line 14, col 110: cvc-enumeration-valid: Value 'darwin' is
 not facet-valid with respect to enumeration '[aix, sunos, linux, macosx,
 windows]'. It must be a value from the enumeration.
ERROR in line 14, col 110: cvc-attribute.3: The value 'darwin' of
 attribute 'os' on element 'executable' is not valid with respect to
 its type, 'OSType'.

0 warnings, 4 errors, and 0 fatal errors detected.

See Also
Apache Xerces-J http://xerces.apache.org/xerces2-j/

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

318

http://xerces.apache.org/xerces2-j/
http://pegasus.isi.edu/

Command Line Tools

Name
pegasus-db-admin — Manage Pegasus databases.

Synopsis
pegasus-db-admin COMMAND [options] [DATABASE_URL]

Description
pegasus-db-admin is used to manage Pegasus databases. The tool can operate directly over a database URL, or can
read configuration parameters from the properties file or a submit directory. In the later case, a database type should
be provided to indicate which properties should be used to connect to the database. For example, the tool will seek for
pegasus.catalog.replica.db.* properties to connect to the JDBCRC database; or seek for pegasus.catalog.master.url (or
pegasus.dashboard.output, which is deprecated) property to connect to the MASTER database; or seek for the pega-
sus.catalog.workflow.url (or pegasus.monitord.output, which is deprecated) property to connect to the WORKFLOW
database. If none of these properties are found, the tool will connect to the default database

The pegasus-db-admin tool should always be followed by a COMMAND listed below. To see the available options
for each command, please use the -h option after the command. For example: pegasus-db-admin update -h

Commands
create DATABASE_URL Creates Pegasus databases from new or empty databases, or updates current

database to the latest version. If a database already exists, it will create a back-
up (SQLite only) of the current database in the database folder as a 3-digit in-
teger (e.g., workflow.db.000). Pegasus databases can be created by 1) passing
a database URL, 2) from the properties file, and 3) from the submit directory.
Note that if the properties file or the submit directory is used, a database type
(JDBCRC, MASTER, or WORKFLOW) should be provided.

update [-a] [-V] DATA-
BASE_URL

Updates the database to the latest or a given Pegasus version provided with
the -V or --version option. If a database already exists, it will create a backup
(SQLite only) of the current database in the database folder as a 3-digit integer
(e.g., workflow.db.000). The -a or --all option will also update databases from
completed workflows in the MASTER database.

downgrade [-a] [-V] DATA-
BASE_URL

Downgrades the database to the previous or a given Pegasus version provided
with the -V or --version option. If a database already exists, it will create a
backup (SQLite only) of the current database in the database folder as a 3-
digit integer (e.g., workflow.db.000). The -a or --all option will also downgrade
databases from completed workflows in the MASTER database.

check [-V] [-e] DATABASE_URL Verifies if the database is updated to the latest or a given Pegasus version pro-
vided with the -V or --version option.

version [-V] [-e] DATA-
BASE_URL

Prints the current version of the database.

Global Options
-h , --help Prints a usage summary with all the available command-line options.

-c CONFIG_PROPERTIES , --
conf=CONFIG_PROPERTIES

Specifies the properties file. This overrides all other property files. Should be
used with -t.

-s SUBMIT_DIR , --submit-
dir=SUBMIT_DIR

Specifies the submit directory. Should be used with -t.

-t DB_TYPE , --type=DB_TYPE Type of the database (JDBCRC, MASTER, or WORKFLOW). Should be used
with -c or -s.

319

Command Line Tools

-D PROPERTIES Commandline overwrite for properties. Must be in the prop=val format.

-d , --debug Enables debugging.

Update and Downgrade Options
-a , --all Update/Downgrade all databases of completed workflows in MASTER.

-V PEGASUS_VERSION , --ver-
sion=PEGASUS_VERSION

Pegasus version that the database will be updated/downgraded to.

Check and Version Options
-V PEGASUS_VERSION , --ver-
sion=PEGASUS_VERSION

Pegasus version that the database will be updated/downgraded to.

-e , --version-value Show actual version values (an integer number).

Database Upgrades From Pegasus 4.5.X to Pegasus current
version

Databases will be automatically updated when pegasus-plan is invoked, but WORKFLOW databases from past runs
may not be updated accordingly. Since Pegasus 4.6.0, the pegasus-db-admin tool provides an option to automatically
update all databases from completed workflows in the MASTER database. To enable this option, run the following
command:

$ pegasus-db-admin update -a
Your database has been updated.
Your database is compatible with Pegasus version: 4.7.0

Verifying and updating workflow databases:
21/21

Summary:
Verified/Updated: 21/21
Failed: 0/21
Unable to connect: 0/21
Unable to update (active workflows): 0/21

Log files:
20161006T134415-dbadmin.out (Succeeded operations)
20161006T134415-dbadmin.err (Failed operations)

This option generates a log file for succeeded operations, and a log file for failed operations. Each file contains the
list of URLs of the succeeded/failed databases.

Note that, if no URL is provided, the tool will create/use a SQLite

Examples
Create a database by passing a database URL.
$ pegasus-db-admin create sqlite:///${HOME}/.pegasus/workflow.db
$ pegasus-db-admin create mysql://localhost:3306/pegasus

Create a database from the properties file. Note that a database
type should be provided.
$ pegasus-db-admin create -c pegasus.properties -t MASTER
$ pegasus-db-admin create -c pegasus.properties -t JDBCRC
$ pegasus-db-admin create -c pegasus.properties -t WORKFLOW

Create a database from the submit directory. Note that a database
type should be provided.
$ pegasus-db-admin update -s /path/to/submitdir -t WORKFLOW
$ pegasus-db-admin update -s /path/to/submitdir -t MASTER
$ pegasus-db-admin update -s /path/to/submitdir -t JDBCRC

320

Command Line Tools

Update the database schema by passing a database URL.
$ pegasus-db-admin update sqlite:///${HOME}/.pegasus/workflow.db
$ pegasus-db-admin update mysql://localhost:3306/pegasus

Update the database schema from the properties file. Note that a
database type should be provided.
$ pegasus-db-admin update -c pegasus.properties -t MASTER
$ pegasus-db-admin update -c pegasus.properties -t JDBCRC
$ pegasus-db-admin update -c pegasus.properties -t WORKFLOW

Update the database schema from the submit directory. Note that a
database type should be provided.
$ pegasus-db-admin update -s /path/to/submitdir -t WORKFLOW
$ pegasus-db-admin update -s /path/to/submitdir -t MASTER
$ pegasus-db-admin update -s /path/to/submitdir -t JDBCRC

Troubleshooting
Error 2013: Lost connection to MySQL server during query when dumping table

When updating MySQL databases, pegasus-db-admin uses mysqldump to create a backup .sql file for the current
database. For very large databases, the dump may fail due to timeout limits of the MySQL database (which are set to
30 seconds for read, and 60 seconds for write). You can change these limits in the my.cnf config file by setting the
following configuration parameters (the values below are only an example, you should adjust them as you may like):

net_read_timeout = 120
net_write_timeout = 900

After making these changes to my.cnf you must restart MySQL.

Authors
Rafael Ferreira da Silva <rafsilva@isi.edu>

Pegasus Team http://pegasus.isi.edu

321

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-em — Submit and monitor ensembles of workflows

Synopsis
pegasus-em COMMAND [options] [ARGUMENT…]

Commands
server [-d] Start the ensemble manager server.

ensembles List ensembles.

create ENSEMBLE [-R
MAX_RUNNING] [-P MAX_PLAN-
NING]

Create an ensemble.

pause ENSEMBLE Pause ensemble.

activate ENSEMBLE Activate a paused ensemble.

config ENSEMBLE [-R
MAX_RUNNING] | [-P
MAX_PLANNING]

Configure an ensemble.

submit ENSEMBLE.WORKFLOW
plan_command [ARGUMENT…]

Submit a workflow. The command is either pegasus-plan, or a shell script that
calls pegasus-plan. The output of plan_command must contain the output of
pegasus-plan.

workflows ENSEMBLE [-l] List the workflows in an ensemble.

replan ENSEMBLE.WORKFLOW Replan a failed workflow.

rerun ENSEMBLE.WORKFLOW Rerun a failed workflow.

status ENSEMBLE.WORKFLOW Display the status of a workflow.

analyze ENSEMBLE.WORKFLOW Analyze the current state of a workflow.

priority ENSEMBLE.WORKFLOW
-p PRIORITY

Alter the priority of a workflow.

Common Options
-h , --help Print help message

-d , --debug Enable debugging

Create and Config Options
-R N , --max-running N Maximum number of concurrently running workflows.

-P N , --max-planning N Maximum number of workflows being planned simultaneously.

Workflows Options
-l , --long Use long listing format.

Authors
Pegasus Team <pegasus@isi.edu>

322

Command Line Tools

Name
pegasus-exitcode — Used post-job to check the stdout/stderr for errors

Synopsis
pegasus-exitcode [-h][-r rv][-n][-s msg][-f msg] job.out

Description
pegasus-exitcode is a utility that examines the STDOUT of a job to determine if the job failed, and renames the
STDOUT and STDERR files of a job to preserve them in case the job is retried.

Pegasus uses pegasus-exitcode as the DAGMan postscript for jobs submitted via Globus GRAM. This tool exists as
a workaround to a known problem with Globus and Condor-G where the exitcodes of GRAM jobs are not returned.
This is a problem because Pegasus uses the exitcode of a job to determine if the job failed or not.

In order to get around the exitcode problem, Pegasus can wrap GRAM jobs with Kickstart, which records the exitcode
of the job in an XML invocation record, which it writes to the job’s STDOUT. The STDOUT is transferred from the
execution host back to the submit host when the job terminates. After the job terminates, DAGMan runs the job’s
postscript, which Pegasus sets to be pegasus-exitcode. pegasus-exitcode looks at the invocation record generated
by kickstart to see if the job succeeded or failed. If the invocation record indicates a failure, then pegasus-exitcode
returns a non-zero result, which indicates to DAGMan that the job has failed. If the invocation record indicates that
the job succeeded, then pegasus-exitcode returns 0, which tells DAGMan that the job succeeded.

In addition, clustered jobs executed with pegasus-cluster or pegasus-mpi-cluster will have a [cluster-summa-
ry] record in their STDOUT. pegasus-exitcode can examine these records to determine if any of the tasks in the
clustered job failed.

pegasus-exitcode performs several checks (some optional) to determine whether a job failed or not. These checks
include:

1. Is the Condor exitcode non-zero? If so, then the job failed.

2. Is STDOUT empty? If it is empty, then the job failed.

3. Are there any failure messages in the STDOUT or STDERR? If so, the job failed.

4. Are all of the success messages in the STDOUT or STDERR? If not, then the job failed.

5. Does the [cluster-summary] record indicate that the job was successful. If not, then the job failed.

6. Are there any <status> tags with a non-zero value? If there are, then the job failed. Note that, if this is a clustered
job, there could be multiple <status> tags, one for each task. If any of them are non-zero, then the job failed.

7. Is there at least one <status> tag with a zero value? There must be at least one successful invocation or the
job has failed.

In addition, pegasus-exitcode allows the caller to specify the exitcode returned by Condor using the --return argu-
ment. This can be passed to pegasus-exitcode in a DAGMan post script by using the $RETURN variable. If this value
is non-zero, then pegasus-exitcode returns a non-zero result before performing any other checks. For GRAM jobs,
the value of $RETURN will always be 0 regardless of whether the job failed or not.

In addition to checking the success/failure of a job, pegasus-exitcode also renames the STDOUT and STDERR files of
the job so that if the job is retried, the STDOUT and STDERR of the previous run are not lost. It does this by appending
a sequence number to the end of the files. For example, if the STDOUT file is called "job.out", then the first time the
job is run pegasus-exitcode will rename the file "job.out.000". If the job is run again, then pegasus-exitcode sees that
"job.out.000" already exists and renames the file "job.out.001". It will continue to rename the file by incrementing
the sequence number every time the job is executed.

Options
-h , --help Prints a usage summary with all the available command-line options.

323

Command Line Tools

-r rv , --return rv Return value reported by DAGMan. This can be specified in the DAG using
the $RETURN variable. If this is non-zero, then pegasus-exitcode immediately
fails with a non-zero return value itself. If it is zero, then just rotate the file and
don’t check for proper kickstart output. This option can be used in cases where
kickstart cannot be used (such as pegasus-create-dir) to enable file rotation.

-n , --no-rename Don’t rename job.out and job.err to .out.XXX and .err.XXX. This option is used
primarily for testing.

-f msg , --failure-message msg Failure message to find in job stdout/stderr. If this message exists in the std-
out/stderr of the job, then the job will be considered a failure no matter what
other output exists. If multiple failure messages are provided, then none of them
can exist in the output or the job is considered a failure.

-s msg , --success-message msg Success message to find in job stdout/stderr. If this message does not exist in the
stdout/stderr of the job, then the job will be considered a failure no matter what
other output exists. If multiple success messages are provided, then they must all
exist in the output or the job is considered a failure.

-l filename , --log filename Name of the common log file in which stdout/stderr will be redirected.

Authors
Gideon Juve <juve@usc.edu> Rafael Ferreira da Silva <rafsilva@isi.edu>

Pegasus Team http://pegasus.isi.edu

324

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-globus-online-init — Initializes OAuth tokens for Globus Online authentication.

Synopsis
pegasus-globus-online-init [-h]
 [--permanent]

Description
pegasus-globus-online-init initializes OAuth tokens, to be used with Globus Online transfers. It redirects the user to
globus website, in order to authorize Pegasus wms to perform transfers with the user’s Globus account. By default
this tool requests tokens that cannot be refreshed and could potentially expire within a couple of days. In order to
provide pegasus with refreshable tokens please use --permanent option. The acquired tokens are placed in globus.conf
inside .pegasus folder of the user’s home directory.

Note this tool should be used before starting a workflow that relies on Globus Online transfers, unless the user has
initialized the tokens with another way or has acquired refreshable tokens previously.

Options
-h , --help Prints a usage summary with all the available command-line options.

--permanent Requests a refresh token that can be used indefinetely. Access can be revoked from globus web
interface (manage consents)

Author
Pegasus Team http://pegasus.isi.edu

325

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-globus-online — Interfaces with Globus Online for managed transfers.

Synopsis
pegasus-globus-online [--mkdir]
 [--transfer]
 [--remove]
 [--file inputfile]
 [--debug]

Description
pegasus-globus-online takes a JSON input from the pegasus-transfer tool and executes the list by interacting with
the Globus Online service.

It assumes that the endpoints already have been activated using the web interface. To authenticate with Globus On-
line, OAuth tokens must be provided inside the JSON that defines the operation. Tokens can be initialized with pe-
gasus-globus-online-init tool.

Note that pegasus-globus-online is a tool mostly used internally in Pegasus workflows, in particular by pegasus-trans-
fer.

Options
--mkdir The input JSON is for a mkdir request

--transfer The input JSON is for a transfer request

--remove The input JSON is for a remove request

--file inputfile JSON transfer specification. If not given, stdin will be used.

--debug Enables debugging output.

Author
Pegasus Team http://pegasus.isi.edu

326

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-graphviz — Convert a DAX or DAG into a graphviz dot file

Synopsis
pegasus-graphviz [options] FILE

Description
pegasus-graphviz is a tool that generates a graphviz DOT file based on a Pegasus DAX file or DAGMan DAG file.

Options
-h , --help Show the help message

-s , --nosimplify Do not simplify the graph by removing redundant edges. [default: False]

-l LABEL , --label LA-
BEL

What attribute to use for labels. One of label,xform, or id. For label, the transformation is
used for jobs that have no node-label. [default: label]

-o FILE , --output FILE Write output to FILE [default: stdout]

-r XFORM , --remove
XFORM

Remove jobs from the workflow by transformation name

-W WIDTH , --width
WIDTH

Width of the digraph.

-H HEIGHT , --height
HEIGHT

Height of the digraph.

-f , --files Include files. This option is only valid for DAX files. [default: false]

Author
Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu

327

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-gridftp — Perform file and directory operations on remote GridFTP servers

Synopsis
pegasus-gridftp ls [options] [URL…]
pegasus-gridftp mkdir [options] [URL…]
pegasus-gridftp rm [options] [URL…]

Description
pegasus-gridftp is a client for Globus GridFTP servers. It enables remote operations on files and directories via the
GridFTP protocol. This tool was created to enable more efficient remote directory creation and file cleanup tasks in
Pegasus.

Options

Global Options

-v Turn on verbose output. Verbosity can be increased by specifying multiple -v arguments.

-i FILE Read a list of URLs to operate on from FILE.

rm Options

-f If the URL does not exist, then ignore the error.

-r Recursively delete files and directories.

ls Options

-a List files beginning with a ".".

-l Create a long-format listing with file size, creation date, type, permissions, etc.

mkdir Options

-p Create intermediate directories as necessary.

-f Ignore error if directory already exists

Subcommands
pegasus-gridftp has several subcommands to implement different operations.

ls The ls subcommand lists the details of a file, or the contents of a directory on the remote server.

mkdir The mkdir subcommand creates one or more directories on the remote server.

rm The rm subcommand deletes one or more files and directories from the remote server.

URL Format
All URLs supplied to pegasus-gridftp should begin with "gsiftp://".

Configuration
pegasus-gridftp uses the CoG JGlobus API to communicate with remote GridFTP servers. Refer to the CoG JGlobus
documentation for information about configuring the API, such as how to specify the user’s proxy, etc.

328

Command Line Tools

Return Value
pegasus-gridftp returns a zero exist status if the operation is successful. A non-zero exit status is returned in case
of failure.

Author
Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu

329

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-halt — stops a workflow gracefully, current jobs will finish

Synopsis
pegasus-halt [rundir]

Description
pegasus-halt stops a workflow gracefully by allowing the jobs already running to finish on their own. No new jobs
will be submitted. Once all jobs have finished, the workflow will stop. A stopped workflow can be restarted with the
pegasus-run command.

Another way to remove a workflow is with the pegasus-remove command. The difference is that pegasus-remove
will stop running jobs.

Options
rundir The run directory of the workflow you want to stop

Authors
Pegasus Team http://pegasus.isi.edu

330

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-init — create a new workflow configuration

Synopsis
pegasus-init WORKFLOW_DIR

Description
pegasus-init creates a new workflow configuration based by asking the user a series of questions. Based on the
responses to these questions, pegasus-init generates a workflow configuration including a DAX generator, site catalog,
properties file, and other artifacts that can be edited to meet the user’s needs.

Options
WORK-
FLOW_DIR

The directory where you want to create the new workflow configuration.

Authors
Pegasus Team http://pegasus.isi.edu

331

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-integrity — Generates and verifies data integrity with checksums

Synopsis
pegasus-integrity [-h]
 [--generate-sha256 file]
 [--verify file]
 [--debug]

Description
pegasus-integrity either generates a file checksum (usually called from pegasus-kickstart) or verifies a checksum
for a file using metadata in the current working directory.

Note that pegasus-integrity is a tool mostly used internally in Pegasus workflows, but the tool can be used stand alone
as well.

Options
-h , --help Prints a usage summary with all the available command-line options.

--generate-sha256 file Generates a sha256 checksum for a file.

--verify file Verifies a file checksum as compared to what is provided in metadata.

-d , --debug Enables debugging output.

Author
Pegasus Team http://pegasus.isi.edu

332

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-invoke — invokes a command from a file

Synopsis
pegasus-invoke (app | @fn) [arg | *@fn [..]]

Description
The pegasus-invoke tool invokes a single application with as many arguments as your Unix permits (128k characters
for Linux). Arguments are come from two places, either the command-line as regular arguments, or from a special
file, which contains one argument per line.

The pegasus-invoke tool became necessary to work around the 4k argument length limit in Condor. It also permits
to use arguments inside argument files without worry about shell, Condor or Globus escape necessities. All argument
file contents are passed as is, one line per argument entry.

Arguments
-d This option increases the debug level. Currently, only debugging or no debugging is distinguished. Debug

message are generated on stdout . By default, debugging is disabled.

-h This option prints the help message and exits the program.

-- This option stops any option processing. It may only be necessary, if the application is stated on the com-
mand-line, and starts with a hyphen itself.The first argument must either be the application to run as ful-
ly-specified location (either absolute, or relative to current wd), or a file containing one argument per line.
The PATH environment variables is not used to locate an application. Subsequent arguments may either be
specified explicitely on the commandline. Any argument that starts with an at (@) sign is taken to introduce a
filename, which contains one argument per line. The textual file may contain long arguments and filenames.
However, Unices still impose limits on the maximum length of a directory name, and the maximum length
of a file name. These lengths are not checked, because pegasus-invoke is oblivious of the application (e.g.
what argument is a filename, and what argument is a mere string resembling a filename).

Return Value
The pegasus-invoke tool returns 127, if it was unable to find the application. It returns 126, if there was a problem
parsing the file. All other exit status, including 126 and 127, come from the application.

See Also
pegasus-kickstart(1)

Example
$ echo "/bin/date" > X
$ echo "-Isec" >> X
$ pegasus-invoke @X
2005-11-03T15:07:01-0600

Recursion is also possible. Please mind not to use circular inclusions. Also note how duplicating the initial at (@) sign
will escape its meaning as inclusion symbol.

$ cat test.3
This is test 3

$ cat test.2
/bin/echo
@test.3
@@test.3

333

Command Line Tools

$ pegasus-invoke @test.2
This is test 3 @test.3

Restrictions
While the arguments themselves may contain files with arguments to parse, starting with an at (@) sign as before, the
maximum recursion limit is 32 levels of inclusions. It is not possible (yet) to use stdin as source of inclusion.

History
As you may have noticed, pegasus-invoke had the name invoke in previous incantations. We are slowly moving to
the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Mike Wilde <wilde at mcs dot anl dot gov>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus http://pegasus.isi.edu/

334

Command Line Tools

Name
pegasus-keg — kanonical executable for grids

Synopsis
pegasus-keg [-a appname] [-t interval |-T interval] [-l logname]
 [-P prefix] [-o fn [..]] [-i fn [..]] [-G sz [..]] [-m memory]
 [-C] [-e env [..]] [-p parm [..]] [-u data_unit]

Description
The kanonical executable is a stand-in for regular binaries in a DAG - but not for their arguments. It allows to trace
the shape of the execution of a DAG, and thus is an aid to debugging DAG related issues.

Key feature of pegasus-keg is that it can copy any number of input files, including the generator case, to any number
of output files, including the datasink case. In addition, it protocols the IPv4 and hostname of the host it ran upon, the
current timestamp, and the run time from start til the point of logging the information, the current working directory
and some information on the system environment. pegasus-keg will also report all input files, the current output files
and any requested string and environment value.

The workflow of the Keg tool is as follows: - if -m - allocate a memory buffer of the specified amount - if -i - read all
input files into the memory buffer - if -o - write either the input files content (or a generated content if -G) to output
files - if -T - generate CPU load for the specified time period decreased by the time period spent on IO stuff; if the
IO stuff time period exceeds the time period specified here the program exits with code status 3 - if -t - wait/sleep
for the specified time period decreased by time periods spent on IO stuff (and CPU load generating if any); if the
time period spent on previous activities exceeds the amount specified here the program exits with code status 3 - if
-l - write info to the specified log file.

Arguments
The -e, -i, -o, -p and -G arguments allow lists with arbitrary number of arguments. These options may also occur
repeatedly on the command line. The file options may be provided with the special filename - to indicate stdout in
append mode for writing, or stdin for reading. The -a, -l , -P , -T and -t arguments should only occur a single time
with a single argument.

If pegasus-keg is called without any arguments, it will display its usage and exit with success.

-a appname This option allows pegasus-keg to display a different name as its applications. This mode
of operation is useful in make-believe mode. The default is the basename of argv[0].

-e env [..] This option names any number of environment variables, whose value should be reported
as part of the data dump. By default, no environment variables are reported.

-i infile [..] The pegasus-keg binary can work on any number of input files. For each output file,
every input file will be opened, and its content copied to the output file. Textual input
files are assumed. Each input line is indented by two spaces. The input file content is
bracketed between an start and end section, see below. By default, pegasus-keg operates
in generator mode.

-l logfile The logfile is the name of a file to append atomically the self-info, see below. The atomic
write guarantees that the multi-line information will not interleave with other processes
that simultaneously write to the same file. The default is not to use any log file.

-o outfile [..] The pegasus-keg can work on any number of output files. For each output file, every
input file will be opened, and its content copied to the output file. Textual input files are
assumed. Each input line is indented by two spaces. The input file content is bracketed
between an start and end section, see 2nd example. After all input files are copied, the data
dump from this instance of pegasus-keg is appended to the output file. Without output
files, pegasus-keg operates in data sink mode. Accept also <filename>=<filesize><da-
ta_unit> form, where <data_unit> is a character supported by the -u switch.

335

Command Line Tools

-G size [..] If you want pegasus-keg to generate a lot of output, the generator option will do that for
you. Just specify how much, in bytes (but you can change it with -u switch), you want.
You can specify more than 1 value here if you specify more than 1 output file. Subsequent
values specified here will correspond to sizes of subsequent output files. This option is
off by default.

-u data_unit By default, the output data generator (the -G switch) generates the specified amount of
data in Bytes. You can alter this behavior with this switch. It accepts one of the following
characters as data_unit value: B for Bytes, K for KiloBytes, M for MegaBytes, and G for
GigaBytes.

-C This option causes pegasus-keg to list all environment variables that start with the prefix
_CONDOR The option is useful, if .B pegasus-keg is run as (part of) a Condor job. This
option is off by default.

-p string [..] Any number of parameters can be reported, without being specific on their content. Ef-
fectively, these strings are copied straight from the command line. By default, no extra
arguments are shown.

-P prefix Each line from every input file is indented with a prefix string to visually emphasize the
provenance of an input files through multiple instances of pegasus-keg. By default, two
spaces are used as prefix string.

-t interval The interval is an amount of sleep time that the pegasus-keg executable is to sleep in
seconds. This can be used to emulate light work without straining the pool resources. If
used together with the -T spin option, the sleep interval comes before the spin interval.
The default is no sleep time.

-T interval The interval is an amount of busy spin time that the pegasus-keg executable is to simu-
late intense computation in seconds. The simulation is done by random julia set calcula-
tions. This option can be used to emulate an intense work to strain pool resources. If used
together with the -t sleep option, the sleep interval comes before the spin interval. The
default is no spin time.

-m memory The amount of memory ([MB]) the Keg process should use. This option can be used to
emulated application’s memory requirements. The default is not to allocate anything.

Return Value
Execution as planned will return 0. The failure to open an input file will return 1, the failure to open an output file,
including the log file, will return with exit code 2. If the time spent on IO exceeds the specified time CPU load period
with -T or the time spent on IO and CPU load exceeds the specified wall time with -T the return code will be 3.

Example
The example shows the bracketing of an input file, and the copy produced on the output file. For illustration purposes,
the output file is connected to stdout :

$ date > xx
$ pegasus-keg -i xx -p a b c -o -
--- start xx ----
 Thu May 5 10:55:45 PDT 2011
--- final xx ----
Timestamp Today: 20110505T105552.910-07:00 (1304618152.910;0.000)
Applicationname: pegasus-keg [3661M] @ 128.9.xxx.xxx (xxx.isi.edu)
Current Workdir: /opt/pegasus/default/bin/pegasus-keg
Systemenvironm.: x86_64-Linux 2.6.18-238.9.1.el5
Processor Info.: 4 x Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz @ 2660.068
Load Averages : 0.298 0.135 0.104
Memory Usage MB: 11970 total, 8089 free, 0 shared, 695 buffered
Swap Usage MB: 12299 total, 12299 free
Filesystem Info: / ext3 62GB total, 20GB avail
Filesystem Info: /lfs/balefire ext4 1694GB total, 1485GB avail
Filesystem Info: /boot ext2 493MB total, 447MB avail

336

Command Line Tools

Output Filename: -
Input Filenames: xx
Other Arguments: a b c

Restrictions
The input file must be textual files. The behaviour with binary files is unspecified.

The host address is determined from the primary interface. If there is no active interface besides loopback, the host
address will default to 0.0.0.0. If the host address is within a virtual private network address range, only (VPN) will
be displayed as hostname, and no reverse address lookup will be attempted.

The processor info line is only available on Linux systems. The line will be missing on other operating systems. Its
information is assuming symmetrical multi processing, reflecting the CPU name and speed of the last CPU available
in /dev/cpuinfo .

There is a limit of 4 * page size to the output buffer of things that .B pegasus-keg can report in its self-info dump.
There is no such restriction on the input to output file copy.

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Mike Wilde

Yong Zhao

Pegasus - http://pegasus.isi.edu/

337

http://pegasus.isi.edu/

Command Line Tools

Name
pegasus-kickstart — remote job wrapper

Synopsis
pegasus-kickstart [-n tr] [-N dv] [-H] [-R site] [-W | -w dir]
 [-L lbl -T iso] [-s p | @fn] [-S p | @fn] [-i fn]
 [-o fn] [-e fn] [-X] [-l fn sz] [-F] (-I fn | app [appflags])
pegasus-kickstart -V

Description
pegasus-kickstart is a wrapper program which manages and monitors the execution of jobs on remote resources.

Sitting in between the remote scheduler and the application process, it is possible for pegasus-kickstart to gather
additional information about the process' run-time behavior and resource usage, including the exit status of jobs. This
information is important for Pegasus invocation tracking as well as detecting Globus GRAM job failures.

pegasus-kickstart allows the optional execution of jobs before and after the main application job that run in chained
execution with the main application job. See section SUBJOBS for details about this feature.

It also allows stdin, stdout, and stderr to be redirected from/to specific files.

All jobs with relative path specifications to the application are part of search relative to the current working directory
(yes, this is unsafe), and by prepending each component from the PATH environment variable. The first match is used.
Jobs that use absolute pathnames, starting in a slash, are exempt. Using an absolute path to your executable is the
safe and recommended option.

pegasus-kickstart rewrites the command line of any job (pre, post and main) with variable substitutions from Unix
environment variables. See section VARIABLE REWRITING below for details on this feature.

Options
-n tr In order to associate the minimal performance information of the job with the invocation records,

the jobs needs to carry which transformation was responsible for producing it. The format is the
textual notation for fully-qualified definition names, like namespace::name:version, with only the
name portion being mandatory.

There is no default. If no value is given, "null" will be reported.

-N dv The jobs may carry which instantiation of a transformation was responsible for producing it. The
format is the textual notation for fully-qualified definition names, like namespace::name:version,
with only the name portion being mandatory.

There is no default. If no value is given, "null" will be reported.

-H This option avoids pegasus-kickstart writing the XML preamble (entity), if you need to combine
multiple pegasus-kickstart records into one document.

Additionally, if specified, the environment and the resource usage segments will not be written,
assuming that a in a concatenated record version, the initial run will have captured those settings.

-R site In order to provide the greater picture, pegasus-kickstart can reflect the site handle (resource iden-
tifier) into its output.

There is no default. If no value is given, the attribute will not be generated.

-L lbl , -T iso These optional arguments denote the workflow label (from DAX) and the workflow’s last modifi-
cation time (from DAX). The label lbl can be any sensible string of up to 32 characters, but should
use C identifier characters. The timestamp iso must be an ISO 8601 compliant time-stamp.

338

Command Line Tools

-S l=p If stat information on any file is required before any jobs were started, logical to physical file map-
pings to stat can be passed using the -S option. The LFN and PFN are concatenated by an equals (=)
sign. The LFN is optional: If no equals sign is found, the argument is taken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome command line length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of a file to stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value initial. The optional lfn
attribute is set to the LFN stat’ed. The filename is part of the statinfo record inside.

There is no default.

-s fn If stat information on any file is required after all jobs have finished, logical to physical file mappings
to stat can be passed using the -s option. The LFN and PFN are concatenated by an equals (=) sign.
The LFN is optional: If no equals sign is found, the argument is taken as sole PFN specification
without LFN.

This option may be specified multiple times. To reduce and overcome commandline length limits,
if the argument is prefixed with an at (@) sign, the argument is taken to be a textual file of LFN to
PFN mappings. The optionality mentioned above applies. Each line inside the file argument is the
name of a file to stat. Comments (#) and empty lines are permitted.

Each PFN will incur a statcall record (element) with attribute id set to value final. The optional lfn
attribute is set to the LFN stat’ed. The filename is part of the statinfo record inside.

There is no default.

-i fn This option allows pegasus-kickstart to re-connect the stdin of the application that it starts. Use a
single hyphen to share stdin with the one provided to pegasus-kickstart.

The default is to connect stdin to /dev/null.

-o fn This option allows pegasus-kickstart to re-connect the stdout of the application that it starts. The
mode is used whenever an application produces meaningful results on its stdout that need to be
tracked by Pegasus. The real stdout of Globus jobs is staged via GASS (GT2) or RFT (GT4). The
real stdout is used to propagate the invocation record back to the submit site. Use the single hyphen
to share the application’s stdout with the one that is provided to pegasus-kickstart. In that case,
the output from pegasus-kickstart will interleave with application output. For this reason, such a
mode is not recommended.

In order to provide an un-captured stdout as part of the results, it is the default to connect the stdout of
the application to a temporary file. The content of this temporary file will be transferred as payload
data in the pegasus-kickstart results. The content size is subject to payload limits, see the -B option.
If the content grows large, only the last portion will become part of the payload. If the temporary
file grows too large, it may flood the worker node’s temporary space. The temporary file will be
deleted after pegasus-kickstart finishes.

If the filename is prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stdout to a temporary file.

-e fn This option allows pegasus-kickstart to re-connect the stderr of the application that it starts. This
option is used whenever an application produces meaningful results on stderr that needs tracking
by Pegasus. The real stderr of Globus jobs is staged via GASS (GT2) or RFT (GT4). It is used to
propagate abnormal behavior from both, pegasus-kickstart and the application that it starts, though
its main use is to propagate application dependent data and heartbeats. Use a single hyphen to share
stderr with the stderr that is provided to pegasus-kickstart. This is the backward compatible be-
havior.

339

Command Line Tools

In order to provide an un-captured stderr as part of the results, by default the stderr of the application
will be connected to a temporary file. Its content is transferred as payload data in the pegasus-kick-
start results. If too large, only the last portion will become part of the payload. If the temporary file
grows too large, it may flood the worker node’s temporary space. The temporary file will be deleted
after pegasus-kickstart finishes.

If the filename is prefixed with an exclamation point, the file will be opened in append mode instead
of overwrite mode. Note that you may need to escape the exclamation point from the shell.

The default is to connect stderr to a temporary file.

-l logfn allows to append the performance data to the specified file. Thus, multiple XML documents may
end up in the same file, including their XML preamble. stdout is normally used to stream back the
results. Usually, this is a GASS-staged stream. Use a single hyphen to generate the output on the
stdout that was provided to pegasus-kickstart, the default behavior.

Default is to append the invocation record onto the provided stdout.

-w dir permits the explicit setting of a new working directory once pegasus-kickstart is started. This is
useful in a remote scheduling environment, when the chosen working directory is not visible on
the job submitting host. If the directory does not exist, pegasus-kickstart will fail. This option is
mutually exclusive with the -W dir option.

Default is to use the working directory that the application was started in. This is usually set up by
a remote scheduling environment.

-W dir permits the explicit creation and setting of a new working directory once pegasus-kickstart is started.
This is useful in a remote scheduling environment, when the chosen working directory is not visible
on the job submitting host. If the directory does not exist, pegasus-kickstart will attempt to create
it, and then change into it. Both, creation and directory change may still fail. This option is mutually
exclusive with the -w dir option.

Default is to use the working directory that the application was started in. This is usually set up by
a remote scheduling environment.

-X make an application executable, no matter what. It is a work-around code for a weakness of globus-
url-copy which does not copy the permissions of the source to the destination. Thus, if an executable
is staged-in using GridFTP, it will have the wrong permissions. Specifying the -X flag will attempt
to change the mode to include the necessary x (and r) bits to make the application executable.

Default is not to change the mode of the application. Note that this feature can be misused by hackers,
as it is attempted to call chmod on whatever path is specified.

-B sz Changes the amount of stdout and stderr data to include in the output. The last sz bytes of the stdout
and stderr of the process will be copied into kickstart’s output. All other data will be discarded. The
special value all can be used to capture all the stdout/stderr of the process. The default is 256KB.

-F This flag will issue an explicit fsync() call on kickstart’s own stdout file. Typically you won’t need
this flag. Albeit, certain shared file system situations may improve when adding a flush after the
written invocation record.

The default is to just use kickstart’s NFS alleviation strategy by locking and unlocking stdout.

-I fn In this mode, the application name and any arguments to the application are specified inside of file fn.
The file contains one argument per line. Escaping from Globus, Condor and shell meta characters is
not required. This mode permits to use the maximum possible command line length of the underlying
operating system, e.g. 128k for Linux. Using the -I mode stops any further command line processing
of pegasus-kickstart command lines.

Default is to use the app flags mode, where the application is specified explicitly on the com-
mand-line.

340

Command Line Tools

-f This flag causes kickstart to output full information, including the environment and resource limits
under which the job ran, and any useful auxilliary statcalls. If the job fails, then -f is implied.

-k S This flag causes kickstart to send the job a SIGTERM if it is still running after S seconds. The default
value is 0, which disables the timeout.

-K S This flag causes kickstart to send the job a SIGKILL if it is still running S seconds after recieving a
SIGTERM sent as a result of the -k flag. The default value is 5. If -k is not set, or is set to 0, then
this flag is ignored.

-t This flag causes kickstart to use ptrace() to collect resource usage info for the process by intercepting
the process start and stop events. This flag only exists when kickstart is compiled for Linux.

-z This flag causes kickstart to use ptrace() to intercept system calls and report a list of files accessed
and I/O performed. This flag only exists when kickstart is compiled for Linux.

-Z This flag causes kickstart to use LD_PRELOAD to intercept library calls and report a list of files
accessed and I/O performed. This flag only exists when kickstart is compiled for Linux. There are
several environment variables documented below that control what file accesses are traced.

-q This flag causes kickstart to omit the <data> part of the <statcall> records when the job exits suc-
cessfully. This is designed to reduce the size of the output logs for large workflows.

-c This flag causes kickstart to output <data> from stdout and stderr as a CDATA section instead of
quoting it.

app The path to the application has to be completely specified. The application is a mandatory option.

appflags Application may or may not have additional flags.

Return Value
pegasus-kickstart will return the return value of the main job. In addition, the error code 127 signals that the call
to exec failed, and 126 that reconnecting the stdio failed. A job failing with the same exit codes is indistinguishable
from pegasus-kickstart failures.

See Also
pegasus-plan(1), condor_submit_dag(1), condor_submit(1), getrusage(3c).

Subjobs
Subjobs are a new feature and may have a few wrinkles left.

In order to allow specific setups and assertion checks for compute nodes, pegasus-kickstart allows the optional
execution of a prejob. This prejob is anything that the remote compute node is capable of executing. For modern Unix
systems, this includes #! scripts interpreter invocations, as long as the x bits on the executed file are set. The main job
is run if and only if the prejob returned regularly with an exit code of zero.

With similar restrictions, the optional execution of a postjob is chained to the success of the main job. The postjob
will be run, if the main job terminated normally with an exit code of zero.

In addition, a user may specify a setup and a cleanup job. The setup job sets up the remote execution environment. The
cleanup job may tear down and clean-up after any job ran. Failure to run the setup job has no impact on subsequent
jobs. The cleanup is a job that will even be attempted to run for all failed jobs. No job information is passed. If you
need to invoke multiple setup or clean-up jobs, bundle them into a script, and invoke the clean-up script. Failure of the
clean-up job is not meant to affect the progress of the remote workflow (DAGMan). This may change in the future.

The setup-, pre-, and post- and cleanup-job run on the same compute node as the main job to execute. However, since
they run in separate processes as children of pegasus-kickstart, they are unable to influence each others nor the main
jobs environment settings.

341

Command Line Tools

All jobs and their arguments are subject to variable substitutions as explained in the next section.

To specify the prejob, insert the the application invocation and any optional commandline argument into the environ-
ment variable KICKSTART_PREJOB. If you are invoking from a shell, you might want to use single quotes to protect
against the shell. If you are invoking from Globus, you can append the RSL string feature. From Condor, you can use
Condor’s notion of environment settings. In Pegasus use the profile command to set generic scripts that will work on
multiple sites, or the transformation catalog to set environment variables in a pool-specific fashion. Please remember
that the execution of the main job is chained to the success of the prejob.

To set up the postjob, use the environment variable KICKSTART_POSTJOB to point to an application with potential
arguments to execute. The same restrictions as for the prejob apply. Please note that the execution of the post job is
chained to the main job.

To provide the independent setup job, use the environment variable KICKSTART_SETUP. The exit code of the setup
job has no influence on the remaining chain of jobs. To provide an independent cleanup job, use the environment
variable KICKSTART_CLEANUP to point to an application with possible arguments to execute. The same restrictions
as for prejob and postjob apply. The cleanup is run regardless of the exit status of any other jobs.

Variable Rewriting
Variable substitution is a new feature and may have a few wrinkles left.

The variable substitution employs simple rules from the Bourne shell syntax. Simple quoting rules for backslashed
characters, double quotes and single quotes are obeyed. Thus, in order to pass a dollar sign to as argument to your job,
it must be escaped with a backslash from the variable rewriting.

For pre- and postjobs, double quotes allow the preservation of whitespace and the insertion of special characters like \a
(alarm), \b (backspace), \n (newline), \r (carriage return), \t (horizontal tab), and \v (vertical tab). Octal modes are not
allowed. Variables are still substituted in double quotes. Single quotes inside double quotes have no special meaning.

Inside single quotes, no variables are expanded. The backslash only escapes a single quote or backslash.

Backticks are not supported.

Variables are only substituted once. You cannot have variables in variables. If you need this feature, please request it.

Outside quotes, arguments from the pre- and postjob are split on linear whitespace. The backslash makes the next
character verbatim.

Variables that are rewritten must start with a dollar sign either outside quotes or inside double quotes. The dollar may
be followed by a valid identifier. A valid identifier starts with a letter or the underscore. A valid identifier may contain
further letters, digits or underscores. The identifier is case sensitive.

The alternative use is to enclose the identifier inside curly braces. In this case, almost any character is allowed for
the identifier, including whitespace. This is the only curly brace expansion. No other Bourne magic involving curly
braces is supported.

One of the advantages of variable substitution is, for example, the ability to specify the application as $HOME/bin/
app1 in the transformation catalog, and thus to gridstart. As long as your home directory on any compute node has a
bin directory that contains the application, the transformation catalog does not need to care about the true location of
the application path on each pool. Even better, an administrator may decide to move your home directory to a different
place. As long as the compute node is set up correctly, you don’t have to adjust any Pegasus data.

Mind that variable substitution is an expert feature, as some degree of tricky quoting is required to protect substitutable
variables and quotes from Globus, Condor and Pegasus in that order. Note that Condor uses the dollar sign for its
own variables.

The variable substitution assumptions for the main job differ slightly from the prejob and postjob for technical reasons.
The pre- and postjob command lines are passed as one string. However, the main jobs command line is already split
into pieces by the time it reaches pegasus-kickstart. Thus, any whitespace on the main job’s command line must be
preserved, and further argument splitting avoided.

342

Command Line Tools

It is highly recommended to experiment on the Unix command line with the echo and env applications to obtain a
feeling for the different quoting mechanisms needed to achieve variable substitution.

Example
You can run the pegasus-kickstart executable locally to verify that it is functioning well. In the initial phase, the
format of the performance data may be slightly adjusted.

$ env KICKSTART_PREJOB='/bin/usleep 250000' \\
 KICKSTART_POSTJOB='/bin/date -u' \\
 pegasus-kickstart -l xx \\$PEGASUS_HOME/bin/keg -T1 -o-
$ cat xx
<?xml version="1.0" encoding="ISO-8859-1"?>
 ...
 </statcall>
</invocation>

Please take note a few things in the above example:

The output from the postjob is appended to the output of the main job on stdout. The output could potentially be
separated into different data sections through different temporary files. If you truly need the separation, request that
feature.

The log file is reported with a size of zero, because the log file did indeed barely exist at the time the data structure
was (re-) initialized. With regular GASS output, it will report the status of the socket file descriptor, though.

The file descriptors reported for the temporary files are from the perspective of pegasus-kickstart. Since the temporary
files have the close-on-exec flag set, pegasus-kickstarts file descriptors are invisible to the job processes. Still, the
'stdio of the job processes are connected to the temporary files.

Even this output already appears large. The output may already be too large to guarantee that the append operation
on networked pipes (GASS, NFS) are atomically written.

The current format of the performance data is as follows:

Timeouts
Kickstart sets timeouts for the job based on the -k and -K flags. The -k flag sets the time kickstart will wait before
it sends the job a SIGTERM, and the -K flag sets the time kickstart will wait after delivering a SIGTERM until it
delivers a SIGKILL. The -K timeout is designed to give the job some time to write a checkpoint, which it can trigger
by handling the SIGTERM. If the job runs for longer than the timeout specified using -k, then then the job exits with
a non-zero exit status.

If the job has KICKSTART_SETUP, KICKSTART_PREJOB, or KICKSTART_POSTJOB, then their runtimes are
included in the timeout and they will be sent SIGTERM/SIGKILL in the same manner as the main job. If KICKS-
TART_CLEANUP is set, then it will run regardless of whether processes from the other stages were signalled. If
KICKSTART_SETUP is specified, and it runs longer than the timeout, then it will be signalled, and the other stages
will be skipped.

Output Format
Refer to https://pegasus.isi.edu/documentation/schemas/iv-2.2/iv-2.2.html for an up-to-date description of elements
and their attributes. Check with https://pegasus.isi.edu/documentation for invocation schemas with a higher version
number.

Restrictions
There is no version for the Condor standard universe. It is simply not possible within the constraints of Condor.

Due to its very nature, pegasus-kickstart will also prove difficult to port outside the Unix environment.

Any of the pre-, main-, cleanup and postjob are unable to influence one another’s visible environment.

343

https://pegasus.isi.edu/documentation/schemas/iv-2.2/iv-2.2.html
https://pegasus.isi.edu/documentation

Command Line Tools

Do not use a Pegasus transformation with just the name null and no namespace nor version.

First Condor, and then Unix, place a limit on the length of the command line. The additional space required for the
gridstart invocation may silently overflow the maximum space, and cause applications to fail. If you suspect to work
with many argument, try an argument-file based approach.

A job failing with exit code 126 or 127 is indistinguishable from pegasus-kickstart failing with the same exit codes.
Sometimes, careful examination of the returned data can help.

If the logfile is collected into a shared file, due to the size of the data, simultaneous appends on a shared filesystem from
different machines may still mangle data. Currently, file locking is not even attempted, although all data is written
atomically from the perspective of pegasus-kickstart.

The upper limit of characters of command line characters is currently not checked by pegasus-kickstart. Thus, some
variable substitutions could potentially result in a command line that is larger than permissible.

If the output or error file is opened in append mode, but the application decides to truncate its output file, as in the
above example by opening /dev/fd/1 inside keg, the resulting file will still be truncated. This is correct behavior, but
sometimes not obvious.

Files
/usr/share/pegasus/schema/
iv-2.2.xsd

is the suggested location of the latest XML schema describing the data on the
submit host.

Metadata
Kickstart creates a file to which the job should write metadata "key=value" pairs. The contents of the file are inserted
into the invocation record by Kickstart, and transferred with the job’s stdio. If the job is run under Pegasus, then
pegasus-monitord will parse this metadata and merge it with the metadata for the job in the Pegasus workflow database.
Kickstart uses the environment variable KICKSTART_METADATA to tell the job to which file it should write its
metadata.

Environment Variables
Note: Pegasus 4.6 deprecated the "GRIDSTART_" prefix for environment variables and replaced it with "KICKS-
TART_". The "GRIDSTART_" versions of the old variables should still work.

KICKSTART_TMP is the hightest priority to look for a temporary directory, if specified. This rather
special variable was introduced to overcome some peculiarities with the FNAL
cluster.

TMP is the next hightest priority to look for a temporary directory, if specified.

TEMP is the next priority for an environment variable denoting a temporary files di-
rectory.

TMPDIR is next in the checklist. If none of these are found, either the stdio definition
P_tmpdir is taken, or the fixed string /tmp.

KICKSTART_SETUP contains a string that starts a job to be executed unconditionally before any
other jobs, see above for a detailed description.

KICKSTART_PREJOB contains a string that starts a job to be executed before the main job, see above
for a detailed description.

KICKSTART_POSTJOB contains a string that starts a job to be executed conditionally after the main
job, see above for a detailed description.

KICKSTART_CLEANUP contains a string that starts a job to be executed unconditionally after any of the
previous jobs, see above for a detailed description.

344

Command Line Tools

KICKS-
TART_PREPEND_PATH

the value of this variable is prepended to the PATH variable seen by Kickstart
and passed to the job. The modified PATH is also used to look up executables
for the main job and any pre/post/setup/cleanup jobs.

KICKSTART_WRAPPER the value of this variable is prepended to the job arguments. It can be used
to wrap the task with a wrapper or launcher. For example, you can set it to
"mpiexec -n 128" to run an MPI job, or you can set it to "tau_exec" to profile
the job with TAU.

KICKSTART_TRACE_ALL If this variable is set, then the -Z option will trace everything, including stdio and
directories. By default, stdio and directories are ignored.

KICKSTART_TRACE_CWD If this variable is set, then the -Z option will only trace files in the current working
directory of the process.

KICKS-
TART_TRACE_MATCH

If this variable is set, then the -Z option will only trace files that match one of
the patterns specified. The value of this variable should be a list of fnmatch()
patterns separated by :.

KICKSTART_TRACE_IGNORE This is the inverse of KICKSTART_TRACE_MATCH. Any files matching
one of the patterns will be ignored, and all other files will be traced.

KICKSTART_METADATA Kickstart passes this environment variable to the job. The value of the variable is the
path to the metadata file to which the job should write its metadata. See the METADATA section for more information.

History
As you may have noticed, pegasus-kickstart had the name kickstart in previous incantations. We are slowly moving
to the new name to avoid clashes in a larger OS installation setting. However, there is no pertinent need to change the
internal name, too, as no name clashes are expected.

Authors
Michael Milligan <mbmillig@uchicago.edu>

Mike Wilde <wilde@mcs.anl.gov>

Yong Zhao <yongzh@cs.uchicago.edu>

Jens-S. Vöckler <voeckler@isi.edu>

Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu/

345

http://pegasus.isi.edu/

Command Line Tools

Name
pegasus-metadata — Query metadata collected for Pegasus workflows

Synopsis
pegasus-metadata COMMAND [options] <SUBMIT_DIR>

Description
pegasus-metadata is a tool to query metadata collected for a workflow. The tools can query workflow, task, and
file metadata.

Commands
workflow Query metadata for a workflow

task Query metadata for a workflow task

file Query metadata for files

Global Options
-v , --verbose Increase logging verbosity

-h , --help Prints a usage summary with all the available command-line options.

Workflow Options
-r , --recursive Query workflow metadata for the entire workflow; including sub-workflows

Task Options
-i ABS_TASK_ID , --task-id
ABS_TASK_ID

Specifies the absolute task id whose metadata should be queried.

File Options
-l , --list Queries metadata for all files

-n FILE_NAME , --file-name
FILE_NAME

Specifies name of the file whose metadata should be queried.

-t , --trace Queries metadata for the file, the task that generated the file, the workflow which
contains the task, and the root workflow which contains the task.

Examples
Query metadata for a workflow
$ pegasus-metadata workflow /path/to/submit-dir

Query metadata for all workflows i.e. including sub-workflows
$ pegasus-metadata workflow --recursive /path/to/submit-dir

Query task metadata for a given task
$ pegasus-metadata task --task-id ID0000001 /path/to/submit-dir

Query metadata for all files
$ pegasus-metadata file --list /path/to/submit-dir

Query metadata for a given file

346

Command Line Tools

$ pegasus-metadata file --file-name f.a /path/to/submit-dir

Trace entire metadata for a given file
$ pegasus-metadata file --file-name f.a --trace /path/to/submit-dir

Authors
Pegasus Team http://pegasus.isi.edu

347

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-monitord — tracks a workflow progress, mining information

Synopsis
pegasus-monitord [--help|-help] [--verbose|-v]
 [--adjust|-a i] [--condor-daemon|-N]
 [--job|-j jobstate.log file]
 [--conf properties file]
 [--no-recursive] [--no-database | --no-events]
 [--replay|-r] [--no-notifications]
 [--notifications-max max_notifications]
 [--notifications-timeout timeout]
 [--sim|-s millisleep] [--db-stats]
 [--skip-stdout] [--force|-f]
 [--output-dir | -o dir]
 [--dest|-d PATH or URL] [--encoding|-e bp | bson]
 DAGMan output file

Description
This program follows a workflow, parsing the output of DAGMAN’s dagman.out file. In addition to generating the
jobstate.log file, pegasus-monitord can also be used mine information from the workflow dag file and jobs' submit and
output files, and either populate a database or write a NetLogger events file with that information. pegasus-monitord
can also perform notifications when tracking a workflow’s progress in real-time.

Options
-h , --help Prints a usage summary with all the available command-line options.

-v , --verbose Sets the log level for pegasus-monitord. If omitted, the default level will be
set to WARNING. When this option is given, the log level is changed to INFO.
If this option is repeated, the log level will be changed to DEBUG.

The log level in pegasus-monitord can also be adjusted interactively, by send-
ing the USR1 and USR2 signals to the process, respectively for incrementing
and decrementing the log level.

-a i , --adjust i For adjusting time zone differences by i seconds, default is 0.

-N , --condor-daemon Condor daemon mode. This is used when monitord is invoked by pegasus-dag-
man. It just causes monitord to create a new process group.

-j jobstate.log file , --job job-
state.log file

Alternative location for the jobstate.log file. The default is to write a job-
state.log in the workflow directory. An absolute file name should only be used
if the workflow does not have any sub-workflows, as each sub-workflow will
generate its own jobstate.log file. If an alternative, non-absolute, filename is
given with this option, pegasus-monitord will create one file in each work-
flow (and sub-workflow) directory with the filename provided by the user with
this option. If an absolute filename is provided and sub-workflows are found,
a warning message will be printed and pegasus-monitord will not track any
sub-workflows.

--conf properties_file is an alternative file containing properties in the key=value format, and allows
users to override values read from the braindump.txt file. This option has prece-
dence over the properties file specified in the braindump.txt file. Please note
that these properties will apply not only to the main workflow, but also to all
sub-workflows found.

348

Command Line Tools

--no-recursive This options disables pegasus-monitord to automatically follow any sub-
workflows that are found.

--nodatabase , --no-database , --
no-events

Turns off generating events (when this option is given, pegasus-monitord will
only generate the jobstate.log file). The default is to automatically log informa-
tion to a SQLite database (see the --dest option below for more details). This
option overrides any parameter given by the --dest option.

-r , --replay This option is used to replay the output of an already finished workflow. It
should only be used after the workflow is finished (not necessarily successful-
ly). If a jobstate.log file is found, it will be rotated. However, when using a
database, all previous references to that workflow (and all its sub-workflows)
will be erased from it. When outputing to a bp file, the file will be deleted.
When running in replay mode, pegasus-monitord will always run with the --
no-daemon option, and any errors will be output directly to the terminal. Also,
pegasus-monitord will not process any notifications while in replay mode.

--no-notifications This options disables notifications completely, making pegasus-monitord ig-
nore all the .notify files for all workflows it tracks.

--notifications-max max_notifica-
tions

This option sets the maximum number of concurrent notifications that pega-
sus-monitord will start. When the max_notifications limit is reached, pega-
sus-monitord will queue notifications and wait for a pending notification script
to finish before starting a new one. If max_notifications is set to 0, notifications
will be disabled.

--notifications-timeout timeout Normally, pegasus-monitord will start a notification script and wait indefi-
nitely for it to finish. This option allows users to set up a maximum timeout that
pegasus-monitord will wait for a notification script to finish before terminat-
ing it. If notification scripts do not finish in a reasonable amount of time, it can
cause other notification scripts to be queued due to the maximum number of
concurrent scripts allowed by pegasus-monitord. Additionally, until all noti-
fication scripts finish, pegasus-monitord will not terminate.

-s millisleep , --sim millisleep This option simulates delays between reads, by sleeping millisleep millisec-
onds. This option is mainly used by developers.

--db-stats This option causes the database module to collect and print database statistics
at the end of the execution. It has no effect if the --no-database option is given.

--skip-stdout This option causes pegasus-monitord not to populate jobs' stdout and stderr
into the BP file or the Stampede database. It should be used to avoid increasing
the database size substantially in cases where jobs are very verbose in their
output.

-f , --force This option causes pegasus-monitord to skip checking for another instance of
itself already running on the same workflow directory. The default behavior
prevents two or more pegasus-monitord instances from starting and running
simultaneously (which would cause the bp file and database to be left in an un-
stable state). This option should noly be used when the user knows the previous
instance of pegasus-monitord is NOT running anymore.

-o dir , --ouput-dir dir When this option is given, pegasus-monitord will create all its output files in
the directory specified by dir. This option is useful for allowing a user to debug
a workflow in a directory the user does not have write permissions. In this case,
all files generated by pegasus-monitord will have the workflow wf_uuid as
a prefix so that files from multiple sub-workflows can be placed in the same
directory. This option is mainly used by pegasus-analyzer. It is important to
note that the location for the output BP file or database is not changed by this
option and should be set via the --dest option.

-d URL params , --dest URL
params

This option allows users to specify the destination for the log events generated
by pegasus-monitord. If this option is omitted, pegasus-monitord will cre-

349

Command Line Tools

ate a SQLite database in the workflow’s run directory with the same name as
the workflow, but with a .stampede.db prefix. For an empty scheme, params
are a file path with - meaning standard output. For a x-tcp scheme, params are
TCP_host[:port=14380]. For a database scheme, params are a SQLAlchemy
engine URL with a database connection string that can be used to specify dif-
ferent database engines. Please see the examples section below for more infor-
mation on how to use this option. Note that when using a database engine other
than sqlite, the necessary Python database drivers will need to be installed.

-e encoding , --encoding encoding This option specifies how to encode log events. The two available possibilities
are bp and bson. If this option is not specified, events will be generated in the
bp format.

DAGMan_output_file The DAGMan_output_file is the only requires command-line argument in pe-
gasus-monitord and must have the .dag.dagman.out extension.

Return Value
If the plan could be constructed, pegasus-monitord returns with an exit code of 0. However, in case of error, a non-zero
exit code indicates problems. In that case, the logfile should contain additional information about the error condition.

Environment Variables
pegasus-monitord does not require that any environmental variables be set. It locates its required Python modules
based on its own location, and therefore should not be moved outside of Pegasus' bin directory.

Examples
Usually, pegasus-monitord is invoked automatically by pegasus-run and tracks the workflow progress in real-time,
producing the jobstate.log file and a corresponding SQLite database. When a workflow fails, and is re-submitted
with a rescue DAG, pegasus-monitord will automatically pick up from where it left previously and continue the
jobstate.log file and the database.

If users need to create the jobstate.log file after a workflow is already finished, the --replay | -r option should be used
when running pegasus-monitord manually. For example:

$ pegasus_monitord -r diamond-0.dag.dagman.out

will launch pegasus-monitord in replay mode. In this case, if a jobstate.log file already exists, it will be rotated and
a new file will be created. If a diamond-0.stampede.db SQLite database already exists, pegasus-monitord will purge
all references to the workflow id specified in the braindump.txt file, including all sub-workflows associated with that
workflow id.

$ pegasus_monitord -r --no-database diamond-0.dag.dagman.out

will do the same thing, but without generating any log events.

$ pegasus_monitord -r --dest `pwd`/diamond-0.bp diamond-0.dag.dagman.out

will create the file diamond-0.bp in the current directory, containing NetLogger events with all the workflow data.
This is in addition to the jobstate.log file.

For using a database, users should provide a database connection string in the format of:

dialect://username:password@host:port/database

Where dialect is the name of the underlying driver (mysql, sqlite, oracle, postgres) and database is the name of the
database running on the server at the host computer.

If users want to use a different SQLite database, pegasus-monitord requires them to specify the absolute path of the
alternate file. For example:

$ pegasus_monitord -r --dest sqlite:////home/user/diamond_database.db diamond-0.dag.dagman.out

350

Command Line Tools

Here are docs with details for all of the supported drivers: http://www.sqlalchemy.org/docs/05/reference/dialects/in-
dex.html

Additional per-database options that work into the connection strings are outlined there.

It is important to note that one will need to have the appropriate db interface library installed. Which is to say,
SQLAlchemy is a wrapper around the mysql interface library (for instance), it does not provide a MySQL driver itself.
The Pegasus distribution includes both SQLAlchemy and the SQLite Python driver.

As a final note, it is important to mention that unlike when using SQLite databases, using SQLAlchemy with other
database servers, e.g. MySQL or Postgres, the target database needs to exist. So, if a user wanted to connect to:

mysql://pegasus-user:supersecret@localhost:localport/diamond

it would need to first connect to the server at localhost and issue the appropriate create database command before
running pegasus-monitord as SQLAlchemy will take care of creating the tables and indexes if they do not already
exist.

See Also
pegasus-run(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Fabio Silva <fabio at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

351

http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://www.sqlalchemy.org/docs/05/reference/dialects/index.html
http://pegasus.isi.edu

Command Line Tools

Name
pegasus-mpi-cluster — Enables running DAGs (Directed Acyclic Graphs) on clusters using MPI.

Synopsis
pegasus-mpi-cluster [options] workflow.dag

Description
pegasus-mpi-cluster is a tool used to run HTC (High Throughput Computing) scientific workflows on systems de-
signed for HPC (High Performance Computing). Many HPC systems have custom architectures that are optimized for
tightly-coupled, parallel applications. These systems commonly have exotic, low-latency networks that are designed
for passing short messages very quickly between compute nodes. Many of these networks are so highly optimized
that the compute nodes do not even support a TCP/IP stack. This makes it impossible to run HTC applications using
software that was designed for commodity clusters, such as Condor.

pegasus-mpi-cluster was developed to enable loosely-coupled HTC applications such as scientific workflows to
take advantage of HPC systems. In order to get around the network issues outlined above, pegasus-mpi-cluster uses
MPI (Message Passing Interface), a commonly used API for writing SPMD (Single Process, Multiple Data) parallel
applications. Most HPC systems have an MPI implementation that works on whatever exotic network architecture
the system uses.

An pegasus-mpi-cluster job consists of a single master process (this process is rank 0 in MPI parlance) and several
worker processes. The master process manages the workflow and assigns workflow tasks to workers for execution.
The workers execute the tasks and return the results to the master. Any output written to stdout or stderr by the tasks
is captured (see TASK STDIO).

pegasus-mpi-cluster applications are expressed as DAGs (Directed Acyclic Graphs) (see DAG FILES). Each node
in the graph represents a task, and the edges represent dependencies between the tasks that constrain the order in which
the tasks are executed. Each task is a program and a set of parameters that need to be run (i.e. a command and some
optional arguments). The dependencies typically represent data flow dependencies in the application, where the output
files produced by one task are needed as inputs for another.

If an error occurs while executing a DAG that causes the workflow to stop, it can be restarted using a rescue file,
which records the progress of the workflow (see RESCUE FILES). This enables pegasus-mpi-cluster to pick up
running the workflow where it stopped.

pegasus-mpi-cluster was designed to work either as a standalone tool or as a complement to the Pegasus Workflow
Managment System (WMS). For more information about using PMC with Pegasus see the section on PMC AND
PEGASUS.

pegasus-mpi-cluster allows applications expressed as a DAG to be executed in parallel on a large number of compute
nodes. It is designed to be simple, lightweight and robust.

Options
-h , --help Print help message

-V , --version Print version information

-v , --verbose Increase logging verbosity. Adding multiple -v increases the level more. The
default log level is INFO. (see LOGGING)

-q , --quiet Decrease logging verbosity. Adding multiple -q decreases the level more. The
default log level is INFO. (see LOGGING)

-s , --skip-rescue Ignore the rescue file for workflow.dag if it exists. Note that pegasus-mpi-clus-
ter will still create a new rescue file for the current run. The default behavior
is to use the rescue file if one is found. (see RESCUE FILES)

-o path , --stdout path Path to file for task stdout. (see TASK STDIO and --per-task-stdio)

352

Command Line Tools

-e path , --stderr path Path to file for task stderr. (see TASK STDIO and --per-task-stdio)

-m M , --max-failures M Stop submitting new tasks after M tasks have failed. Once M has been reached,
pegasus-mpi-cluster will finish running any tasks that have been started, but
will not start any more tasks. This option is used to prevent pegasus-mpi-clus-
ter from continuing to run a workflow that is suffering from a systematic error,
such as a missing binary or an invalid path. The default for M is 0, which means
unlimited failures are allowed.

-t T , --tries T Attempt to run each task T times before marking the task as failed. Note that
the T tries do not count as failures for the purposes of the -m option. A task is
only considered failed if it is tried T times and all T attempts result in a non-
zero exitcode. The value of T must be at least 1. The default is 1.

-n , --nolock Do not lock DAGFILE. By default, pegasus-mpi-cluster will attempt to ac-
quire an exclusive lock on DAGFILE to prevent multiple MPI jobs from run-
ning the same DAG at the same time. If this option is specified, then the lock
will not be acquired.

-r , --rescue path Path to rescue log. If the file exists, and -s is not specified, then the log will be
used to recover the state of the workflow. The file is truncated after it is read
and a new rescue log is created in its place. The default is to append .rescue to
the DAG file name. (see RESCUE FILES)

--host-script path Path to a script or executable to launch on each unique host that pegasus-mpi-
cluster is running on. This path can also be set using the PMC_HOST_SCRIPT
environment variable. (see HOST SCRIPTS)

--host-memory size Amount of memory available on each host in MB. The default is to deter-
mine the amount of physical RAM automatically. This value can also be set
using the PMC_HOST_MEMORY environment variable. (see RESOURCE-
BASED SCHEDULING)

--host-cpus cpus Number of CPUs available on each host. The default is to determine the
number of CPU cores automatically. This value can also be set using
the PMC_HOST_CPUS environment variable. (see RESOURCE-BASED
SCHEDULING)

--strict-limits This enables strict memory usage limits for tasks. When this option is specified,
and a task tries to allocate more memory than was requested in the DAG, the
memory allocation operation will fail.

--max-wall-time minutes This is the maximum number of minutes that pegasus-mpi-cluster will allow
the workflow to run. When this time expires pegasus-mpi-cluster will abort
the workflow and merge all of the stdout/stderr files of the workers. The value
is in minutes, and the default is unlimited wall time. This option was added so
that the output of a workflow will be recorded even if the workflow exceeds
the max wall time of its batch job. This value can also be set using the PM-
C_MAX_WALL_TIME environment variable.

--per-task-stdio This causes PMC to generate a .out.XXX and a .err.XXX file for each task in-
stead of writing task stdout/stderr to --stdout and --stderr. The name of the files
are "TASKNAME.out.XXX" and "TASKNAME.err.XXX", where "TASK-
NAME" is the name of the task from the DAG and "XXX" is a sequence number
that is incremented each time the task is tried. This option overrides the values
for --stdout and --stderr. This argument is used by Pegasus when workflows
are planned in PMC-only mode to facilitate debugging and monitoring.

--jobstate-log This option causes PMC to generate a jobstate.log file for the workflow. The
file is named "jobstate.log" and is placed in the same directory where the DAG
file is located. If the file already exists, then PMC appends new lines to the

353

Command Line Tools

existing file. This option is used by Pegasus when workflows are planned in
PMC-only mode to facilitate monitoring.

--monitord-hack This option causes PMC to generate a .dagman.out file for the workflow. This
file mimics the contents of the .dagman.out file generated by Condor DAGMan.
The point of this option is to trick monitord into thinking that it is dealing with
DAGMan so that it will generate the appropriate events to populate the STAM-
PEDE database for monitoring purposes. The file is named "DAG.dagman.out"
where "DAG" is the path to the PMC DAG file.

--no-resource-log Do not generate a workflow.dag.resource file for the workflow.

--no-sleep-on-recv Do not use polling with sleep() to implement message receive. (see Known
Issues: CPU Usage)

--maxfds Set the maximum number of file descriptors that can be left open by the master
for I/O forwarding. By default this value is set automatically based on the value
of getrlimit(RLIMIT_NOFILE). The value must be at least 1, and cannot be
more than RLIMIT_NOFILE.

--keep-affinity By default PMC attempts to clear the CPU and memory affinity. This is to en-
sure that all available CPUs and memory can be used by PMC tasks on sys-
tems that are not configured properly. This flag tells PMC to keep the affin-
ity settings inherited from its parent. Note that the memory policy can only
be cleared if PMC was compiled with libnuma. CPU affinity is cleared using
sched_setaffinity(), and memory policy is cleared with set_mempolicy().

--set-affinity If this flag is set, then PMC will allocate CPUs to tasks and call sched_setaffin-
ity() to bind the task to those CPUs. This only applies to multicore tasks (i.e.
those tasks that specify -c N where N > 1). Single core tasks are not bound to a
CPU to reduce the possibility of fragmentation. PMC does not currently have
any mechanism to handle resource fragmentation that may occur if a workflow
contains several tasks with different core counts. In the case that fragmentation
would result in a task not being bound to a minimal number of sockets and
cores, PMC will not bind the task to any CPUs. For example, if a 2 socket, 8
core machine without hyperthreading is being used to run 2, 4-core tasks, each
task will be bound to a full socket. If the same machine is running 4, 2-core
tasks, each task will get 2-cores on one socket. If 2 of the 2-core tasks finish,
but they free up cores on two different sockets, and PMC wants to run a 4-core
task, it will not bind the 4-core task to any CPUs, because that would result in
the 4-core task being bound to two different sockets. Instead, PMC lets the 4-
core task float, so that the scheduler can find a better placement when another
one of the 2-core tasks finishes. In order to fix this issue we need to rearchitect
PMC, which is on the roadmap.

DAG Files
pegasus-mpi-cluster workflows are expressed using a simple text-based format similar to that used by Condor DAG-
Man. There are only two record types allowed in a DAG file: TASK and EDGE. Any blank lines in the DAG (lines
with all whitespace characters) are ignored, as are any lines beginning with # (note that # can only appear at the be-
ginning of a line, not in the middle).

The format of a TASK record is:

"TASK" id [options...] executable [arguments...]

Where id is the ID of the task, options is a list of task options, executable is the path to the executable or script to run,
and arguments… is a space-separated list of arguments to pass to the task. An example is:

TASK t01 -m 10 -c 2 /bin/program -a -b

This example specifies a task t01 that requires 10 MB memory and 2 CPUs to run /bin/program with the arguments
-a and -b. The available task options are:

354

Command Line Tools

-m M , --request-memory M The amount of memory required by the task in MB. The default is 0, which
means memory is not considered for this task. This option can be set for a
job in the DAX by specifying the pegasus::pmc_request_memory profile. (see
RESOURCE-BASED SCHEDULING)

-c N , --request-cpus N The number of CPUs required by the task. The default is 1, which implies that
the number of slots on a host should be less than or equal to the number of
physical CPUs in order for all the slots to be used. This option can be set for
a job in the DAX by specifying the pegasus::pmc_request_cpus profile. (see
RESOURCE-BASED SCHEDULING)

-t T , --tries T The number of times to try to execute the task before failing permanently. This
is the task-level equivalent of the --tries command-line option.

-p P , --priority P The priority of the task. P should be an integer. Larger values have higher pri-
ority. The default is 0. Priorities are simply hints and are not strict—if a task
cannot be matched to an available slot (e.g. due to resource availability), but
a lower-priority task can, then the task will be deferred and the lower priority
task will be executed. This option can be set for a job in the DAX by specifying
the pegasus::pmc_priority profile.

-f VAR=FILE , --pipe-forward
VAR=FILE

Forward I/O to file FILE using pipes to communicate with the task. The envi-
ronment variable VAR will be set to the value of a file descriptor for a pipe to
which the task can write to get data into FILE. For example, if a task specifies:
-f FOO=/tmp/foo then the environment variable FOO for the task will be set
to a number (e.g. 3) that represents the file /tmp/foo. In order to specify this
argument in a Pegasus DAX you need to set the pegasus::pmc_arguments pro-
file (note that the value of pmc_arguments must contain the "-f" part of the ar-
gument, so a valid value would be: <profile namespace="pegasus" key="pm-
c_arguments">-f A=/tmp/a </profile>). (see I/O FORWARDING)

-F SRC=DEST , --file-forward
SRC=DEST

Forward I/O to the file DEST from the file SRC. When the task finishes, the
worker will read the data from SRC and send it to the master where it will be
written to the file DEST. After SRC is read it is deleted. In order to specify
this argument in a Pegasus DAX you need to set the pegasus::pmc_arguments
profile. (see I/O FORWARDING)

The format of an EDGE record is:

"EDGE" parent child

Where parent is the ID of the parent task, and child is the ID of the child task. An example EDGE record is:

EDGE t01 t02

A simple diamond-shaped workflow would look like this:

diamond.dag
TASK A /bin/echo "I am A"
TASK B /bin/echo "I am B"
TASK C /bin/echo "I am C"
TASK D /bin/echo "I am D"

EDGE A B
EDGE A C
EDGE B D
EDGE C D

Rescue Files
Many different types of errors can occur when running a DAG. One or more of the tasks may fail, the MPI job may
run out of wall time, pegasus-mpi-cluster may segfault (we hope not), the system may crash, etc. In order to ensure
that the DAG does not need to be restarted from the beginning after an error, pegasus-mpi-cluster generates a rescue
file for each workflow.

355

Command Line Tools

The rescue file is a simple text file that lists all of the tasks in the workflow that have finished successfully. This file
is updated each time a task finishes, and is flushed periodically so that if the work- flow fails and the user restarts
it, pegasus-mpi-cluster can determine which tasks still need to be executed. As such, the rescue file is a sort-of
transaction log for the workflow.

The rescue file contains zero or more DONE records. The format of these records is:

"DONE" *taskid*

Where taskid is the ID of the task that finished successfully.

By default, rescue files are named DAGNAME.rescue where DAGNAME is the path to the input DAG file. The file
name can be changed by specifying the -r argument.

PMC and Pegasus

Using PMC for Pegasus Task Clustering

PMC can be used as the wrapper for executing clustered jobs in Pegasus. In this mode Pegasus groups several tasks
together and submits them as a single clustered job to a remote system. PMC then executes the individual tasks in
the cluster and returns the results.

PMC can be specified as the task manager for clustered jobs in Pegasus in three ways:

1. Globally in the properties file

The user can set a property in the properties file that results in all the clustered jobs of the workflow being executed
by PMC. In the Pegasus properties file specify:

#PEGASUS PROPERTIES FILE
pegasus.clusterer.job.aggregator=mpiexec

In the above example, all the clustered jobs on all remote sites will be launched via PMC as long as the property
value is not overridden in the site catalog.

2. By setting the profile key "job.aggregator" in the site catalog:

<site handle="siteX" arch="x86" os="LINUX">
 ...
 <profile namespace="pegasus" key="job.aggregator">mpiexec</profile>
</site>

In the above example, all the clustered jobs on a siteX are going to be executed via PMC as long as the value is
not overridden in the transformation catalog.

3. By setting the profile key "job.aggregator" in the transformation catalog:

tr B {
 site siteX {
 pfn "/path/to/mytask"
 arch "x86"
 os "linux"
 type "INSTALLED"
 profile pegasus "clusters.size" "3"
 profile pegasus "job.aggregator" "mpiexec"
 }
}

In the above example, all the clustered jobs for transformation B on siteX will be executed via PMC.

It is usually necessary to have a pegasus::mpiexec entry in your transformation catalog that specifies a) the path to
PMC on the remote site and b) the relevant globus profiles such as xcount, host_xcount and maxwalltime to control
size of the MPI job. That entry would look like this:

tr pegasus::mpiexec {
 site siteX {
 pfn "/path/to/pegasus-mpi-cluster"
 arch "x86"
 os "linux"

356

Command Line Tools

 type "INSTALLED"
 profile globus "maxwalltime" "240"
 profile globus "host_xcount" "1"
 profile globus "xcount" "32"
 }
}

If this transformation catalog entry is not specified, Pegasus will attempt create a default path on the basis of the
environment profile PEGASUS_HOME specified in the site catalog for the remote site.

PMC can be used with both horizontal and label-based clustering in Pegasus, but we recommend using label-based
clustering so that entire sub-graphs of a Pegasus DAX can be clustered into a single PMC job, instead of only a single
level of the workflow.

Pegasus Profiles for PMC

There are several Pegasus profiles that map to PMC task options:

pmc_request_memory This profile is used to set the --request-memory task option and is usually specified
in the DAX or transformation catalog.

pmc_request_cpus This key is used to set the --request-cpus task option and is usually specified in the
DAX or transformation catalog.

pmc_priority This key is used to set the --priority task option and is usually specified in the DAX.

These profiles are used by Pegasus when generating PMC’s input DAG when PMC is used as the task manager for
clustered jobs in Pegasus.

The profiles can be specified in the DAX like this:

<job id="ID0000001" name="mytask">
 <arguments>-a 1 -b 2 -c 3</arguments>
 ...
 <profile namespace="pegasus" key="pmc_request_memory">1024</profile>
 <profile namespace="pegasus" key="pmc_request_cpus">4</profile>
 <profile namespace="pegasus" key="pmc_priority">10</profile>
</job>

This example specifies a PMC task that requires 1GB of memory and 4 cores, and has a priority of 10. It produces
a task in the PMC DAG that looks like this:

TASK mytask_ID00000001 -m 1024 -c 4 -p 10 /path/to/mytask -a 1 -b 2 -c 3

Using PMC for the Entire Pegasus DAX

Pegasus can also be configured to run the entire workflow as a single PMC job. In this mode Pegasus will generate a
single PMC DAG for the entire workflow as well as a PBS script that can be used to submit the workflow.

In contrast to using PMC as a task clustering tool, in this mode there are no jobs in the workflow executed without
PMC. The entire workflow, including auxilliary jobs such as directory creation and file transfers, is managed by PMC.
If Pegasus is configured in this mode, then DAGMan and Condor are not required.

To run in PMC-only mode, set the property "pegasus.code.generator" to "PMC" in the Pegasus properties file:

pegasus.code.generator=PMC

In order to submit the resulting PBS job you may need to make changes to the .pbs file generated by Pegasus to get it
to work with your cluster. This mode is experimental and has not been used extensively.

Logging
By default, all logging messages are printed to stderr. If you turn up the logging using -v then you may end up with
a lot of stderr being forwarded from the workers to the master.

The log levels in order of severity are: FATAL, ERROR, WARN, INFO, DEBUG, and TRACE.

The default logging level is INFO. The logging levels can be increased with -v and decreased with -q.

357

Command Line Tools

Task STDIO
By default the stdout and stderr of tasks will be redirected to the master’s stdout and stderr. You can change the path of
these files with the -o and -e arguments. You can also enable per-task stdio files using the --per-task-stdio argument.
Note that if per-task stdio files are not used then the stdio of all workers will be merged into one out and one err file
by the master at the end, so I/O from different workers will not be interleaved, but I/O from each worker will appear
in the order that it was generated. Also note that, if the job fails for any reason, the outputs will not be merged, but
instead there will be one file for each worker named DAGFILE.out.X and DAGFILE.err.X, where DAGFILE is the
path to the input DAG, and X is the worker’s rank.

Host Scripts
A host script is a shell script or executable that pegasus-mpi-cluster launches on each unique host on which it is
running. They can be used to start auxilliary services, such as memcached, that the tasks in a workflow require.

Host scripts are specified using either the --host-script argument or the PMC_HOST_SCRIPT environment variable.

The host script is started when pegasus-mpi-cluster starts and must exit with an exitcode of 0 before any tasks can
be executed. If it the host script returns a non-zero exitcode, then the workflow is aborted. The host script is given 60
seconds to do any setup that is required. If it doesn’t exit in 60 seconds then a SIGALRM signal is delivered to the
process, which, if not handled, will cause the process to terminate.

When the workflow finishes, pegasus-mpi-cluster will deliver a SIGTERM signal to the host script’s process group.
Any child processes left running by the host script will receive this signal unless they created their own process group.
If there were any processes left to receive this signal, then they will be given a few seconds to exit, then they will be
sent SIGKILL. This is the mechanism by which processes started by the host script can be informed of the termination
of the workflow.

Resource-Based Scheduling
High-performance computing resources often have a low ratio of memory to CPUs. At the same time, workflow tasks
often have high memory requirements. Often, the memory requirements of a workflow task exceed the amount of
memory available to each CPU on a given host. As a result, it may be necessary to disable some CPUs in order to
free up enough memory to run the tasks. Similarly, many codes have support for multicore hosts. In that case it is
necessary for efficiency to ensure that the number of cores required by the tasks running on a host do not exceed the
number of cores available on that host.

In order to make this process more efficient, pegasus-mpi-cluster supports resource-based scheduling. In re-
source-based scheduling the tasks in the workflow can specify how much memory and how many CPUs they require,
and pegasus-mpi-cluster will schedule them so that the tasks running on a given host do not exceed the amount of
physical memory and CPUs available. This enables pegasus-mpi-cluster to take advantage of all the CPUs available
when the tasks' memory requirement is low, but also disable some CPUs when the tasks' memory requirement is high-
er. It also enables workflows with a mixture of single core and multi-core tasks to be executed on a heterogenous pool.

If there are no hosts available that have enough memory and CPUs to execute one of the tasks in a workflow, then
the workflow is aborted.

Memory

Users can specify both the amount of memory required per task, and the amount of memory available per host. If the
amount of memory required by any task exceeds the available memory of all the hosts, then the workflow will be
aborted. By default, the host memory is determined automatically, however the user can specify --host-memory to
"lie" to pegasus-mpi-cluster. The amount of memory required for each task is specified in the DAG using the -m/--
request-memory argument (see DAG Files).

CPUs

Users can specify the number of CPUs required per task, and the total number of CPUs available on each host. If
the number of CPUs required by a task exceeds the available CPUs on all hosts, then the workflow will be aborted.

358

Command Line Tools

By default, the number of CPUs on a host is determined automatically, but the user can specify --host-cpus to over-
or under-subscribe the host. The number of CPUs required for each task is specified in the DAG using the -c/--
request-cpus argument (see DAG Files).

I/O Forwarding
In workflows that have lots of small tasks it is common for the I/O written by those tasks to be very small. For example,
a workflow may have 10,000 tasks that each write a few KB of data. Typically each task writes to its own file, resulting
in 10,000 files. This I/O pattern is very inefficient on many parallel file systems because it requires the file system to
handle a large number of metadata operations, which are a bottleneck in many parallel file systems.

One way to handle this problem is to have all 10,000 tasks write to a single file. The problem with this approach is
that it requires those tasks to synchronize their access to the file using POSIX locks or some other mutual exclusion
mechanism. Otherwise, the writes from different tasks may be interleaved in arbitrary order, resulting in unusable data.

In order to address this use case PMC implements a feature that we call "I/O Forwarding". I/O forwarding enables
each task in a PMC job to write data to an arbitrary number of shared files in a safe way. It does this by having PMC
worker processes collect data written by the task and send it over over the high-speed network using MPI messaging
to the PMC master process, where it is written to the output file. By having one process (the PMC master process)
write to the file all of the I/O from many parallel tasks can be synchronized and written out to the files safely.

There are two different ways to use I/O forwarding in PMC: pipes and files. Pipes are more efficient, but files are
easier to use.

I/O forwarding using pipes

I/O forwarding with pipes works by having PMC worker processes collect data from each task using UNIX pipes.
This approach is more efficient than the file-based approach, but it requires the code of the task to be changed so that
the task writes to the pipe instead of a regular file.

In order to use I/O forwarding a PMC task just needs to specify the -f/--pipe-forward argument to specify the name
of the file to forward data to, and the name of an environment variable through which the PMC worker process can
inform it of the file descriptor for the pipe.

For example, if there is a task "mytask" that needs to forward data to two files: "myfile.a" and "myfile.b", it would
look like this:

TASK mytask -f A=/tmp/myfile.a -f B=/tmp/myfile.b /bin/mytask

When the /bin/mytask process starts it will have two variables in its environment: "A=3" and "B=4", for example.
The value of these variables is the file descriptor number of the corresponding files. In this case, if the task wants to
write to "/tmp/myfile.a", it gets the value of environment variable "A", and calls write() on that descriptor number.
In C the code for that looks like this:

char *A = getenv("A");
int fd = atoi(A);
char *message = "Hello, World\n";
write(fd, message, strlen(message));

In some programming languages it is not possible to write to a file descriptor directly. Fortran, for example, refers to
files by unit number instead of using file descriptors. In these languages you can either link C I/O functions into your
binary and call them from routines written in the other language, or you can open a special file in the Linux /proc file
system to get another handle to the pipe you want to access. For the latter, the file you should open is "/proc/self/fd/
NUMBER" where NUMBER is the file descriptor number you got from the environment variable. For the example
above, the pipe for myfile.a (environment variable A) is "/proc/self/fd/3".

If you are using pegasus-kickstart, which is probably the case if you are using PMC for a Pegasus workflow, then
there’s a trick you can do to avoid modifying your code. You use the /proc file system, as described above, but you
let pegasus-kickstart handle the path construction. For example, if your application has an argument, -o, that allows
you to specify the output file then you can write your task like this:

TASK mytask -f A=/tmp/myfile.a /bin/pegasus-kickstart /bin/mytask -o /proc/self/fd/$A

359

Command Line Tools

In this case, pegasus-kickstart will replace the $A in your application arguments with the file descriptor number you
want. Your code can open that path normally, write to it, and then close it as if it were a regular file.

I/O forwarding using files

I/O forwarding with files works by having tasks write out data in files on the local disk. The PMC worker process
reads these files and forwards the data to the master where it can be written to the desired output file. This approach
may be much less efficient than using pipes because it involves the file system, which has more overhead than a pipe.

File forwarding can be enabled by giving the -F/--file-forward argument to a task.

Here’s an example:

TASK mytask -F /tmp/foo.0=/scratch/foo /bin/mytask -o /tmp/foo.0

In this case, the worker process will expect to find the file /tmp/foo.0 when mytask exits successfully. It reads the
data from that file and sends it to the master to be written to the end of /scratch/foo. After /tmp/foo.0 is read it will
be deleted by the worker process.

This approach works best on systems where the local disk is a RAM file system such as Cray XT machines. Alterna-
tively, the task can use /dev/shm on a regular Linux cluster. It might also work relatively efficiently on a local disk
if the file system cache is able to absorb all of the reads and writes.

I/O forwarding caveats

When using I/O forwarding it is important to consider a few caveats.

First, if the PMC job fails for any reason (including when the workflow is aborted for violating --max-wall-time),
then the files containing forwarded I/O may be corrupted. They can include partial records, meaning that only part
of the I/O from one or more tasks was written, and they can include duplicate records, meaning that the I/O was
written, but the PMC job failed before the task could be marked as successful, and the workflow was restarted later.
We make no guarantees about the contents of the data files in this case. It is up to the code that reads the files to a)
detect and b) recover from such problems. To eliminate duplicates the records should include a unique identifier, and
to eliminate partials the records should include a checksum.

Second, you should not use I/O forwarding if your task is going to write a lot of data to the file. Because the PMC
worker is reading data off the pipe/file into memory and sending it in an MPI message, if you write too much, then
the worker process will run the system out of memory. Also, all the data needs to fit in a single MPI message. In pipe
forwarding there is no hard limit on the size, but in file forwarding the limit is 1MB. We haven’t benchmarked the
performance on large I/O, but anything larger than about 1 MB is probably too much. At any rate, if your data is larger
than 1MB, then I/O forwarding probably won’t have much of a performance benefit anyway.

Third, the I/O is not written to the file if the task returns a non-zero exitcode. We assume that if the task failed that
you don’t want the data it produced.

Fourth, the data from different tasks is not interleaved. All of the data written by a given task will appear sequentially
in the output file. Note that you can still get partial records, however, if any data from a task appears it will never be
split among non-adjacent ranges in the output file. If you have 3 tasks that write: "I am a task" you can get:

I am a taskI am a taskI am a task

and:

I am a taskI amI am a task

but not:

I am a taskI amI am a task a task

Fifth, data from different tasks appears in arbitrary order in the output file. It depends on what order the tasks were
executed by PMC, which may be arbitrary if there are no dependencies between the tasks. The data that is written
should contain enough information that you are able to determine which task produced it if you require that. PMC
does not add any headers or trailers to the data.

360

Command Line Tools

Sixth, a task will only be marked as successful if all of its I/O was successfully written. If the workflow completed
successfully, then the I/O is guaranteed to have been written.

Seventh, if the master is not able to write to the output file for any reason (e.g. the master tries to write the I/O to the
destination file, but the write() call returns an error) then the task is marked as failed even if the task produced a non-
zero exitcode. In other words, you may get a non-zero kickstart record even when PMC marks the task failed.

Eighth, the pipes are write-only. If you need to read and write data from the file you should use file forwarding and
not pipe forwarding.

Ninth, all files are opened by the master in append mode. This is so that, if the workflow fails and has to be restarted,
or if a task fails and is retried, the data that was written previously is not lost. PMC never truncates the files. This is
one of the reasons why you can have partial records and duplicate records in the output file.

Finally, in file forwarding the output file is removed when the task exits. You cannot rely on the file to be there when
the next task runs even if you write it to a shared file system.

Misc

Resource Utilization

At the end of the workflow run, the master will report the resource utilization of the job. This is done by adding up
the total runtimes of all the tasks executed (including failed tasks) and dividing by the total wall time of the job times
N, where N is both the total number of processes including the master, and the total number of workers. These two
resource utilization values are provided so that users can get an idea about how efficiently they are making use of
the resources they allocated. Low resource utilization values suggest that the user should use fewer cores, and longer
wall time, on future runs, while high resource utilization values suggest that the user could use more cores for future
runs and get a shorter wall time.

Known Issues

Cray Compiler Wrappers

On Cray machines, the CC compiler wrapper for C++ code should be used to compile PMC. That wrapper links in all
the required MPI libraries. Cray compiler wrappers should not be used to compile tasks that run under PMC. If
you use a Cray wrapper to compile a task that runs under PMC, then the task will hang, or exit immediately with a 0 exit
code without doing anything. This appears to happen only when the application binary is dynamically linked. It seems
to be a problem with the libraries that are linked into the code when it is compiled with a Cray wrapper. To summarize:
on Cray machines, compile PMC with the CC wrapper, but compile code that runs under PMC without any wrappers.

fork() and exec()

In order for the worker processes to start tasks on the compute node the compute nodes must support the fork() and
exec() system calls. If your target machine runs a stripped-down OS on the compute nodes that does not support these
system calls, then pegasus-mpi-cluster will not work.

CPU Usage

Many MPI implementations are optimized so that message sends and receives do busy waiting (i.e. they spin/poll on
a message send or receive instead of sleeping). The reasoning is that sleeping adds overhead and, since many HPC
systems use space sharing on dedicated hardware, there are no other processes competing, so spinning instead of
sleeping can produce better performance. On those implementations MPI processes will run at 100% CPU usage even
when they are just waiting for a message. This is a big problem for multicore tasks in pegasus-mpi-cluster because
idle slots consume CPU resources. In order to solve this problem pegasus-mpi-cluster processes sleep for a short
period between checks for waiting messages. This reduces the load significantly, but causes a short delay in receiving
messages. If you are using an MPI implementation that sleeps on message send and receive instead of doing busy
waiting, then you can disable the sleep by specifying the --no-sleep-on-recv option. Note that the master will always
sleep if --max-wall-time is specified because there is no way to interrupt or otherwise timeout a blocking call in MPI
(e.g. SIGALRM does not cause MPI_Recv to return EINTR).

361

Command Line Tools

Task Environment
PMC sets a few environment variables when it launches a task. In addition to the environment variables for pipe
forwarding, it sets:

PMC_TASK The name of the task from the DAG file.

PMC_MEMORY The amount of memory requested by the task.

PMC_CPUS The number of CPUs requested by the task.

PMC_RANK The rank of the MPI worker that launched the task.

PMC_HOST_RANK The host rank of the MPI worker that launched the task.

In addition, if --set-affinity is specified, and PMC has allocated some CPUs to the task, then it will export:

PMC_AFFINITY A comma-separated list of CPUs to which the task is/should be bound.

Environment Variables
The environment variables below are aliases for command-line options. If the environment variable is present, then it
is used as the default for the associated option. If both are present, then the command-line option is used.

PMC_HOST_SCRIPT Alias for the --host-script option.

PMC_HOST_MEMORY Alias for the --host-memory option.

PMC_HOST_CPUS Alias for the --host-cpus option.

PMC_MAX_WAL-
L_TIME

Alias for the --max-wall-time option.

Author
Gideon Juve <gideon@isi.edu>

Mats Rynge <rynge@isi.edu>

362

Command Line Tools

Name
pegasus-mpi-keg — MPI version of KEG

Synopsis
pegasus-mpi-keg [-a appname] [-t interval |-T interval] [-l logname]
 [-P prefix] [-o fn [..]] [-i fn [..]] [-G sz] [-m memory]
 [-r root_memory_allocation] [-C] [-e env [..]] [-p parm [..]]

Description
The parallel version of kanonical executable is a stand-in for parallel binaries in a DAG - but not for their arguments.
It allows to trace the shape of the execution of a DAG, and thus is an aid to debugging DAG related issues.

It works in the same way as the sequential version of pegasus-keg but it is intended to be executed as an MPI task.
pegasus-mpi-keg accepts the same parameters as pegasus-keg, so please refer to the pegasus-keg manual page for
more details.

Arguments
The same as pegasus-keg. But there are some MPI-specific arguments.

-r root_memory_allocation_only Works use only with the -m option. When set, the memory allocation will take
place in the root MPI process only. By default, each MPI processe allocates the
amount of memory set by the -m option.

Return Value
The same as pegasus-keg.

Example
The example shows the bracketing of an input file, and the copy produced on the output file. For illustration purposes,
the output file is connected to stdout :

$ date > xx
$ mpiexec -n 2 ./pegasus-mpi-keg -i xx -p a b c -o -
--- start xx ----
 Tue Dec 2 17:35:39 PST 2014
--- final xx ----
Timestamp Today: 20141202T173553.184-08:00 (1417570553.184;0.001)
Applicationname: pegasus-mpi-keg [36116e11c0735993bf54264953194e626fe4ab7e 2014-11-25] @
 138.25.147.42 (myc-2.local)
Current Workdir: /opt/pegasus/default/bin/pegasus-mpi-keg
Systemenvironm.: x86_64-Darwin 14.0.0
Processor Info.: 4 x Intel(R) Core(TM) i5-4278U CPU @ 2.60GHz
Load Averages : 1.240 1.354 1.434
Memory Usage MB: 8192 total, 161 avail, 3599 active, 2496 inactive, 1077 wired
Swap Usage MB: 2048 total, 1256 free
Filesystem Info: / hfs 232GB total, 66GB avail
Output Filename: -
Input Filenames: xx
Other Arguments: a b c

Restrictions
The same as pegasus-keg.

Authors
Pegasus - http://pegasus.isi.edu/

363

http://pegasus.isi.edu/

Command Line Tools

Name
pegasus-plan — runs Pegasus to generate the executable workflow

Synopsis
pegasus-plan [-v] [-q] [-V] [-h]
 [-Dprop=value…]] [-b prefix]
 [--conf propsfile]
 [-c cachefile[,cachefile…]] [--cleanup cleanup strategy]
 [-C style[,style…]]
 [--dir dir]
 [--force] [--force-replan]
 [--inherited-rc-files file1[,file2…]] [-j prefix]
 [-n][-I input-dir1[,input-dir2…]][-O output-dir] [-o site]
 [-s site1[,site2…]]
 [--staging-site s1=ss1[,s2=ss2[..]]
 [--randomdir[=dirname]]
 [--relative-dir dir]
 [--relative-submit-dir dir]
 -d daxfile

Description
The pegasus-plan command takes in as input the DAX and generates an executable workflow usually in form of
condor submit files, which can be submitted to an execution site for execution.

As part of generating an executable workflow, the planner needs to discover:

data The Pegasus Workflow Planner ensures that all the data required for the execution of the ex-
ecutable workflow is transferred to the execution site by adding transfer nodes at appropriate
points in the DAG. This is done by looking up an appropriate Replica Catalog to determine the
locations of the input files for the various jobs. By default, a file based replica catalog is used.

The Pegasus Workflow Planner also tries to reduce the workflow, unless specified otherwise.
This is done by deleting the jobs whose output files have been found in some location in the
Replica Catalog. At present no cost metrics are used. However preference is given to a location
corresponding to the execution site

The planner can also add nodes to transfer all the materialized files to an output site. The location
on the output site is determined by looking up the site catalog file, the path to which is picked
up from the pegasus.catalog.site.file property value.

executables The planner looks up a Transformation Catalog to discover locations of the executables referred
to in the executable workflow. Users can specify INSTALLED or STAGEABLE executables
in the catalog. Stageable executables can be used by Pegasus to stage executables to resources
where they are not pre-installed.

resources The layout of the sites, where Pegasus can schedule jobs of a workflow are described in the
Site Catalog. The planner looks up the site catalog to determine for a site what directories a job
can be executed in, what servers to use for staging in and out data and what jobmanagers (if
applicable) can be used for submitting jobs.

The data and executable locations can now be specified in DAX’es conforming to DAX schema version 3.2 or higher.

Options
Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s
properties file and the PEGASUS home location. One may set several CLI prop-

364

Command Line Tools

erties by giving this option multiple times. The -D option(s) must be the first
option on the command line. A CLI property take precedence over the proper-
ties file property of the same key.

-d file , --dax file The DAX is the XML input file that describes an abstract workflow. This is a
mandatory option, which has to be used.

-b prefix , --basename prefix The basename prefix to be used while constructing per workflow files like the
dagman file (.dag file) and other workflow specific files that are created by
Condor. Usually this prefix, is taken from the name attribute specified in the
root element of the dax files.

-c file[,file,…] , --cache file[,file,
…]

A comma separated list of paths to replica cache files that override the results
from the replica catalog for a particular LFN.

Each entry in the cache file describes a LFN , the corresponding PFN and the
associated attributes. The site attribute should be specified for each entry.

LFN_1 PFN_1 site=[site handle 1]
LFN_2 PFN_2 site=[site handle 2]
 ...
LFN_N PFN_N [site handle N]

To treat the cache files as supplemental replica catalogs set the property pega-
sus.catalog.replica.cache.asrc to true. This results in the mapping in the cache
files to be merged with the mappings in the replica catalog. Thus, for a partic-
ular LFN both the entries in the cache file and replica catalog are available for
replica selection.

-C style[,style,…] , --cluster
style[,style,…]

Comma-separated list of clustering styles to apply to the workflow. This mode
of operation results in clustering of n compute jobs into a larger jobs to reduce
remote scheduling overhead. You can specify a list of clustering techniques to
recursively apply them to the workflow. For example, this allows you to cluster
some jobs in the workflow using horizontal clustering and then use label based
clustering on the intermediate workflow to do vertical clustering.

The clustered jobs can be run at the remote site, either sequentially or by using
MPI. This can be specified by setting the property pegasus.job.aggregator.
The property can be overridden by associating the PEGASUS profile key col-
lapser either with the transformation in the transformation catalog or the exe-
cution site in the site catalog. The value specified (to the property or the profile),
is the logical name of the transformation that is to be used for clustering jobs.
Note that clustering will only happen if the corresponding transformations are
catalogued in the transformation catalog.

PEGASUS ships with a clustering executable pegasus-cluster that can be found
in the $PEGASUS_HOME/bin directory. It runs the jobs in the clustered job
sequentially on the same node at the remote site.

In addition, an MPI based clustering tool called pegasus-mpi-cluster', is also
distributed and can be found in the bin directory. pegasus-mpi-cluster can also
be used in the sharedfs setup and needs to be compiled against the remote site
MPI install. directory. The wrapper is run on every MPI node, with the first one
being the master and the rest of the ones as workers.

By default, pegasus-cluster is used for clustering jobs unless overridden in the
properties or by the pegasus profile key collapser.

The following type of clustering styles are currently supported:

• horizontal is the style of clustering in which jobs on the same level are ag-
gregated into larger jobs. A level of the workflow is defined as the greatest
distance of a node, from the root of the workflow. Clustering occurs only on

365

Command Line Tools

jobs of the same type i.e they refer to the same logical transformation in the
transformation catalog.

Horizontal Clustering can operate in one of two modes. a. Job count based.

The granularity of clustering can be specified by associating either the PE-
GASUS profile key clusters.size or the PEGASUS profile key clusters.num
with the transformation.

The clusters.size key indicates how many jobs need to be clustered into the
larger clustered job. The clusters.num key indicates how many clustered jobs
are to be created for a particular level at a particular execution site. If both
keys are specified for a particular transformation, then the clusters.num key
value is used to determine the clustering granularity.

a. Runtime based.

To cluster jobs according to runtimes user needs to set one property and
two profile keys. The property pegasus.clusterer.preference must be set to
the value runtime. In addition user needs to specify two Pegasus profiles.
a. clusters.maxruntime which specifies the maximum duration for which
the clustered job should run for. b. job.runtime which specifies the dura-
tion for which the job with which the profile key is associated, runs for.
Ideally, clusters.maxruntime should be set in transformation catalog and
job.runtime should be set for each job individually.

• label is the style of clustering in which you can label the jobs in your work-
flow. The jobs with the same level are put in the same clustered job. This
allows you to aggregate jobs across levels, or in a manner that is best suited
to your application.

To label the workflow, you need to associate PEGASUS profiles with the
jobs in the DAX. The profile key to use for labeling the workflow can be
set by the property pegasus.clusterer.label.key. It defaults to label, meaning
if you have a PEGASUS profile key label with jobs, the jobs with the same
value for the pegasus profile key label will go into the same clustered job.

--cleanup cleanup strategy The cleanup strategy to be used for workflows. Pegasus can add cleanup jobs
to the executable workflow that can remove files and directories during the
workflow execution. The default strategy is inplace .

The following type of cleanup strategies are currently supported:

• none disables cleanup altogether. The planner does not add any cleanup jobs
in the executable workflow whatsoever.

• leaf the planner adds a leaf cleanup node per staging site that removes the
directory created by the create dir job in the workflow.

• inplace the planner adds in addition to leaf cleanup nodes, cleanup nodes per
level of the workflow that remove files no longer required during execution.
For example, an added cleanup node will remove input files for a particular
compute job after the job has finished successfully.

• constraint the planner adds in addition to leaf cleanup nodes, cleanup nodes
to constraint the amount of storage space used by a workflow. The added
cleanup node guarantees limits on disk usage.

By default, for hierarchal workflows the inplace cleanup is always turned
off. This is because the cleanup algorithm (InPlace) does not work across
the sub workflows. For example, if you have two DAX jobs in your top level
workflow and the child DAX job refers to a file generated during the execu-

366

Command Line Tools

tion of the parent DAX job, the InPlace cleanup algorithm when applied to
the parent dax job will result in the file being deleted, when the sub workflow
corresponding to parent DAX job is executed. This would result in failure
of sub workflow corresponding to the child DAX job, as the file deleted is
required to present during it’s execution.

In case there are no data dependencies across the dax jobs, then yes you can
enable the InPlace algorithm for the sub dax’es . To do this you can set the
property

pegasus.file.cleanup.scope deferred

This will result in cleanup option to be picked up from the arguments for the
DAX job in the top level DAX.

--conf propfile The path to properties file that contains the properties planner needs to use
while planning the workflow. Defaults to pegasus.properties file in the current
working directory, if no conf option is specified.

--dir dir The base directory where you want the output of the Pegasus Workflow Plan-
ner usually condor submit files, to be generated. Pegasus creates a directory
structure in this base directory on the basis of username, VO Group and the
label of the workflow in the DAX.

By default the base directory is the directory from which one runs the pega-
sus-plan command.

-f , --force This bypasses the reduction phase in which the abstract DAG is reduced, on the
basis of the locations of the output files returned by the replica catalog. This is
analogous to a make style generation of the executable workflow.

--force-replan By default, for hierarichal workflows if a DAX job fails, then on job retry the
rescue DAG of the associated workflow is submitted. This option causes Pega-
sus to replan the DAX job in case of failure instead.

-g , --group The VO Group to which the user belongs to.

-h , --help Displays all the options to the pegasus-plan command.

--inherited-rc-files file[,file,…] A comma separated list of paths to replica files. Locations mentioned in these
have a lower priority than the locations in the DAX file. This option is usu-
ally used internally for hierarchical workflows, where the file locations men-
tioned in the parent (encompassing) workflow DAX, passed to the sub work-
flows (corresponding) to the DAX jobs.

-I , --input-dir A comma separated list of input directories on the submit host where the input
files reside. This internally loads a Directory based Replica Catalog backend,
that constructs does a directory listing to create the LFN#PFN mappings for the
files in the input directory. You can specify additional properties either on the
command line or the properties file to control the site attribute and url prefix
associated with the mappings.

pegasus.catalog.replica.directory.site specifies the site attribute to associate
with the mappings. Defaults to local

pegasus.catalog.replica.directory.url.prefix specifies the URL prefix to use
while constructing the PFN. Defaults to file://

-j prefix , --job-prefix prefix The job prefix to be applied for constructing the filenames for the job submit
files.

-n , --nocleanup This option is deprecated. Use --cleanup none instead.

367

Command Line Tools

-o site , --output-site site The output site to which the output files of the DAX are transferred to.

By default the materialized data remains in the working directory on the ex-
ecution site where it was created. Only those output files are transferred to an
output site for which transfer attribute is set to true in the DAX.

-O output directory , --output-dir
output directory

The output directory to which the output files of the DAX are transferred to.

If -o is specified the storage directory of the site specified as the output site is
updated to be the directory passed. If no output site is specified, then this option
internally sets the output site to local with the storage directory updated to the
directory passed.

-q , --quiet Decreases the logging level.

-r[dirname] , --ran-
domdir[=dirname]

Pegasus Worfklow Planner adds create directory jobs to the executable work-
flow that create a directory in which all jobs for that workflow execute on a
particular site. The directory created is in the working directory (specified in
the site catalog with each site).

By default, Pegasus duplicates the relative directory structure on the submit
host on the remote site. The user can specify this option without arguments
to create a random timestamp based name for the execution directory that are
created by the create dir jobs. The user can can specify the optional argument
to this option to specify the basename of the directory that is to be created.

The create dir jobs refer to the dirmanager executable that is shipped as part
of the PEGASUS worker package. The transformation catalog is searched for
the transformation named pegasus::dirmanager for all the remote sites where
the workflow has been scheduled. Pegasus can create a default path for the
dirmanager executable, if PEGASUS_HOME environment variable is associ-
ated with the sites in the site catalog as an environment profile.

--relative-dir dir The directory relative to the base directory where the executable workflow it to
be generated and executed. This overrides the default directory structure that
Pegasus creates based on username, VO Group and the DAX label.

--relative-submit-dir dir The directory relative to the base directory where the executable workflow it to
be generated. This overrides the default directory structure that Pegasus creates
based on username, VO Group and the DAX label. By specifying --relative-dir
and --relative-submit-dir you can have different relative execution directory
on the remote site and different relative submit directory on the submit host.

-s site[,site,…] , --sites site[,site,
…]

A comma separated list of execution sites on which the workflow is to be exe-
cuted. Each of the sites should have an entry in the site catalog, that is being
used.

In case this option is not specified, all the sites in the site catalog other than site
local are picked up as candidates for running the workflow.

--staging-site s1=ss1[,s2=ss2[..]] A comma separated list of key=value pairs , where the key is the execution site
and value is the staging site for that execution site.

In case of running on a shared filesystem, the staging site is automatically as-
sociated by the planner to be the execution site. If only a value is specified, then
that is taken to be the staging site for all the execution sites. e.g --staging-site
local means that the planner will use the local site as the staging site for all jobs
in the workflow.

-s , --submit Submits the generated executable workflow using pegasus-run script in $PE-
GASUS_HOME/bin directory. By default, the Pegasus Workflow Planner only
generates the Condor submit files and does not submit them.

368

Command Line Tools

-v , --verbose Increases the verbosity of messages about what is going on. By default, all
FATAL, ERROR, CONSOLE and WARN messages are logged. The logging
hierarchy is as follows:

1. FATAL

2. ERROR

3. CONSOLE

4. WARN

5. INFO

6. CONFIG

7. DEBUG

8. TRACE

For example, to see the INFO, CONFIG and DEBUG messages additionally,
set -vvv.

-V , --version Displays the current version number of the Pegasus Workflow Management
System.

Return Value
If the Pegasus Workflow Planner is able to generate an executable workflow successfully, the exitcode will be 0. All
runtime errors result in an exitcode of 1. This is usually in the case when you have misconfigured your catalogs etc.
In the case of an error occurring while loading a specific module implementation at run time, the exitcode will be 2.
This is usually due to factory methods failing while loading a module. In case of any other error occurring during the
running of the command, the exitcode will be 1. In most cases, the error message logged should give a clear indication
as to where things went wrong.

Controlling pegasus-plan Memory Consumption
pegasus-plan will try to determine memory limits automatically using factors such as total system memory and po-
tential memory limits (ulimits). The automatic limits can be overridden by setting the JAVA_HEAPMIN and JA-
VA_HEAPMAX environment variables before invoking pegasus-plan. The values are in megabytes. As a rule of
thumb, JAVA_HEAPMIN can be set to half of the value of JAVA_HEAPMAX.

Pegasus Properties
This is not an exhaustive list of properties used. For the complete description and list of properties refer to $PE-
GASUS_HOME/doc/advanced-properties.pdf

pegasus.selector.site Identifies what type of site selector you want to use. If not specified the default
value of Random is used. Other supported modes are RoundRobin and Non-
JavaCallout that calls out to a external site selector.

pegasus.catalog.replica Specifies the type of replica catalog to be used.

If not specified, then the value defaults to File.

pegasus.catalog.replica.url Contact string to access the replica catalog. In case of File it is path to the file
based replica catalog. If not specified, then default value of $PWD/rc.txt is used
for the default File based Replica Catalog.

pegasus.dir.exec A suffix to the workdir in the site catalog to determine the current working
directory. If relative, the value will be appended to the working directory from
the site.config file. If absolute it constitutes the working directory.

369

Command Line Tools

pegasus.catalog.transformation Specifies the type of transformation catalog to be used. One can use only a file
based transformation catalog, with the value as Text.

pegasus.catalog.transforma-
tion.file

The location of file to use as transformation catalog.

If not specified, then the default location of $PWD/tc.txt

pegasus.catalog.site Specifies the type of site catalog to be used. One can use either a text based or
an xml based site catalog. At present the default is XML.

pegasus.catalog.site.file The location of file to use as a site catalog. If not specified, then default value
of $PWD/sites.xml is used in case of the xml based site catalog.

pegasus.data.configuration This property sets up Pegasus to run in different environments. This can be set
to

sharedfs If this is set, Pegasus will be setup to execute jobs on the shared
filesystem on the execution site. This assumes, that the head node of a cluster
and the worker nodes share a filesystem. The staging site in this case is the
same as the execution site.

nonsharedfs If this is set, Pegasus will be setup to execute jobs on an execu-
tion site without relying on a shared filesystem between the head node and the
worker nodes.

condorio If this is set, Pegasus will be setup to run jobs in a pure condor pool,
with the nodes not sharing a filesystem. Data is staged to the compute nodes
from the submit host using Condor File IO.

pegasus.code.generator The code generator to use. By default, Condor submit files are generated for
the executable workflow. Setting to Shell results in Pegasus generating a shell
script that can be executed on the submit host.

Files
$PEGASUS_HOME/etc/
dax-3.3.xsd

is the suggested location of the latest DAX schema to produce DAX output.

$PEGASUS_HOME/etc/
sc-4.0.xsd

is the suggested location of the latest Site Catalog schema that is used to create
the XML version of the site catalog

$PEGASUS_HOME/etc/tc.da-
ta.text

is the suggested location for the file corresponding to the Transformation Cat-
alog.

$PEGASUS_HOME/etc/
sites.xml4 | $PE-
GASUS_HOME/etc/sites.xml3

is the suggested location for the file containing the site information.

$PEGASUS_HOME/lib/pega-
sus.jar

contains all compiled Java bytecode to run the Pegasus Workflow Planner.

See Also
pegasus-run(1), pegasus-status(1), pegasus-remove(1), pegasus-rc-client(1), pegasus-analyzer(1)

Authors
Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

370

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-plots — A tool to generate graphs and charts to visualize workflow run.

Synopsis
pegasus-plots [-h|--help]
 [-o|--output outdir]
 [-c|--conf propfile]
 [-m|--max-graph-nodes max]
 [-p|--plotting-level level]
 [-i|--ignore-db-inconsistency]
 [-v|--verbose]
 [-q|--quiet]
 [submitdir]

Description
pegasus-plots generates graphs and charts to visualize workflow run. It generates workflow execution Gantt chart, job
over time chart, time chart, dax and dag graph. It uses executable 'dot\' to generate graphs. pegasus-plots looks for the
executable in your path and generates graphs based on it’s availability .

Options
-h , --help Prints a usage summary with all the available command-line options.

-o outdir , --output outdir Writes the output to the given directory

-c propfile , --conf propfile The properties file to use. This option overrides all other property files.

-m max , --max-graph-nodes max Maximum limit on the number of tasks/jobs in the dax/dag up to which the
graph should be generated. The default value is 100.

-p level , --plotting-level level Specifies the charts and graphs to generate. Valid levels are: all, all_charts,
all_graphs, dax_graph, dag_graph, gantt_chart, host_chart, time_chart,
breakdown_chart. Default is all_charts. The output generated by pega-
sus-plots is based on the level set:

• all: generates all charts and graphs.

• all_charts: generates all charts.

• all_graphs: generates all graphs.

• dax_graph: generates dax graph.

• dag_graph: generates dag graph.

• gantt_chart: generates the workflow execution Gantt chart.

• host_chart: generates the host over time chart.

• time_chart: generates the time chart which shows the job instance/invoca-
tion count and runtime over time.

• breakdown_chart: generates the breakdown chart which shows the invoca-
tion count and runtime grouped by transformation name.

-i , --ignore-db-inconsistency Turn off the the check for database consistency.

-v , --verbose Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

371

Command Line Tools

-q , --quiet Decreases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to ERROR.

Example
Runs pegasus-plots and writes the output to the given directory:

pegasus-plots -o /scratch/plot /scratch/grid-setup/run0001

Authors
Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

372

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-rc-client — shell client for replica implementations

Synopsis
pegasus-rc-client [-Dproperty=value[…]] [-V]
 [-c fn] [-p k=v]
 [[-f fn]|[-i|-d fn]|[cmd [args]]

Description
The shell interface to replica catalog implementations is a prototype. It determines from various property setting which
class implements the replica manager interface, and loads that driver at run-time. Some commands depend on the
implementation.

Options
Any option will be displayed with its long options synonym(s).

-Dproperty=value The -D option allows an experienced user to override certain properties which influence
the program execution, among them the default location of the user’s properties file and
the PEGASUS home location. One may set several CLI properties by giving this option
multiple times. The -D option(s) must be the first option on the command line. A CLI
property take precedence over the properties file property of the same key.

-c fn , --conf fn Path to the property file

-f fn , --file fn The optional input file argument permits to enter non-interactive bulk mode. If this op-
tion is not present, replica manager specific commands should be issued on the com-
mand-line. The special filename hyphen (-) can be used to read from pipes.

Default is to use an interactive interface reading from stdin.

-i fn , --insert fn The optional input file argument permits insertion of entries from the Replica Catalog
in a bulk mode, wherever supported by the underlying implementation.

Each line in the file denotes one mapping of the format <lfn> <pfn> [k=v [..]]

-d fn , --delete fn The optional input file argument permits deletion of entries from the Replica Catalog in
a bulk mode, wherever supported by the underlying implementation.

Each line in the file denotes one mapping of the format: <lfn> <pfn> [k=v [..]]

-p k=v , --pref k=v This option may be specified multiple times. Each specification populates instance pref-
erences. Preferences control the extend of log information, or the output format string
to use in listings.

The keys format and level are recognized as of this writing.

There are no defaults.

cmd [args] If not in file-driven mode, a single command can be specified with its arguments.

Default is to use interactive mode.

-V , --version displays the version of Pegasus you are using.

Return Value
Regular and planned program terminations will result in an exit code of 0. Abnormal termination will result in a non-
zero exit code.

373

Command Line Tools

Files
$PEGASUS_HOME/etc/proper-
ties

contains the basic properties with all configurable options.

$HOME/.pegasusrc contains the basic properties with all configurable options.

pegasus.jar contains all compiled Java bytecode to run the replica manager.

Environment Variables
PEGASUS_HOME is the suggested base directory of your the execution environment.

JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as $JA-
VA_HOME/bin/java.

CLASSPATH should be set to contain all necessary files for the execution environment. Please make sure
that your CLASSPATH includes pointer to the replica implementation required jar files.

Properties
The complete branch of properties pegasus.catalog.replica including itself are interpreted by the prototype. While the
pegasus.catalog.replica property itself steers the backend to connect to, any meaning of branched keys is dependent
on the backend. The same key may have different meanings for different backends.

pegasus.catalog.replica determines the name of the implementing class to load at run-time. If the class
resides in org.griphyn.common.catalog.replica no prefix is required. Other-
wise, the fully qualified class name must be specified.

pegasus.catalog.replica.file is used by the SimpleFile implementation. It specifies the path to the file to use
as the backend for the catalog.

pegasus.catalog.replica.db.driver is used by a simple rDBMs implementation. The string is the fully-qualified
class name of the JDBC driver used by the RDBMS implementer.

pegasus.catalog.replica.db.url is the JDBC URL to use to connect to the database.

pegasus.catalog.replica.db.user is used by a simple rDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.replica.db.pass-
word

is used by a simple RDBMS implementation. It constitutes the database user
account that contains the RC_LFN and RC_ATTR tables.

pegasus.catalog.repli-
ca.chunk.size

is used by the pegasus-rc-client for the bulk insert and delete operations. The
value determines the number of lines that are read in at a time, and worked
upon at together.

Commands
The command line tool provides a simplified shell-wrappable interface to manage a replica catalog backend. The
commands can either be specified in a file in bulk mode, in a pipe, or as additional arguments to the invocation.

Note that you must escape special characters from the shell.

help displays a small resume of the commands.

exit , quit should only be used in interactive mode to exit the interactive mode.

clear drops all contents from the backend. Use with special care!

insert <lfn> <pfn> [k=v […]] inserts a given lfn and pfn, and an optional site string into the backend. If the
site is not specified, a null value is inserted for the site.

374

Command Line Tools

delete <lfn> <pfn> [k=v […]] removes a triple of lfn, pfn and, optionally, site from the replica backend. If
the site was not specified, all matches of the lfn pfn pairs will be removed,
regardless of the site.

lookup <lfn> [<lfn> […]] retrieves one or more mappings for a given lfn from the replica backend.

remove <lfn> [<lfn> […]] removes all mappings for each lfn from the replica backend.

list [lfn <pat>] [pfn <pat>]
[<name> <pat>]

obtains all matches from the replica backend. If no arguments were specified,
all contents of the replica backend are matched. You must use the word lfn, pfn
or <name> before specifying a pattern. The pattern is meaningful only to the
implementation. Thus, a SQL implementation may chose to permit SQL wild-
card characters. A memory-resident service may chose to interpret the pattern
as regular expression.

set [var [value]] sets an internal variable that controls the behavior of the front-end. With no
arguments, all possible behaviors are displayed. With one argument, just the
matching behavior is listed. With two arguments, the matching behavior is set
to the value.

Database Schema
The tables are set up as part of the PEGASUS database setup. The files concerned with the database have a suffix
-rc.sql.

Authors
Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmetha at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot dot edu>

Pegasus Team http://pegasus.isi.edu/

375

http://pegasus.isi.edu/

Command Line Tools

Name
pegasus-remove — removes a workflow that has been planned and submitted using pegasus-plan and pegasus-run

Synopsis
pegasus-remove [-d dagid] [-v] [rundir]

Description
The pegasus-remove command remove a submitted/running workflow that has been planned and submitted using
pegasus-plan and pegasus-run. The command can be invoked either in the planned directory with no options and
arguments or just the full path to the run directory.

Another way to remove a workflow is with the pegasus-halt command. The difference is that pegasus-halt will allow
current jobs to finish gracefully before stopping the workflow.

Options
By default pegasus-remove does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs to
be specified or the dagid of the workflow to be removed.

pegasus-remove takes the following options:

-d dagid , --dagid
dagid

The workflow dagid to remove

-v , --verbose Raises debug level. Each invocation increase the level by 1.

rundir Is the full qualified path to the base directory containing the planned workflow DAG and
submit files. This is optional if pegasus-remove command is invoked from within the run
directory.

Return Value
If the workflow is removed successfully pegasus-remove returns with an exit code of 0. However, in case of error, a
non-zero exit code indicates problems. An error message clearly marks the cause.

Files
The following files are opened:

braindump This file is located in the rundir. pegasus-remove uses this file to find out paths to several other files.

Environment Variables
PATH The path variable is used to locate binary for condor_rm.

See Also
pegasus-plan(1), pegasus-run(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

376

Command Line Tools

Pegasus Team http://pegasus.isi.edu

377

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-run — executes a workflow that has been planned using *pegasus-plan*.

Synopsis
pegasus-run [-Dproperty=value…][-c propsfile][-d level]
 [-v][--grid*][rundir]

Description
The pegasus-run command executes a workflow that has been planned using pegasus-plan. By default pegasus-run
can be invoked either in the planned directory with no options and arguments or just the full path to the run directory.
pegasus-run also can be used to resubmit a failed workflow by running the same command again.

Options
By default pegasus-run does not require any options or arguments if invoked from within the planned workflow
directory. If running the command outside the workflow directory then a full path to the workflow directory needs
to be specified.

pegasus-run takes the following options

-Dproperty=value The -D option allows an advanced user to override certain properties which influence
pegasus-run. One may set several CLI properties by giving this option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

See the PROPERTIES section below.

-c propsfile , --conf
propsfile

Provide a property file to override the default Pegasus properties file from the planning
directory. Ordinary users do not need to use this option unless the specifically want to
override several properties

-d level , --debug level Set the debug level for the client. Default is 0.

-v , --verbose Raises debug level. Each invocation increase the level by 1.

--grid Enable grid checks to see if your submit machine is GRID enabled.

rundir Is the full qualified path to the base directory containing the planned workflow DAG
and submit files. This is optional if the pegasus-run command is invoked from within
the run directory.

Return Value
If the workflow is submitted for execution pegasus-run returns with an exit code of 0. However, in case of error, a
non-zero return value indicates problems. An error message clearly marks the cause.

Files
The following files are created, opened or written to:

braindump This file is located in the rundir. pegasus-run uses this file to find out paths to
several other files, properties configurations etc.

pegasus.?????????.properties This file is located in the rundir. pegasus-run uses this properties file by default
to configure its internal settings.

378

Command Line Tools

workflowname.dag pegasus-run uses the workflowname.dag or workflowname.sh file and submits
it either to condor for execution or runs it locally in a shell environment

Properties
pegasus-run reads its properties from several locations.

RUNDIR/pega-
sus.??????????.properties

The default location for pegasus-run to read the properties from

--conf propfile properties file provided in the conf option replaces the default properties file
used.

$HOME/.pegasusrc will be used if neither default rundir properties or --conf propertiesfile are
found.

Additionally properties can be provided individually using the -Dprop-
key=propvalue option on the command line before all other options. These
properties will override properties provided using either --conf or RUNDIR/
pegasus.???????.properties or the $HOME/.pegasusrc

The merge logic is CONF PROPERTIES || DEFAULT RUNDIR PROP-
ERTIES || PEGASUSRC overriden by Command line properties

Environment Variables
PATH The path variable is used to locate binaries for condor-submit-dag, condor-dagman, condor-submit,pega-

sus-submit-dag, pegasus-dagman and pegasus-monitord

See Also
pegasus-plan(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

379

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-s3 — Upload, download, delete objects in Amazon S3

Synopsis
pegasus-s3 help
pegasus-s3 ls [options] URL
pegasus-s3 mkdir [options] URL…
pegasus-s3 rmdir [options] URL…
pegasus-s3 rm [options] [URL…]
pegasus-s3 put [options] FILE URL
pegasus-s3 get [options] URL [FILE]
pegasus-s3 lsup [options] URL
pegasus-s3 rmup [options] URL [UPLOAD]
pegasus-s3 cp [options] SRC… DEST

Description
pegasus-s3 is a client for the Amazon S3 object storage service and any other storage services that conform to the
Amazon S3 API, such as Eucalyptus Walrus.

Options

Global Options

-h , --help Show help message for subcommand and exit

-d , --debug Turn on debugging

-v , --verbose Show progress messages

-C FILE , --con-
f=FILE

Path to configuration file

ls Options

-l , --long Use long listing format that includes size, etc.

rm Options

-f , --force If the URL does not exist, then ignore the error.

-F FILE , --
file=FILE

File containing a list of URLs to delete

put Options

-r , --recursive Upload all files in the directory named FILE to keys with prefix URL.

-c X , --chunksize=X Set the chunk size for multipart uploads to X MB. A value of 0 disables multipart uploads.
The default is 10MB, the min is 5MB and the max is 1024MB. This parameter only applies
for sites that support multipart uploads (see multipart_uploads configuration parameter
in the CONFIGURATION section). The maximum number of chunks is 10,000, so if
you are uploading a large file, then the chunk size is automatically increased to enable the
upload. Choose smaller values to reduce the impact of transient failures.

-p N , --parallel=N Use N threads to upload FILE in parallel. The default value is 4, which enables parallel
uploads with 4 threads. This parameter is only valid if the site supports mulipart uploads
and the --chunksize parameter is not 0. Otherwise parallel uploads are disabled.

-b , --create-bucket Create the destination bucket if it does not already exist

380

Command Line Tools

get Options

-r , --recursive Download all keys that match URL exactly or begin with URL+"/". For example, pegasus-s3
get -r s3://u@h/bucket/key will match both key and key/foo but not keyfoo. Since S3 allows
names to exist as both keys (the bare key) and folders (the key in key/foo), but file systems do
not, you will get an error when using -r/--recursive on a bucket that contains such duplicate
names. An entire bucket can be downloaded at once by specifying only the bucket name in
URL.

-c X , --chunksize=X Set the chunk size for parallel downloads to X megabytes. A value of 0 will avoid chunked
reads. This option only applies for sites that support ranged downloads (see ranged_down-
loads configuration parameter). The default chunk size is 10MB, the min is 1MB and the
max is 1024MB. Choose smaller values to reduce the impact of transient failures.

-p N , --parallel=N Use N threads to upload FILE in parallel. The default value is 4, which enables parallel
downloads with 4 threads. This parameter is only valid if the site supports ranged downloads
and the --chunksize parameter is not 0. Otherwise parallel downloads are disabled.

rmup Options

-a , --all Cancel all uploads for the specified bucket

cp Options

-c , --create-dest Create the destination bucket if it does not exist.

-r , --recursive If SRC is a bucket, copy all of the keys in that bucket to DEST. In that case DEST must
be a bucket.

-f , --force If DEST exists, then overwrite it.

Subcommands
pegasus-s3 has several subcommands for different storage service operations.

help The help subcommand lists all available subcommands.

ls The ls subcommand lists the contents of a URL. If the URL does not contain a bucket, then all the buckets
owned by the user are listed. If the URL contains a bucket, but no key, then all the keys in the bucket are
listed. If the URL contains a bucket and a key, then all keys in the bucket that begin with the specified
key are listed.

mkdir The mkdir subcommand creates one or more buckets.

rmdir The rmdir subcommand deletes one or more buckets from the storage service. In order to delete a bucket,
the bucket must be empty.

rm The rm subcommand deletes one or more keys from the storage service.

put The put subcommand stores the file specified by FILE in the storage service under the bucket and key
specified by URL. If the URL contains a bucket, but not a key, then the file name is used as the key. If URL
ends with a "/", then the file name is appended to the URL to create the key name (e.g. pegasus-s3 put foo
s3://u@h/bucket/key will create a key called "key", while pegasus-s3 put foo s3://u@h/bucket/key/ will
create a key called "key/foo". The same is true of directories when used with the -r/--recursive option.

The put subcommand can do both chunked and parallel uploads if the service supports multipart uploads
(see multipart_uploads in the CONFIGURATION section). Currently only Amazon S3 supports mul-
tipart uploads.

This subcommand will check the size of the file to make sure it can be stored before attempting to store it.

Chunked uploads are useful to reduce the probability of an upload failing. If an upload is chunked, then
pegasus-s3 issues separate PUT requests for each chunk of the file. Specifying smaller chunks (using --

381

Command Line Tools

chunksize) will reduce the chances of an upload failing due to a transient error. Chunksizes can range
from 5 MB to 1GB (chunk sizes smaller than 5 MB produced incomplete uploads on Amazon S3). The
maximum number of chunks for any single file is 10,000, so if a large file is being uploaded with a small
chunksize, then the chunksize will be increased to fit within the 10,000 chunk limit. By default, the file
will be split into 10 MB chunks if the storage service supports multipart uploads. Chunked uploads can be
disabled by specifying a chunksize of 0. If the upload is chunked, then each chunk is retried independently
under transient failures. If any chunk fails permanently, then the upload is aborted.

Parallel uploads can increase performance for services that support multipart uploads. In a parallel upload
the file is split into N chunks and each chunk is uploaded concurrently by one of M threads in first-come,
first-served fashion. If the chunksize is set to 0, then parallel uploads are disabled. If M > N, then the
actual number of threads used will be reduced to N. The number of threads can be specified using the --
parallel argument. If --parallel is 1, then only a single thread is used. The default value is 4. There is no
maximum number of threads, but it is likely that the link will be saturated by 4 to 8 threads.

Under certain circumstances, when a multipart upload fails it could leave behind data on the server. When
a failure occurs the put subcommand will attempt to abort the upload. If the upload cannot be aborted,
then a partial upload may remain on the server. To check for partial uploads run the lsup subcommand.
If you see an upload that failed in the output of lsup, then run the rmup subcommand to remove it.

get The get subcommand retrieves an object from the storage service identified by URL and stores it in the
file specified by FILE. If FILE is not specified, then the part of the key after the last "/" is used as the file/
directory name, and the results are placed in the current working directory. If FILE ends with a "/", then
the last component of the key name is appended to FILE to create the output path (e.g. pegasus-s3 get
s3://u@h/bucket/key /tmp/ will create a file called /tmp/key while pegasus-s3 get s3://u@h/bucket/key /
tmp/foo will put the contents of key in a file called /tmp/foo). The same is true of folders/directories with
the -r/--recursive option.

The get subcommand can do both chunked and parallel downloads if the service supports ranged down-
loads (see ranged_downloads in the CONFIGURATION section). Currently only Amazon S3 has good
support for ranged downloads. Eucalyptus Walrus supports ranged downloads, but version 1.6 is incon-
sistent with the Amazon interface and has a bug that causes ranged downloads to hang in some cases. It
is recommended that ranged downloads not be used with Walrus 1.6.

Chunked downloads can be used to reduce the probability of a download failing. When a download is
chunked, pegasus-s3 issues separate GET requests for each chunk of the file. Specifying smaller chunks
(using --chunksize) will reduce the chances that a download will fail to do a transient error. Chunk
sizes can range from 1 MB to 1 GB. By default, a download will be split into 10 MB chunks if the site
supports ranged downloads. Chunked downloads can be disabled by specifying a --chunksize of 0. If
a download is chunked, then each chunk is retried independently under transient failures. If any chunk
fails permanently, then the download is aborted.

Parallel downloads can increase performance for services that support ranged downloads. In a parallel
download, the file to be retrieved is split into N chunks and each chunk is downloaded concurrently by
one of M threads in a first-come, first-served fashion. If the chunksize is 0, then parallel downloads are
disabled. If M > N, then the actual number of threads used will be reduced to N. The number of threads
can be specified using the --parallel argument. If --parallel is 1, then only a single thread is used. The
default value is 4. There is no maximum number of threads, but it is likely that the link will be saturated
by 4 to 8 threads.

lsup The lsup subcommand lists active multipart uploads. The URL specified should point to a bucket. This
command is only valid if the site supports multipart uploads. The output of this command is a list of
keys and upload IDs.

This subcommand is used with rmup to help recover from failures of multipart uploads.

rmup The rmup subcommand cancels and active upload. The URL specified should point to a bucket, and
UPLOAD is the long, complicated upload ID shown by the lsup subcommand.

This subcommand is used with lsup to recover from failures of multipart uploads.

cp The cp subcommand copies keys on the server. Keys cannot be copied between accounts.

382

Command Line Tools

URL Format
All URLs for objects stored in S3 should be specified in the following format:

s3[s]://USER@SITE[/BUCKET[/KEY]]

The protocol part can be s3:// or s3s://. If s3s:// is used, then pegasus-s3 will force the connection to use SSL and
override the setting in the configuration file. If s3:// is used, then whether the connection uses SSL or not is determined
by the value of the endpoint variable in the configuration for the site.

The USER@SITE part is required, but the BUCKET and KEY parts may be optional depending on the context.

The USER@SITE portion is referred to as the “identity”, and the SITE portion is referred to as the “site”. Both the
identity and the site are looked up in the configuration file (see CONFIGURATION) to determine the parameters
to use when establishing a connection to the service. The site portion is used to find the host and port, whether to
use SSL, and other things. The identity portion is used to determine which authentication tokens to use. This format
is designed to enable users to easily use multiple services with multiple authentication tokens. Note that neither the
USER nor the SITE portion of the URL have any meaning outside of pegasus-s3. They do not refer to real usernames
or hostnames, but are rather handles used to look up configuration values in the configuration file.

The BUCKET portion of the URL is the part between the 3rd and 4th slashes. Buckets are part of a global namespace
that is shared with other users of the storage service. As such, they should be unique.

The KEY portion of the URL is anything after the 4th slash. Keys can include slashes, but S3-like storage services
do not have the concept of a directory like regular file systems. Instead, keys are treated like opaque identifiers for
individual objects. So, for example, the keys a/b and a/c have a common prefix, but cannot be said to be in the same
directory.

Some example URLs are:

s3://ewa@amazon
s3://juve@skynet/gideon.isi.edu
s3://juve@magellan/pegasus-images/centos-5.5-x86_64-20101101.part.1
s3s://ewa@amazon/pegasus-images/data.tar.gz

Configuration
Each user should specify a configuration file that pegasus-s3 will use to look up connection parameters and authen-
tication tokens.

Search Path

This client will look in the following locations, in order, to locate the user’s configuration file:

1. The -C/--conf argument

2. The S3CFG environment variable

3. $HOME/.pegasus/s3cfg

4. $HOME/.s3cfg

If it does not find the configuration file in one of these locations it will fail with an error. The $HOME/.s3cfg location
is only supported for backward-compatibility. $HOME/.pegasus/s3cfg should be used instead.

Configuration File Format

The configuration file is in INI format and contains two types of entries.

The first type of entry is a site entry, which specifies the configuration for a storage service. This entry specifies the
service endpoint that pegasus-s3 should connect to for the site, and some optional features that the site may support.
Here is an example of a site entry for Amazon S3:

[amazon]

383

Command Line Tools

endpoint = http://s3.amazonaws.com/

The other type of entry is an identity entry, which specifies the authentication information for a user at a particular
site. Here is an example of an identity entry:

[pegasus@amazon]
access_key = 90c4143642cb097c88fe2ec66ce4ad4e
secret_key = a0e3840e5baee6abb08be68e81674dca

It is important to note that user names and site names used are only logical—they do not correspond to actual hostnames
or usernames, but are simply used as a convenient way to refer to the services and identities used by the client.

The configuration file should be saved with limited permissions. Only the owner of the file should be able to read
from it and write to it (i.e. it should have permissions of 0600 or 0400). If the file has more liberal permissions, then
pegasus-s3 will fail with an error message. The purpose of this is to prevent the authentication tokens stored in the
configuration file from being accessed by other users.

Configuration Variables

endpoint (site) The URL of the web service endpoint. If the URL begins with https, then SSL
will be used.

max_object_size (site) The maximum size of an object in GB (default: 5GB)

multipart_uploads (site) Does the service support multipart uploads (True/False, default: False)

ranged_downloads (site) Does the service support ranged downloads? (True/False, default: False)

access_key (identity) The access key for the identity

secret_key (identity) The secret key for the identity

Example Configuration

This is an example configuration that specifies a two sites (amazon and magellan) and three identities (pegasus@a-
mazon,juve@magellan, and voeckler@magellan). For the amazon site the maximum object size is 5TB, and
the site supports both multipart uploads and ranged downloads, so both uploads and downloads can be done in parallel.

[amazon]
endpoint = https://s3.amazonaws.com/
max_object_size = 5120
multipart_uploads = True
ranged_downloads = True

[pegasus@amazon]
access_key = 90c4143642cb097c88fe2ec66ce4ad4e
secret_key = a0e3840e5baee6abb08be68e81674dca

[magellan]
NERSC Magellan is a Eucalyptus site. It doesn't support multipart uploads,
or ranged downloads (the defaults), and the maximum object size is 5GB
(also the default)
endpoint = https://128.55.69.235:8773/services/Walrus

[juve@magellan]
access_key = quwefahsdpfwlkewqjsdoijldsdf
secret_key = asdfa9wejalsdjfljasldjfasdfa

[voeckler@magellan]
Each site can have multiple associated identities
access_key = asdkfaweasdfbaeiwhkjfbaqwhei
secret_key = asdhfuinakwjelfuhalsdflahsdl

Example
List all buckets owned by identity user@amazon:

$ pegasus-s3 ls s3://user@amazon

384

Command Line Tools

List the contents of bucket bar for identity user@amazon:

$ pegasus-s3 ls s3://user@amazon/bar

List all objects in bucket bar that start with hello:

$ pegasus-s3 ls s3://user@amazon/bar/hello

Create a bucket called mybucket for identity user@amazon:

$ pegasus-s3 mkdir s3://user@amazon/mybucket

Delete a bucket called mybucket:

$ pegasus-s3 rmdir s3://user@amazon/mybucket

Upload a file foo to bucket bar:

$ pegasus-s3 put foo s3://user@amazon/bar/foo

Download an object foo in bucket bar:

$ pegasus-s3 get s3://user@amazon/bar/foo foo

Upload a file in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 put --parallel 4 --chunksize 100 foo s3://user@amazon/bar/foo

Download an object in parallel with 4 threads and 100MB chunks:

$ pegasus-s3 get --parallel 4 --chunksize 100 s3://user@amazon/bar/foo foo

List all partial uploads for bucket bar:

$ pegasus-s3 lsup s3://user@amazon/bar

Remove all partial uploads for bucket bar:

$ pegasus-s3 rmup --all s3://user@amazon/bar

Return Value
pegasus-s3 returns a zero exist status if the operation is successful. A non-zero exit status is returned in case of failure.

Author
Gideon Juve <gideon@isi.edu>

Pegasus Team http://pegasus.isi.edu

385

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-sc-converter — A client to convert site catalog from one format to another format.

Synopsis
pegasus-sc-converter [-v] [-V] [-h] [-Dproperty=value…]
 [-I fmt] [-O fmt]
 -i infile[,infile,…] -o outfile

Description
The pegasus-sc-converter program is used to convert the site catalog from one format to another.

Currently, the following formats of site catalog exist.

XML4 This format is a superset of previous formats. All information about a site that can be described about a
site can be described in this format. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node. The user can also
specify which different file-servers for read/write operations

A sample entry in this format looks as follows

<site handle="osg" arch="x86" os="LINUX" osrelease="" osversion="" glibc="">
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>

 <directory path="/tmp" type="local-scratch">
 <file-server operation="put" url="file:///tmp"/>
 </directory>

 <profile namespace="pegasus" key="style">condor</profile>
 <profile namespace="condor" key="universe">vanilla</profile>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-4.0.xsd.

XML3 This format is a superset of previous formats. All information about a site that can be described about a
site can be described in this format. In addition, the user has finer grained control over the specification of
directories and FTP servers that are accessible at the head node and the worker node.

A sample entry in this format looks as follows

<site handle="local" arch="x86" os="LINUX">
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-pbs" scheduler="PBS"
 jobtype="compute"/>
 <grid type="gt2" contact="viz-login.isi.edu/jobmanager-fork" scheduler="Fork"
 jobtype="auxillary"/>
 <head-fs>
 <scratch>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" mount-point="/
scratch">
 </file-server>
 <internal-mount-point mount-point="/scratch" free-size="null" total-size="null"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="gsiftp" url="gsiftp://viz-login.isi.edu" mount-point="/
scratch">
 </file-server>
 <internal-mount-point mount-point="/scratch" free-size="null" total-size="null"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://smarty.isi.edu">
 </replica-catalog>

386

http://pegasus.isi.edu/schema/sc-4.0.xsd

Command Line Tools

 <profile namespace="env" key="GLOBUS_LOCATION" >/nfs/software/globus/default</profile>
 <profile namespace="env" key="LD_LIBRARY_PATH" >/nfs/software/globus/default/lib</
profile>
 <profile namespace="env" key="PEGASUS_HOME" >/nfs/software/pegasus/default</profile>
</site>

This format conforms to the XML schema found at http://pegasus.isi.edu/schema/sc-3.0.xsd.

Options
-i infile[,infile,…] , --input in-
file[,infile,…]

The comma separated list of input files that need to be converted to a file in the
format specified by --oformat option.

-o outfile , --output outfile The output file to which the output needs to be written out to.

Other Options

-O fmt , --oformat
fmt

The output format of the output file.

Valid values for the output format is XML3, XML4.

-v , --verbose Increases the verbosity of messages about what is going on.

By default, all FATAL ERROR, ERROR , WARNINGS and INFO messages are logged.

-V , --version Displays the current version number of the Pegasus Workflow Planner Software.

-h , --help Displays all the options to the pegasus-plan command.

Example
pegasus-sc-converter -i sites.xml -o sites.xml.new -O XML3 -vvvvv

Authors
Karan Vahi <vahi at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

387

http://pegasus.isi.edu/schema/sc-3.0.xsd
http://pegasus.isi.edu

Command Line Tools

Name
pegasus-service — Runs the Pegasus Service server

Synopsis
pegasus-service [options]

Options
-H , --host Hostname on which the service listens for request. Default: 127.0.0.1s

-p , --port Port on which the service listens for requests. Default: 5000

-d , --debug Enable debugging

-h , --help Print help message

Configuration
The authentication/authorization settings can be specified in the configuration file.

Authors
Pegasus Team <pegasus@isi.edu>

388

Command Line Tools

Name
pegasus-statistics — A tool to generate statistics about the workflow run.

Synopsis
pegasus-statistics [-h|--help]
 [-o|--output dir]
 [-c|--conf propfile]
 [-p|--statistics-level level]
 [-t|--time-filter filter]
 [-i|--ignore-db-inconsistency]
 [-v|--verbose]
 [-q|--quiet]
 [-m|--multiple-wf]
 [-p|--ispmc]
 [-u|--isuuid]
 [[submitdir ..] | [workflow_uuid ..]]

Description
pegasus-statistics generates statistics about the workflow run like total jobs/tasks/sub workflows ran, how many suc-
ceeded/failed etc. It generates job instance statistics like run time, condor queue delay etc. It generates invocation
statistics information grouped by transformation name. It also generates job instance and invocation statistics infor-
mation grouped by time and host.

Options
-h , --help Prints a usage summary with all the available command-line options.

-o dir , --output dir Writes the output to the given directory.

-c propfile , --conf propfile The properties file to use. This option overrides all other property files.

-s level , --statistics-level level Specifies the statistics information to generate. Valid levels are: all, summa-
ry, wf_stats, jb_stats, tf_stats, and ti_stats. Default is summary. The output
generated by pegasus-statistics is based on the the level set:

• all: generates all the statistics information.

• summary: generates the workflow statistics summary. In the case of a hier-
archical workflow the summary is across all sub workflows.

• wf_stats: generates the workflow statistics information of each individual
workflow. In case of a hierarchical workflow the workflow statistics are cre-
ated for each sub workflow.

• jb_stats: generates the job statistics information of each individual work-
flow. In case of hierarchical workflow the job statistics is created for each
sub workflows. Note: Not supported when generating statistics over multiple
workflows.

• tf_stats: generates the invocation statistics information of each individual
workflow grouped by transformation name .In case of hierarchical workflow
the transformation statistics is created for each sub workflows.

• ti_stats: generates the job instance and invocation statistics like total count
and runtime grouped by time and host.

-t filter , --time-filter filter Specifies the time filter to group the time statistics. Valid filter values are:
month, week, day, hour. Default is day.

389

Command Line Tools

-i , --ignore-db-inconsistency Turn off the the check for database consistency.

-v , --verbose Increases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to INFO. If this option is
repeated, the log level will be changed to DEBUG.

-q , --quiet Decreases the log level. If omitted, the default level will be set to WARNING.
When this option is given, the log level is changed to ERROR.

-m , --multiple-wf Set this option when generating statistics over more than one workflow. The
tool automatically sets this flag if multiple submit directories or multiple work-
flow UUIDs are provided. This option would need to be set explicitly only to
generate statistics over all workflows in a single STAMPEDE database. NOTE:
When workflows are specified as UUIDs the --conf options needs to be set for
the tool to determine the STAMPEDE database URL.

-p , --ispmc Set this flag to generate statistics for workflows which are run with PMC clus-
tering enabled. It is recommended that this option be used when calculating
statistics over multiple workflow runs.

-u , --isuuid Set this option if the positional argument are workflow UUIDs. NOTE: When
workflows are specified as UUIDs the --conf options needs to be set for the tool
to determine the STAMPEDE database URL.

Example
Runs pegasus-statistics and writes the output to the given directory:

$ pegasus-statistics -o /scratch/statistics /scratch/grid-setup/run0001

Runs pegasus-statistics over a workflow run identified by a single workflow UUID:

$ pegasus-statistics --conf pegasusrc --isuuid 316f2986-7754-44ec-8b38-fcd0cb602ce0

Runs pegasus-statistics over a workflow run identified by a multiple workflow UUID:

$ pegasus-statistics --conf pegasusrc --isuuid 316f2986-7754-44ec-8b38-fcd0cb602ce0 \
7ef77af8-4eb2-45ca-b37d-c5a02186133a

Runs pegasus-statistics over all workflows in the STAMPEDE database:

$ pegasus-statistics --conf pegasusrc --multiple-wf

Authors
Prasanth Thomas Rajiv Mayani

Pegasus Team http://pegasus.isi.edu

390

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-status — Pegasus workflow- and run-time status

Synopsis
pegasus-status [-h|--help]
 [-V|--version] [-v|--verbose] [-d|--debug]
 [-w|--watch [s]]
 [-L|--[no]legend] [-c|--[no]color] [-U|--[no]utf8]
 [-Q|--[no]queue] [-i|--[no]idle] [--[no]held]
 [--[no]heavy] [-S|--[no]success]
 [-j|--jobtype jt] [-s|--site sid]
 [-u|--user name]
 { [-l|--long] | [-r|--rows] }
 [rundir]

Description
pegasus-status shows the current state of the Condor Q and a workflow, depending on settings. If no valid run directory
could be determined, including the current directory, pegasus-status will show all jobs of the current user and no
workflows. If a run directory was specified, or the current directory is a valid run directory, status about the workflow
will also be shown.

Many options will modify the behavior of this program, not withstanding a proper UTF-8 capable terminal, watch
mode, the presence of jobs in the queue, progress in the workflow directory, etc.

Options
-h , --help Prints a concise help and exits.

-V , --version Prints the version information and exits.

-w [sec] , --watch
[sec]

This option enables the watch mode. In watch mode, the program repeatedly polls the status
sources and shows them in an updating window. The optional argument sec to this option
determines how often these sources are polled.

We strongly recommend to set this interval not too low, as frequent polling will degrade the
scheduler performance and increase the host load. In watch mode, the terminal size is the
limiting factor, and parts of the output may be truncated to fit it onto the given terminal.

Watch mode is disabled by default. The sec argument defaults to 60 seconds.

-L , --legend , --
nolegend

This option shows a legend explaining the columns in the output, or turns off legends.

By default, legends are turned off to save terminal real estate.

-c , --color , --nocol-
or

This option turns on (or off) ANSI color escape sequences in the output. The single letter
option can only switch on colors.

By default, colors are turned off, as they will not display well on a terminal with black back-
ground.

-U , --utf8 , --noutf8 This option turns on (or off) the output of Unicode box drawing characters as UTF-8 encoded
sequences. The single option can only turn on box drawing characters.

The defaults for this setting depend on the LANG environment variable. If the variable con-
tains a value ending in something indicating UTF-8 capabilities, the option is turned on by
default. It is off otherwise.

-Q , --queue , --no-
queue

This option turns on (or off) the output from parsing Condor Q.

391

Command Line Tools

By default, Condor Q will be parsed for jobs of the current user. If a workflow run directory
is specified, it will furthermore be limited to jobs only belonging to the workflow.

-v , --verbose This option increases the expert level, showing more information about the condor_q state.
Being an incremental option, two increases are supported.

Additionally, the signals SIGUSR1 and SIGUSR2 will increase and decrease the expert level
respectively during run-time.

By default, the simplest queue view is enabled.

-d , --debug This is an internal debugging tool and should not be used outside the development team. As
incremental option, it will show Pegasus-specific ClassAd tuples for each job, more in the
second level.

By default, debug mode is off.

-u name , --user
name

This option permits to query the queue for a different user than the current one. This may be
of interest, if you are debugging the workflow of another user.

By default, the current user is assumed.

-i , --idle , --noidle With this option, jobs in Condor state idle are omitted from the queue output.

By default, idle jobs are shown.

--held , --noheld This option enables or disabled showing of the reason a job entered Condor’s held state. The
reason will somewhat destroy the screen layout.

By default, the reason is shown.

--heavy , --noheavy If the terminal is UTF-8 capable, and output is to a terminal, this option decides whether to
use heavyweight or lightweight line drawing characters.

By default, heavy lines connect the jobs to workflows.

-j jt , --jobtype jt This option filters the Condor jobs shown only to the Pegasus jobtypes given as argument
or arguments to this option. It is a multi-option, and may be specified multiple times, and
may use comma-separated lists. Use this option with an argument help to see all valid and
recognized jobtypes.

By default, all Pegasus jobtypes are shown.

-s site , --site site This option limits the Condor jobs shown to only those pertaining to the (remote) site site.
This is an multi-option, and may be specified multiple times, and may use comma-separated
lists.

By default, all sites are shown.

-l , --long This option will show one line per sub-DAG, including one line for the workflow. If there is
only a single DAG pertaining to the rundir, only total will be shown.

This option is mutually exclusive with the --rows option. If both are specified, the --long
option takes precedence.

By default, only DAG totals (sums) are shown.

-r , --rows , --
norows

This option is shows the workflow summary statistics in rows instead of columns. This option
is useful for sending the statistics in email and later viewing them in a proportional font.

This option is mutually exclusive with the --long option. If both are specified, the --long
option takes precedence.

392

Command Line Tools

By default, the summary is shown in columns.

-S , --success , --no-
success

This option modifies the previous --long option. It will omit (or show) fully successful sub-
DAGs from the output.

By default, all DAGs are shown.

rundir This option show statistics about the given DAG that runs in rundir. To gather proper statis-
tics, pegasus-status needs to traverse the directory and all sub-directories. This can become
an expensive operation on shared filesystems.

By default, the rundir is assumed to be the current directory. If the current directory is not
a valid rundir, no DAG statistics will be shown.

Return Value
pegasus-status will typically return success in regular mode, and the termination signal in watch mode. Abnormal
behavior will result in a non-zero exit code.

Example
pegasus-status This invocation will parse the Condor Q for the current user and show all her

jobs. Additionally, if the current directory is a valid Pegasus workflow direc-
tory, totals about the DAG in that directory are displayed.

pegasus-status -l rundir As above, but providing a specific Pegasus workflow directory in argument
rundir and requesting to itemize sub-DAGs.

pegasus-status -j help This option will show all permissible job types and exit.

pegasus-status -vvw 300 -Ll This invocation will parse the queue, print it in high-expert mode, show legends,
itemize DAG statistics of the current working directory, and redraw the terminal
every five minutes with updated statistics.

Restrictions
Currently only supports a single (optional) run directory. If you want to watch multiple run directories, I suggest to
open multiple terminals and watch them separately. If that is not an option, or deemed too expensive, you can ask
pegasus-support at isi dot edu to extend the program.

See Also
condor_q(1), pegasus-statistics(1)

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu/

393

http://pegasus.isi.edu/

Command Line Tools

Name
pegasus-submit-dag — Wrapper around *condor_submit_dag*. Not to be run by user.

Description
The pegasus-submit-dag is a wrapper that invokes condor_submit_dag. This is started automatically by pega-
sus-run. DO NOT USE DIRECTLY

Return Value
If the workflow is submitted succesfully pegasus-submit-dag exits with 0, else exits with non-zero.

Environment Variables
PATH The path variable is used to locate binary for condor_submit_dag and pegasus-dagman

See Also
pegasus-run(1) pegasus-dagman(1)

Authors
Gaurang Mehta <gmehta at isi dot edu>

Pegasus Team http://pegasus.isi.edu

394

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-submitdir — Manage a workflow submit directory.

Synopsis
pegasus-submitdir COMMAND [options] SUBMITDIR

Description
pegasus-submitdir is used to manage submit directories generated by the Pegasus planner.

The archive command significantly reduces the size of workflow submit directories by compressing the data in a way
such that it remains accessible to tools such as pegasus-statistics, pegasus-plots, and pegasus-analyzer.

The extract command reverses the effect of the archive command.

The move command relocates a submit directory and updates relevant pointers in the database so that it can still be
accessed through the dashboard.

The delete command removes the submit directory and cleans up any associated records in the user’s master database.

The attach command adds a submit dir to the master database that drives the dashboard.

The detach command removes a submit dir from the master database that drives the dashboard.

Commands
archive SUBMITDIR Compresses a workflow submit directory in a way that allows pegasus-dash-

board, pegasus-statistics, pegasus-plots, and pegasus-analyzer to keep working.
It creates a gzipped tar archive of the submit files and logs that excludes files
such as the workflow database, braindump file, and monitord logs, which are
used by pegasus reporting tools.

extract SUBMITDIR Uncompresses a previously archived submit directory. This option returns the
submit directory to the state it was before pegasus-submitdir archive was ap-
plied to it.

move SUBMITDIR DEST Move a workflow submit dir from SUBMITDIR to DEST. This operation up-
dates the relevant database records so that the dashboard continues to function.
DEST can be either an existing directory, in which case the submit dir becomes
a subdirectory, or a new path, in which case the submit dir is renamed. IM-
PORTANT This operation should only be performed on workflows that will
not be resubmitted in the future. Moving a workflow does not update absolute
paths in any of the submit files, so after a workflow has been moved it is not
possible to rerun it.

delete SUBMITDIR Delete a workflow submit dir. This operation removes all related records from
the user’s master database, including ensemble manager records. Deleted work-
flows do not appear in the dashboard.

attach SUBMITDIR Add entries for the workflow in SUBMITDIR to the user’s master db. If the
workflow is already in the master db, then update the db_url and submit_dir
fields to match the actual path of the submit dir. This command will create
master_workflow and master_workflowstate entries in the master db for the
root workflow in SUBMITDIR.

detach [--wf-uuid <WF_UUID>]
SUBMITDIR

Remove entries for the workflow in SUBMITDIR from the user’s master
db. This command will delete any entries in the master_workflow and mas-
ter_workflowstate tables.

395

Command Line Tools

Global Options
-h , --help Prints a usage summary with all the available command-line options.

Authors
Gideon Juve <gideon@isi.edu [mailto:gideon@isi.edu]>

Pegasus Team http://pegasus.isi.edu

396

mailto:gideon@isi.edu
mailto:gideon@isi.edu
http://pegasus.isi.edu

Command Line Tools

Name
pegasus-tc-client — A full featured generic client to handle adds, deletes and queries to the Transformation Catalog
(TC).

Synopsis
pegasus-tc-client [-Dproperty=value…] [-h] [-v] [-V]
 OPERATION TRIGGERS [OPTIONS]

Description
The pegasus-tc-client command is a generic client that performs the three basic operation of adding, deleting and
querying of any Transformation Catalog implemented to the TC API. The client implements all the operations sup-
ported by the TC API. It is up to the TC implementation whether they support all operations or modes.

The following 3 operations are supported by the pegasus-tc-client. One of these operations have to be specified to
run the client.

ADD This operation allows the client to add or update entries in the Transformation Catalog. Entries can be
added one by one on the command line or in bulk by using the BULK Trigger and providing a file with
the necessary entries. Also Profiles can be added to either the logical transformation or the physical
transformation.

DELETE This operation allows the client to delete entries from the Transformation Catalog. Entries can be delet-
ed based on logical transformation, by resource, by transformation type as well as the transformation
system information. Also Profiles associated with the logical or physical transformation can be deleted.

QUERY This operation allows the client to query for entries from the Transformation Catalog. Queries can be
made for printing all the contents of the Catalog or for specific entries, for all the logical transformations
or resources etc.

See the TRIGGERS and VALID COMBINATIONS section for more details.

Operations
To select one of the 3 operations.

-a, --add Perform addition operations on the TC.

-d, --delete Perform delete operations on the TC.

-q, --query Perform query operations on the TC.

Triggers
Triggers modify the behavior of an OPERATION. For example, if you want to perform a bulk operation you would
use a BULK Trigger or if you want to perform an operation on a Logical Transformation then you would use the
LFN Trigger.

The following 7 Triggers are available. See the VALID COMBINATIONS section for the correct grouping and usage.

-B Triggers a bulk operation.

-L Triggers an operation on a logical transformation.

-P Triggers an operation on a physical transformation

-R Triggers an operation on a resource.

-E Triggers an operation on a Profile.

397

Command Line Tools

-T Triggers an operation on a Type.

-S Triggers an operation on a System information.

Options
The following options are applicable for all the operations.

-Dproperty=value The -D options allows an experienced user to override certain properties which
influence the program execution, among them the default location of the user’s
properties file and the PEGASUS home location. One may set several CLI prop-
erties by giving this option multiple times. The -D option(s) must be the first
option on the command line. A CLI property take precedence over the proper-
ties file property of the same key.

-l, --lfn logical The logical transformation to be added. The format is: NAMES-
PACE::NAME:VERSION. The name is always required, namespace and ver-
sion are optional.

-p, --pfn physical The physical transformation to be added. For INSTALLED executables its a
local file path, for all others its a url.

-t, --type type The type of physical transformation. Valid values are: INSTALLED,
STATIC_BINARY, DYNAMIC_BINARY, SCRIPT, SOURCE, PAC-
MAN_PACKAGE.

-r, --resource resource The resourceID where the transformation is located.

-e, --profile profiles The profiles for the transformation. Multiple profiles of same name-
space can be added simultaneously by separating them with a com-
ma ",". Each profile section is written as NAMESPACE::KEY=VAL-
UE,KEY2=VALUE2 e.g. ENV::JAVA_HOME=/usr/bin/java2,PE-
GASUS_HOME=/usr/local/pegasus. To add multiple namespaces you
need to repeat the -e option for each namespace. e.g. -e ENV::JA-
VA_HOME=/usr/bin/java -e GLOBUS::JobType=MPI,COUN-
T=10

-s, --system systeminfo The architecture, os, osversion and glibc if any for the executable. Each system
info is written in the form ARCH::OS:OSVER:GLIBC

-v, --verbose Displays the output in verbose mode (Lots of Debugging info).

-V, --version Displays the Pegasus version.

-h, --help Generates help

Other Options
-o, --oldformat Generates the output in the old single line format

-c, --conf path to property file

Valid Combinations
The following are valid combinations of OPERATIONS, TRIGGERS, OPTIONS for the pegasus-tc-client.

ADD

Add TC Entry -a -l lfn -p pfn -t type -r resource -s system [-e profiles…]

Adds a single entry into the transformation catalog.

398

Command Line Tools

Add PFN Profile -a -P -E -p pfn -t type -r resource -e profiles …

Adds profiles to a specified physical transformation on a given resource and of a given
type.

Add LFN Profile -a -L -E -l lfn -e profiles …

Adds profiles to a specified logical transformation.

Add Bulk Entries -a -B -f file

Adds entries in bulk mode by supplying a file containing the entries. The format of the
file contains 6 columns. E.g.

#RESOURCE LFN PFN TYPE SYSINFO PROFILES
#
isi NS::NAME:VER /bin/date INSTALLED ARCH::OS:OSVERS:GLIBC
 NS::KEY=VALUE,KEY=VALUE;NS2::KEY=VALUE,KEY=VALUE

DELETE

Delete all TC -d -BPRELST

Deletes the entire contents of the TC.

WARNING : USE WITH CAUTION.

Delete by LFN -d -L -l lfn [-r resource] [-t type]

Deletes entries from the TC for a particular logical transformation and additionally
a resource and or type.

Delete by PFN -d -P -l lfn -p pfn [-r resource] [-t type]

Deletes entries from the TC for a given logical and physical transformation and ad-
ditionally on a particular resource and or of a particular type.

Delete by Type -d -T -t type [-r resource]

Deletes entries from TC of a specific type and/or on a specific resource.

Delete by Resource -d -R -r resource

Deletes the entries from the TC on a particular resource.

Delete by SysInfo -d -S -s sysinfo

Deletes the entries from the TC for a particular system information type.

Delete Pfn Profile -d -P -E -p pfn -r resource -t type [-e profiles ..]

Deletes all or specific profiles associated with a physical transformation.

Delete Lfn Profile -d -L -E -l lfn -e profiles ….

Deletes all or specific profiles associated with a logical transformation.

QUERY

Query Bulk -q -B

Queries for all the contents of the TC. It produces a file format TC which can be added
to another TC using the bulk option.

Query LFN -q -L [-r resource] [-t type]

399

Command Line Tools

Queries the TC for logical transformation and/or on a particular resource and/or of a
particular type.

Query PFN -q -P -l lfn [-r resource] [-t type]

Queries the TC for physical transformations for a give logical transformation and/or
on a particular resource and/or of a particular type.

Query Resource -q -R -l lfn [-t type]

Queries the TC for resources that are registered and/or resources registered for a spe-
cific type of transformation.

Query LFN Profile -q -L -E -l lfn

Queries for profiles associated with a particular logical transformation

Query Pfn Profile -q -P -E -p pfn -r resource -t type

Queries for profiles associated with a particular physical transformation

Properties
These are the properties you will need to set to use either the File or Database TC.

For more details please check the $PEGASUS_HOME/etc/sample.properties file.

pegasus.catalog.transformation Identifies what impelemntation of TC will be used. If relative name is used then
the path org.griphyn.cPlanner.tc is prefixed to the name and used as the class
name to load. The default value if Text. Other supported mode is File

pegasus.catalog.transforma-
tion.file

The file path where the text based TC is located. By default the path $PE-
GASUS_HOME/var/tc.data is used.

Files
$PEGASUS_HOME/var/tc.data is the suggested location for the file corresponding to the Transformation Cat-

alog

$PEGASUS_HOME/etc/proper-
ties

is the location to specify properties to change what Transformation Catalog
Implementation to use and the implementation related PROPERTIES.

pegasus.jar contains all compiled Java bytecode to run the Pegasus planner.

Environment Variables
PEGASUS_HOME Path to the PEGASUS installation directory.

JAVA_HOME Path to the JAVA 1.4.x installation directory.

CLASSPATH The classpath should be set to contain all necessary PEGASUS files for the execution environ-
ment. To automatically add the CLASSPATH to you environment, in the $PEGASUS_HOME
directory run the script source setup-user-env.csh or source setup-user-env.sh.

Authors
Gaurang Mehta <gmehta at isi dot edu>

Karan Vahi <vahi at isi dot edu>

Pegasus Team http://pegasus.isi.edu

400

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-tc-converter — A client to convert transformation catalog from one format to another format.

Synopsis
pegasus-tc-converter [-Dproperty=value…] [-v] [-q] [-V] [-h]
 [-I fmt] [-O fmt]
 [-N dbusername] [-P dbpassword] [-U dburl] [-H dbhost]
 -i infile[,infile,…] -o outfile

Description
The tc-convert program is used to convert the transformation catalog from one format to another.

Currently, the following formats of transformation catalog exist:

Text This is a easy to read multi line textual format.

A sample entry in this format looks as follows:

tr example::keg:1.0 {
 site isi {
 profile env "JAVA_HOME" "/bin/java.1.6"
 pfn "/path/to/keg"
 arch "x86"
 os "linux"
 osrelease "fc"
 osversion "4"
 type "installed"
 }
}

File This is a tuple based format which contains 6 columns.

RESOURCE LFN PFN TYPE SYSINFO PROFILES

A sample entry in this format looks as follows

isi example::keg:1.0 /path/to/keg INSTALLED INTEL32::LINUX:fc_4:
 env::JAVA_HOME="/bin/java.1.6"

Database Only MySQL is supported for the time being.

Options
-Dproperty=value The -D option allows an experienced user to override certain properties which influence

the program execution, among them the default location of the user’s properties file and
the PEGASUS_HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-I fmt , --iformat fmt The input format of the input files. Valid values for the input format are: File, Text,
and Database.

-O fmt --oformat fmt The output format of the output file. Valid values for the output format are: File, Text, and
Database.

-i infile[,infile,…] --input infile[,infile,…] The comma separated list of input files that need to be converted to a file
in the format specified by the --oformat option.

-o outfile , --output out-
file

The output file to which the output needs to be written out to.

401

Command Line Tools

Other Options

-N dbusername , --db-user-name
dbusername

The database user name.

-P dbpassword , --db-user-pwd
dbpassword

The database user password.

-U dburl , --db-url dburl The database url.

-H dbhost , --db-host dbhost The database host.

-v , --verbose Increases the verbosity of messages about what is going on. By default, all FA-
TAL ERROR, ERROR , CONSOLE and WARNINGS messages are logged.

-q , --quiet Decreases the verbosity of messages about what is going on. By default, all FA-
TAL ERROR, ERROR , CONSOLE and WARNINGS messages are logged.

-V , --version Displays the current version number of the Pegasus Workflow Planner Soft-
ware.

-h , --help Displays all the options to the pegasus-tc-converter command.

Example
Text to file format conversion

pegasus-tc-converter -i tc.data -I File -o tc.txt -O Text -v

File to Database(new) format con-
version

pegasus-tc-converter -i tc.data -I File -N mysql_user -P mysql_pwd -U jdbc:mysql://localhost:3306/tc
 -H localhost -O Database -v

Database (username, password,
host, url specified in properties file)
to text format conversion

pegasus-tc-converter -I Database -o tc.txt -O Text -vvvvv

Authors
Prasanth Thomas

Pegasus Team http://pegasus.isi.edu

402

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-transfer — Handles data transfers for Pegasus workflows.

Synopsis
pegasus-transfer [-h]
 [--file inputfile]
 [--threads number_threads]
 [--max-attempts attempts]
 [--threads threads]
 [--debug]

Description
pegasus-transfer takes a JSON defined list of urls, either on stdin or with an input file, determines the correct tool to
use for the transfer and executes the transfer. Some of the protocols pegasus-transfer can handle are GridFTP, SCP,
SRM, Amazon S3, Google Storage, XRootD, HTTP, and local cp/symlinking. Failed transfers are retried.

Note that pegasus-transfer is a tool mostly used internally in Pegasus workflows, but the tool can be used stand alone
as well.

Options
-h , --help Prints a usage summary with all the available command-line options.

-f inputfile , --file inputfile JSON transfer specification. If not given, stdin will be used.

-m , --max-attempts attempts Maximum number of attempts for retrying failed transfers.

-t , --threads number_threads The number of threads to use. This controls the parallelism of transfers.

-d , --debug Enables debugging output.

Example
$ pegasus-transfer
[
 { "type": "transfer",
 "id": 1,
 "src_urls": [{ "site_label": "web", "url": "http://pegasus.isi.edu" }],
 "dest_urls": [{ "site_label": "local", "url": "file:///tmp/index.html" }]
 }
]
CTRL+D

Credential Handling
Credentials used for transfers can be specified with a combination of site labels in the input JSON format and envi-
ronment variables. For example, give the following input file:

[
 { "type": "transfer",
 "id": 1,
 "src_urls": [{ "site_label": "isi", "url": "gsiftp://workflow.isi.edu/data/file.dat" }],
 "dest_urls": [{ "site_label": "tacc_stampede", "url": "gsiftp://
gridftp.stampede.tacc.utexas.edu/scratch/file.dat" }]
 }
]

pegasus-transfer will expect either one environment variable specifying one credential to be used on both end of the
connection (X509_USER_PROXY), or two separate environment variables specifying two different credentials to be
used on the two ends of the connection. The the latter case, the environment variables are derived from the site labels. In

403

Command Line Tools

the example above, the environment variables would be named X509_USER_PROXY_isi and X509_USER_PROX-
Y_tacc_stampede

Threading
In order to speed up data transfers, pegasus-transfer will start a set of transfers in parallel using threads.

Preference of GFAL over GUC
JGlobus is no longer actively supported and is not in compliance RFC 2818. As a result cleanup jobs using pega-
sus-gridftp client would fail against the servers supporting the strict mode. We have removed the pegasus-gridftp client
and now use gfal clients as globus-url-copy does not support removes. If gfal is not available, globus-url-copy is used
for cleanup by writing out zero bytes files instead of removing them.

If you want to force globus-url-copy to be preferred over GFAL, set the PEGASUS_FORCE_GUC=1 environment
variable in the site catalog for the sites you want the preference to be enforced. Please note that we expect globus-url-
copy support to be completely removed in future releases of Pegasus due to the end of life of Globus Toolkit in 2018.

Author
Pegasus Team http://pegasus.isi.edu

404

http://pegasus.isi.edu

Command Line Tools

Name
pegasus-version — print or match the version of the toolkit.

Synopsis
pegasus-version [-Dproperty=value] [-m [-q]] [-V] [-f] [-l]

Description
This program prints the version string of the currently active Pegasus toolkit on stdout.

pegasus-version is a simple command-line tool that reports the version number of the Pegasus distribution being used.
In its most basic invocation, it will show the current version of the Pegasus software you have installed:

$ pegasus-version
3.1.0cvs

If you want to know more details about the installed version, i.e. which system it was compiled for and when, use
the long or full mode:

$ pegasus-version -f
3.1.0cvs-x86_64_cent_5.6-20110706191019Z

Options
-Dproperty=value The -D option allows an experienced user to override certain properties which influence

the program execution, among them the default location of the user’s properties file and
the PEGASUS_HOME location. One may set several CLI properties by giving this
option multiple times.

The -D option(s) must be the first option on the command line. CLI properties take
precedence over the file-based properties of the same key.

-f , --full The --full mode displays internal build metrics, like OS type and libc version, addition
to the version number. It appends the build time as time stamp to the version. The time
stamp uses ISO 8601 format, and is a UTC stamp.

-l , --long This option is an alias for --full.

-V , --version Displays the version of the Pegasus planner you are using.

--verbose is ignored in this tool. However, to provide a uniform interface for all tools, the option
is recognized and will not trigger an error.

Return Value
The program will usually return with success (0). In match mode, if the internal version does not match the external
installation, an exit code of 1 is returned. If run-time errors are detected, an exit code of 2 is returned, 3 for fatal errors.

Environment Variables
JAVA_HOME should be set and point to a valid location to start the intended Java virtual machine as $JA-

VA_HOME/bin/java.

Example
$ pegasus-version
3.1.0cvs

$ pegasus-version -f
3.1.0cvs-x86_64_cent_5.6-20110706191019Z

405

Command Line Tools

Authors
Jens-S. Vöckler <voeckler at isi dot edu>

Pegasus Team http://pegasus.isi.edu

406

http://pegasus.isi.edu

Chapter 18. Useful Tips
Migrating From Pegasus 4.5.X to Pegasus current
version

Most of the migrations from one version to another are related to database upgrades, that is addressed by running the
tool pegasus-db-admin.

Database Upgrades From Pegasus 4.5.X to Pegasus current
version

Since Pegasus 4.5 all databases are managed by a single tool: pegasus-db-admin. Databases will be automatically
updated when pegasus-plan is invoked, but WORKFLOW databases from past runs may not be updated accordingly.
Since Pegasus 4.6.0, the pegasus-db-admin tool provides an option to automatically update all databases from com-
pleted workflows in the MASTER database. To enable this option, run the following command:

$ pegasus-db-admin update -a
Your database has been updated.
Your database is compatible with Pegasus version: 4.7.0

Verifying and updating workflow databases:
21/21

Summary:
Verified/Updated: 21/21
Failed: 0/21
Unable to connect: 0/21
Unable to update (active workflows): 0/21

Log files:
20161006T134415-dbadmin.out (Succeeded operations)
20161006T134415-dbadmin.err (Failed operations)

This option generates a log file for succeeded operations, and a log file for failed operations. Each file contains the
list of URLs of the succeeded/failed databases.

Note that, if no URL is provided, the tool will create/use a SQLite database in the user's home directory: ${HOME}/.pe-
gasus/workflow.db.

For complete description of pegasus-db-admin, see the man page.

Migration from Pegasus 4.6 to 4.7
In addition to the database changes, in Pegasus 4.7 the default submit directory layout was changed from a flat structure
where all submit files independent of the number of jobs in the workflow appeared in a single directory. For 4.7, the
default is a hierarchal directory structure two levels deep. To use the earlier layout, set the following property

pegasus.dir.submit.mapper Flat

Migrating From Pegasus <4.5 to Pegasus 4.5.X
Since Pegasus 4.5 all databases are managed by a single tool: pegasus-db-admin. Databases will be automatically
updated when pegasus-plan is invoked, but it may require manually invocation of the pegasus-db-admin for other
Pegasus tools.

The check command verifies if the database is compatible with the Pegasus' latest version. If the database is not
compatible, it will print the following message:

$ pegasus-db-admin check

407

Useful Tips

Your database is NOT compatible with version 4.5.0

If you are running the check command for the first time, the tool will prompt the following message:

Missing database tables or tables are not updated:
 dbversion
Run 'pegasus-db-admin update <path_to_database>' to create/update your database.

To update the database, run the following command:

$ pegasus-db-admin update
Your database has been updated.
Your database is compatible with Pegasus version: 4.5.0

The pegasus-db-admin tool can operate directly over a database URL, or can read configuration parameters from
the properties file or a submit directory. In the later case, a database type should be provided to indicate which prop-
erties should be used to connect to the database. For example, the tool will seek for pegasus.catalog.replica.db.*
properties to connect to the JDBCRC database; or seek for pegasus.catalog.master.url (or pegasus.dashboard.output,
which is deprecated) property to connect to the MASTER database; or seek for the pegasus.catalog.workflow.url (or
pegasus.monitord.output, which is deprecated) property to connect to the WORKFLOW database. If none of these
properties are found, the tool will connect to the default database in the user's home directory (sqlite:///${HOME}/.pe-
gasus/workflow.db).

Example: connection by providing the URL to the database:

$ pegasus-db-admin create sqlite:///${HOME}/.pegasus/workflow.db
$ pegasus-db-admin update sqlite:///${HOME}/.pegasus/workflow.db

Example: connection by providing a properties file that contains the information to connect to the database. Note that
a database type (MASTER, WORKFLOW, or JDBCRC) should be provided:

$ pegasus-db-admin update -c pegasus.properties -t MASTER
$ pegasus-db-admin update -c pegasus.properties -t JDBCRC
$ pegasus-db-admin update -c pegasus.properties -t WORKFLOW

Example: connection by providing the path to the submit directory containning the braindump.txt file, where infor-
mation to connect to the database can be extracted. Note that a database type (MASTER, WORKFLOW, or JDBCRC)
should also be provided:

$ pegasus-db-admin update -s /path/to/submitdir -t WORKFLOW
$ pegasus-db-admin update -s /path/to/submitdir -t MASTER
$ pegasus-db-admin update -s /path/to/submitdir -t JDBCRC

Note that, if no URL is provided, the tool will create/use a SQLite database in the user's home directory: ${HOME}/.pe-
gasus/workflow.db.

For complete description of pegasus-db-admin, see the man page.

Migrating From Pegasus 3.1 to Pegasus 4.X
With Pegasus 4.0 effort has been made to move the Pegasus installation to be FHS compliant, and to make workflows
run better in Cloud environments and distributed grid environments. This chapter is for existing users of Pegasus who
use Pegasus 3.1 to run their workflows and walks through the steps to move to using Pegasus 4.0

Move to FHS layout
Pegasus 4.0 is the first release of Pegasus which is Filesystem Hierarchy Standard (FHS) [http://www.path-
name.com/fhs/] compliant. The native packages no longer installs under /opt. Instead, pegasus-* binaries are in /usr/
bin/ and example workflows can be found under /usr/share/pegasus/examples/.

408

http://www.pathname.com/fhs/
http://www.pathname.com/fhs/
http://www.pathname.com/fhs/

Useful Tips

To find Pegasus system components, a pegasus-config tool is provided. pegasus-config supports setting up the envi-
ronment for

• Python

• Perl

• Java

• Shell

For example, to find the PYTHONPATH for the DAX API, run:

export PYTHONPATH=`pegasus-config --python`

For complete description of pegasus-config, see the man page.

Stampede Schema Upgrade Tool
Starting Pegasus 4.x the monitoring and statistics database schema has changed. If you want to use the pega-
sus-statistics, pegasus-analyzer and pegasus-plots against a 3.x database you will need to upgrade the schema
first using the schema upgrade tool /usr/share/pegasus/sql/schema_tool.py or /path/to/pegasus-4.x/share/pegasus/sql/
schema_tool.py

Upgrading the schema is required for people using the MySQL database for storing their monitoring information if
it was setup with 3.x monitoring tools.

If your setup uses the default SQLite database then the new databases run with Pegasus 4.x are automatically created
with the correct schema. In this case you only need to upgrade the SQLite database from older runs if you wish to
query them with the newer clients.

To upgrade the database

For SQLite Database

cd /to/the/workflow/directory/with/3.x.monitord.db

Check the db version

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:29:43.330476Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:29:43.330708Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:29:43.348995Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:29:43.349133Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.

Convert the Database to be version 4.x compliant

/usr/share/pegasus/sql/schema_tool.py -u connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:35:35.046317Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |
2012-02-29T01:35:35.046554Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:35:35.064762Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Current version set to: 3.1.
2012-02-29T01:35:35.064902Z ERROR netlogger.analysis.schema.schema_check.SchemaCheck.check_schema
 | Schema version 3.1 found - expecting 4.0 - database admin will
 need to run upgrade tool.
2012-02-29T01:35:35.065001Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.upgrade_to_4_0
 | Upgrading to schema version 4.0.

Verify if the database has been converted to Version 4.x

/usr/share/pegasus/sql/schema_tool.py -c connString=sqlite:////to/the/workflow/directory/with/
workflow.stampede.db
2012-02-29T01:39:17.218902Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.init |

409

Useful Tips

2012-02-29T01:39:17.219141Z INFO
 netlogger.analysis.schema.schema_check.SchemaCheck.check_schema.start |
2012-02-29T01:39:17.237492Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Current version set to: 4.0.
2012-02-29T01:39:17.237624Z INFO netlogger.analysis.schema.schema_check.SchemaCheck.check_schema |
 Schema up to date.

For upgrading a MySQL database the steps remain the same. The only thing that changes is the
 connection String to the database
E.g.

/usr/share/pegasus/sql/schema_tool.py -u connString=mysql://username:password@server:port/dbname

After the database has been upgraded you can use either 3.x or 4.x clients to query the database with pegasus-statistics,
as well as pegasus-plots and pegasus-analyzer.

Existing users running in a condor pool with a non shared
filesystem setup

Existing users that are running workflows in a cloud environment with a non shared filesystem setup have to do some
trickery in the site catalog to include placeholders for local/submit host paths for execution sites when using CondorIO.
In Pegasus 4.0, this has been rectified.

For example, for a 3.1 user, to run on a local-condor pool without a shared filesystem and use Condor file IO for file
transfers, the site entry looks something like this

 <site handle="local-condor" arch="x86" os="LINUX">
 <grid type="gt2" contact="localhost/jobmanager-fork" scheduler="Fork" jobtype="auxillary"/>
 <grid type="gt2" contact="localhost/jobmanager-condor" scheduler="unknown"
 jobtype="compute"/>
 <head-fs>

 <!-- the paths for scratch filesystem are the paths on local site as we execute create dir
 job
 on local site. Improvements planned for 4.0 release.-->
 <scratch>
 <shared>
 <file-server protocol="file" url="file:///" mount-point="/submit-host/scratch"/>
 <internal-mount-point mount-point="/submit-host/scratch"/>
 </shared>
 </scratch>
 <storage>
 <shared>
 <file-server protocol="file" url="file:///" mount-point="/glusterfs/scratch"/>
 <internal-mount-point mount-point="/glusterfs/scratch"/>
 </shared>
 </storage>
 </head-fs>
 <replica-catalog type="LRC" url="rlsn://dummyValue.url.edu" />
 <profile namespace="env" key="PEGASUS_HOME" >/cluster-software/pegasus/2.4.1</profile>
 <profile namespace="env" key="GLOBUS_LOCATION" >/cluster-software/globus/5.0.1</profile>

 <!-- profies for site to be treated as condor pool -->
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>

 <!-- to enable kickstart staging from local site-->
 <profile namespace="condor" key="transfer_executable">true</profile>

 </site>

With Pegasus 4.0 the site entry for a local-condor pool can be as concise as the following

 <site handle="condorpool" arch="x86" os="LINUX">
 <head-fs>
 <scratch />
 <storage />
 </head-fs>
 <profile namespace="pegasus" key="style" >condor</profile>
 <profile namespace="condor" key="universe" >vanilla</profile>

410

Useful Tips

 </site>

The planner in 4.0 correctly picks up the paths from the local site entry to determine the staging location for the condor
io on the submit host.

Users should read pegasus data staging configuration chapter and also look in the examples directory (share/pega-
sus/examples).

Migrating From Pegasus 2.X to Pegasus 3.X
With Pegasus 3.0 effort has been made to simplify configuration. This chapter is for existing users of Pegasus who
use Pegasus 2.x to run their workflows and walks through the steps to move to using Pegasus 3.0

PEGASUS_HOME and Setup Scripts
Earlier versions of Pegasus required users to have the environment variable PEGASUS_HOME set and to source
a setup file $PEGASUS_HOME/setup.sh | $PEGASUS_HOME/setup.csh before running Pegasus to setup CLASS-
PATH and other variables.

Starting with Pegasus 3.0 this is no longer required. The above paths are automaticallly determined by the Pegasus
tools when they are invoked.

All the users need to do is to set the PATH variable to pick up the pegasus executables from the bin directory.

$ export PATH=/some/install/pegasus-3.0.0/bin:$PATH

Changes to Schemas and Catalog Formats

DAX Schema

Pegasus 3.0 by default now parses DAX documents conforming to the DAX Schema 3.2 available here [schemas/
dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on API references.

Starting Pegasus 3.0 , DAX generation API's are provided in Java/Python and Perl for users to use in their DAX
Generators. The use of API's is highly encouraged. Support for the old DAX schema's has been deprecated and will
be removed in a future version.

For users, who still want to run using the old DAX formats i.e 3.0 or earlier, can for the time being set the following
property in the properties and point it to dax-3.0 xsd of the installation.

pegasus.schema.dax /some/install/pegasus-3.0/etc/dax-3.0.xsd

Site Catalog Format

Pegasus 3.0 by default now parses Site Catalog format conforming to the SC schema 3.0 (XML3) available here
[schemas/dax-3.2/dax-3.2.xsd] and is explained in detail in the chapter on Catalogs.

Pegasus 3.0 comes with a pegasus-sc-converter that will convert users old site catalog (XML) to the XML3 format.
Sample usage is given below.

$ pegasus-sc-converter -i sample.sites.xml -I XML -o sample.sites.xml3 -O XML3

2010.11.22 12:55:14.169 PST: Written out the converted file to sample.sites.xml3

To use the converted site catalog, in the properties do the following

1. unset pegasus.catalog.site or set pegasus.catalog.site to XML3

2. point pegasus.catalog.site.file to the converted site catalog

Transformation Catalog Format

Pegasus 3.0 by default now parses a file based multiline textual format of a Transformation Catalog. The new Text
format is explained in detail in the chapter on Catalogs.

411

schemas/dax-3.2/dax-3.2.xsd
schemas/dax-3.2/dax-3.2.xsd
schemas/dax-3.2/dax-3.2.xsd
schemas/dax-3.2/dax-3.2.xsd
schemas/dax-3.2/dax-3.2.xsd

Useful Tips

Pegasus 3.0 comes with a pegasus-tc-converter that will convert users old transformation catalog (File) to the Text
format. Sample usage is given below.

$ pegasus-tc-converter -i sample.tc.data -I File -o sample.tc.text -O Text

2010.11.22 12:53:16.661 PST: Successfully converted Transformation Catalog from File to Text
2010.11.22 12:53:16.666 PST: The output transfomation catalog is in file /lfs1/software/install/
pegasus/pegasus-3.0.0cvs/etc/sample.tc.text

To use the converted transformation catalog, in the properties do the following

1. unset pegasus.catalog.transformation or set pegasus.catalog.transformation to Text

2. point pegasus.catalog.transformation.file to the converted transformation catalog

Properties and Profiles Simplification
Starting with Pegasus 3.0 all profiles can be specified in the properties file. Profiles specified in the properties file
have the lowest priority. Profiles are explained in the detail in the configuration chapter. As a result of this a lot of
existing Pegasus Properties were replaced by profiles. The table below lists the properties removed and the new profile
based names.

Table 18.1. Property Keys removed and their Profile based replacement

Old Property Key New Property Key

pegasus.local.env no replacement. Specify env profiles for local site in the
site catalog

pegasus.condor.release condor.periodic_release

pegasus.condor.remove condor.periodic_remove

pegasus.job.priority condor.priority

pegasus.condor.output.stream pegasus.condor.output.stream

pegasus.condor.error.stream condor.stream_error

pegasus.dagman.retry dagman.retry

pegasus.exitcode.impl dagman.post

pegasus.exitcode.scope dagman.post.scope

pegasus.exitcode.arguments dagman.post.arguments

pegasus.exitcode.path.* dagman.post.path.*

pegasus.dagman.maxpre dagman.maxpre

pegasus.dagman.maxpost dagman.maxpost

pegasus.dagman.maxidle dagman.maxidle

pegasus.dagman.maxjobs dagman.maxjobs

pegasus.remote.scheduler.min.maxwalltime globus.maxwalltime

pegasus.remote.scheduler.min.maxtime globus.maxtime

pegasus.remote.scheduler.min.maxcputime globus.maxcputime

pegasus.remote.scheduler.queues globus.queue

Profile Keys for Clustering

The pegasus profile keys for job clustering were renamed. The following table lists the old and the new names for
the profile keys.

Table 18.2. Old and New Names For Job Clustering Profile Keys

Old Pegasus Profile Key New Pegasus Profile Key

412

Useful Tips

collapse clusters.size

bundle clusters.num

Transfers Simplification
Pegasus 3.0 has a new default transfer client pegasus-transfer that is invoked by default for first level and second
level staging. The pegasus-transfer client is a python based wrapper around various transfer clients like globus-url-
copy, lcg-copy, wget, cp, ln . pegasus-transfer looks at source and destination url and figures out automatically which
underlying client to use. pegasus-transfer is distributed with the PEGASUS and can be found in the bin subdirectory .

Also, the Bundle Transfer refiner has been made the default for pegasus 3.0. Most of the users no longer need to set
any transfer related properties. The names of the profiles keys that control the Bundle Transfers have been changed .
The following table lists the old and the new names for the Pegasus Profile Keys and are explained in details in the
Profiles Chapter.

Table 18.3. Old and New Names For Transfer Bundling Profile Keys

Old Pegasus Profile Key New Pegasus Profile Keys

bundle.stagein stagein.clusters | stagein.local.clusters | stagein.re-
mote.clusters

bundle.stageout stageout.clusters | stageout.local.clusters | stageout.re-
mote.clusters

Worker Package Staging

Starting Pegasus 3.0 there is a separate boolean property pegasus.transfer.worker.package to enable worker package
staging to the remote compute sites. Earlier it was bundled with user executables staging i.e if pegasus.catalog.trans-
formation.mapper property was set to Staged .

Clients in bin directory
Starting with Pegasus 3.0 the pegasus clients in the bin directory have a pegasus prefix. The table below lists the old
client names and new names for the clients that replaced them

Table 18.4. Old Client Names and their New Names

Old Client New Client

rc-client pegasus-rc-client

tc-client pegasus-tc-client

pegasus-get-sites pegasus-sc-client

sc-client pegasus-sc-converter

tailstatd pegasus-monitord

genstats and genstats-breakdown pegasus-statistics

show-job pegasus-plots

dirmanager pegasus-dirmanager

exitcode pegasus-exitcode

rank-dax pegasus-rank-dax

transfer pegasus-transfer

Best Practices For Developing Portable Code
This document lists out issues for the algorithm developers to keep in mind while developing the respective codes.
Keeping these in mind will alleviate a lot of problems while trying to run the codes on the Grid through workflows.

413

Useful Tips

Supported Platforms
Most of the hosts making a Grid run variants of Linux or in some case Solaris. The Grid middleware mostly supports
UNIX and it's variants.

Running on Windows

The majority of the machines making up the various Grid sites run Linux. In fact, there is no widespread deployment
of a Windows-based Grid. Currently, the server side software of Globus does not run on Windows. Only the client
tools can run on Windows. The algorithm developers should not code exclusively for the Windows platforms. They
must make sure that their codes run on Linux or Solaris platforms. If the code is written in a portable language like
Java, then porting should not be an issue.

If for some reason the code can only be executed on windows platform, please contact the pegasus team at pegasus aT
isi dot edu . In certain cases it is possible to stand up a linux headnode in front of a windows cluster running Condor
as it's scheduler.

Packaging of Software
As far as possible, binary packages (preferably statically linked) of the codes should be provided. If for some reason
the codes, need to be built from the source then they should have an associated makefile (for C/C++ based tools) or
an ant file (for Java tools). The building process should refer to the standard libraries that are part of a normal Linux
installation. If the codes require non-standard libraries, clear documentation needs to be provided, as to how to install
those libraries, and make the build process refer to those libraries.

Further, installing software as root is not a possibility. Hence, all the external libraries that need to be installed can
only be installed as non-root in non-standard locations.

MPI Codes
If any of the algorithm codes are MPI based, they should contact the Grid group. MPI can be run on the Grid but the
codes need to be compiled against the installed MPI libraries on the various Grid sites. The pegasus group has some
experience running MPI code through PBS.

Maximum Running Time of Codes
Each of the Grid sites has a policy on the maximum time for which they will allow a job to run. The algorithms catalog
should have the maximum time (in minutes) that the job can run for. This information is passed to the Grid sites while
submitting a job, so that Grid site does not kill a job before that published time expires. It is OK, if the job runs only
a fraction of the max time.

Codes cannot specify the directory in which they should be
run

Codes are installed in some standard location on the Grid Sites or staged on demand. However, they are not invoked
from directories where they are installed. The codes should be able to be invoked from any directory, as long as one
can access the directory where the codes are installed.

This is especially relevant, while writing scripts around the algorithm codes. At that point specifying the relative paths
do not work. This is because the relative path is constructed from the directory where the script is being invoked. A
suggested workaround is to pick up the base directory where the software is installed from the environment or by
using the dirname cmd or api. The workflow system can set appropriate environment variables while launching jobs
on the Grid.

No hard-coded paths
The algorithms should not hard-code any directory paths in the code. All directories paths should be picked up ex-
plicitly either from the environment (specifying environment variables) or from command line options passed to the
algorithm code.

414

Useful Tips

Wrapping legacy codes with a shell wrapper
When wrapping a legacy code in a script (or another program), it is necessary that the wrapper knows where the
executable lives. This is accomplished using an environmental variable. Be sure to include this detail in the component
description when submitting a component for use on the Grid -- include a brief descriptive name like GDA_BIN.

Propogating back the right exitcode
A job in the workflow is only released for execution if its parents have executed successfully. Hence, it is very im-
portant that the algorithm codes exit with the correct error code in case of success and failure. The algorithms should
exit with a status of 0 in case of success, and a non zero status in case of error. Failure to do so will result in erroneous
workflow execution where jobs might be released for execution even though their parents had exited with an error.

The algorithm codes should catch all errors and exit with a non zero exitcode. The successful execution of the algorithm
code can only be determined by an exitcode of 0. The algorithm code should not rely upon something being written
to the stdout to designate success for e.g. if the algorithm code writes out to the stdout SUCCESS and exits with a
non zero status the job would be marked as failed.

In *nix, a quick way to see if a code is exiting with the correct code is to execute the code and then execute echo $?.

$ component-x input-file.lisp
... some output ...
$ echo $?
0

If the code is not exiting correctly, it is necessary to wrap the code in a script that tests some final condition (such as
the presence or format of a result file) and uses exit to return correctly.

Static vs. Dynamically Linked Libraries
Since there is no way to know the profile of the machine that will be executing the code, it is important that dynamically
linked libraries are avoided or that reliance on them is kept to a minimum. For example, a component that requires
libc 2.5 may or may not run on a machine that uses libc 2.3. On *nix, you can use the ldd command to see what
libraries a binary depends on.

If for some reason you install an algorithm specific library in a non standard location make sure to set the
LD_LIBRARY_PATH for the algorithm in the transformation catalog for each site.

Temporary Files
If the algorithm codes create temporary files during execution, they should be cleared by the codes in case of errors
and success terminations. The algorithm codes will run on scratch file systems that will also be used by others. The
scratch directories get filled up very easily, and jobs will fail in case of directories running out of free space. The
temporary files are the files that are not being tracked explicitly through the workflow generation process.

Handling of stdio
When writing a new application, it often appears feasible to use stdin for a single file data, and stdout for a single file
output data. The stderr descriptor should be used for logging and debugging purposes only, never to put data on it. In
the *nix world, this will work well, but may hiccup in the Windows world.

We are suggesting that you avoid using stdio for data files, because there is the implied expectation that stdio data gets
magically handled. There is no magic! If you produce data on stdout, you need to declare to Pegasus that your stdout
has your data, and what LFN Pegasus can track it by. After the application is done, the data product will be a remote
file just like all other data products. If you have an input file on stdin, you must track it in a similar manner. If you
produce logs on stderr that you care about, you must track it in a similar manner. Think about it this way: Whenever
you are redirecting stdio in a *nix shell, you will also have to specify a file name.

Most execution environments permit to connect stdin, stdout or stderr to any file, and Pegasus supports this case.
However, there are certain very specific corner cases where this is not possible. For this reason, we recommend that
in new code, you avoid using stdio for data, and provide alternative means on the commandline, i.e. via --input fn
and --output fn commandline arguments instead relying on stdin and stdout.

415

Useful Tips

Configuration Files
If your code requires a configuration file to run and the configuration changes from one run to another, then this file
needs to be tracked explicitly via the Pegasus WMS. The configuration file should not contain any absolute paths to
any data or libraries used by the code. If any libraries, scripts etc need to be referenced they should refer to relative
paths starting with a ./xyz where xyz is a tracked file (defined in the workflow) or as $ENV-VAR/xyz where
$ENV-VAR is set during execution time and evaluated by your application code internally.

Code Invocation and input data staging by Pegasus
Pegasus will create one temporary directory per workflow on each site where the workflow is planned. Pegasus will
stage all the files required for the execution of the workflow in these temporary directories. This directory is shared by
all the workflow components that executed on the site. You will have no control over where this directory is placed and
as such you should have no expectations about where the code will be run. The directories are created per workflow
and not per job/alogrithm/task. Suppose there is a component component-x that takes one argument: input-file.lisp (a
file containing the data to be operated on). The staging step will bring input-file.lisp to the temporary directory. In
*nix the call would look like this:

$ /nfs/software/component-x input-file.lisp

Note that Pegasus will call the component using the full path to the component. If inside your code/script you invoke
some other code you cannot assume a path for this code to be relative or absolute. You have to resovle it either
using a dirname $0 trick in shell assuming the child code is in the same directory as the parent or construct the path
by expecting an enviornment variable to be set by the workflow system. These env variables need to be explicitly
published so that they can be stored in the transformation catalog.

Now suppose that internally, component-x writes its results to /tmp/component-x-results.lisp. This is not good. Com-
ponents should not expect that a /tmp directory exists or that it will have permission to write there. Instead, compo-
nent-x should do one of two things: 1. write component-x-results.lisp to the directory where it is run from or 2. com-
ponent-x should take a second argument output-file.lisp that specifies the name and path of where the results should
be written.

Logical File naming in DAX
The logical file names used by your code can be of two types.

• Without a directory path e.g. f.a, f.b etc

• With a directory path e.g. a/1/f.a, b/2/f.b

Both types of files are supported. We will create any directory structure mentioned in your logical files on the remote
execution site when we stage in data as well as when we store the output data to a permanent location. An example
invocation of a code that consumes and produces files will be

$/bin/test --input f.a --output f.b

OR

$/bin/test --input a/1/f.a --output b/1/f.b

Note

A logical file name should never be an absolute file path, e.g. /a/1/f.a In other words, there should not be
a starting slash (/) in a logical filename.

Slot Partitioning and CPU Affinity in Condor
By default, Condor will evenly divide the resources in a machine (such as RAM, swap space and disk space) among
all the CPUs, and advertise each CPU as its own slot with an even share of the system resources. If you want to have
your custom configuration, you can use the following setting to define the maximum number of different slot types:

416

Useful Tips

MAX_SLOT_TYPES = 2

For each slot type, you can divide system resources unevenly among your CPUs. The N in the name of the macro
listed below must be an integer from 1 to MAX_SLOT_TYPES (defined above).

SLOT_TYPE_1 = cpus=2, ram=50%, swap=1/4, disk=1/4
SLOT_TYPE_N = cpus=1, ram=20%, swap=1/4, disk=1/8

Slots can also be partitioned to accommodate actual needs by accepted jobs. A partitionable slot is always unclaimed
and dynamically splitted when jobs are started. Slot partitioning can be enable as follows:

SLOT_TYPE_1_PARTITIONABLE = True
SLOT_TYPE_N_PARTITIONABLE = True

Condor can also bind cores to each slot through CPU affinity:

ENFORCE_CPU_AFFINITY = True
SLOT1_CPU_AFFINITY=0,2
SLOT2_CPU_AFFINITY=1,3

Note that CPU numbers may vary from machines. Thus you need to verify what is the association for your machine.
One way to accomplish this is by using the lscpu command line tool. For instance, the output provided from this tool
may look like:

NUMA node0 CPU(s): 0,2,4,6,8,10
NUMA node1 CPU(s): 1,3,5,7,9,11

The following example assumes a machine with 2 sockets and 6 cores per socket, where even cores belong to socket
1 and odd cores to socket 2:

NUM_SLOTS_TYPE_1 = 1
NUM_SLOTS_TYPE_2 = 1
SLOT_TYPE_1_PARTITIONABLE = True
SLOT_TYPE_2_PARTITIONABLE = True

SLOT_TYPE_1 = cpus=6
SLOT_TYPE_2 = cpus=6

ENFORCE_CPU_AFFINITY = True

SLOT1_CPU_AFFINITY=0,2,4,6,8,10
SLOT2_CPU_AFFINITY=1,3,5,7,9,11

Please read the section on "Configuring The Startd for SMP Machines" in the Condor Administrator's Manual for
full details.

417

Chapter 19. Funding, citing, and
anonymous usage statistics
Citing Pegasus in Academic Works

The preferred generic way to cite Pegasus is:

Pegasus: a Framework for Mapping Complex Scientific Workflows onto Distributed Systems, Ewa Deelman, Gurmeet
Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman,
John Good, Anastasia Laity, Joseph C. Jacob, Daniel S. Katz. Scientific Programming Journal, Vol 13(3), 2005,
Pages 219-237.

Usage Statistics Collection

Purpose
Pegasus WMS is primarily a NSF funded project as part of the NSF SI2 [http://www.nsf.gov/funding/pgm_sum-
m.jsp?pims_id=504817] track. The SI2 program focuses on robust, reliable, usable and sustainable software infra-
structure that is critical to the CIF21 vision. As part of the requirements of being funded under this program, Pegasus
WMS is required to gather usage statistics of Pegasus WMS and report it back to NSF in annual reports. The metrics
will also enable us to improve our software as they will include errors encountered during the use of our software.

Overview
We plan to instrument and augment the following clients in our distribution to report the metrics.

• pegasus-plan

• pegasus-transfer

• pegasus-monitord

For the Pegasus WMS 4.2 release, only the pegasus-plan client has been instrumented to send metrics.

All the metrics are sent in JSON format to a server at USC/ISI over HTTP. The data reported is as generic as possible
and is listed in detail in the section titled "Metrics Collected".

Configuration
By default, the clients will report usage metrics to a server at ISI. However, users have an option to configure the
report by setting the following environment variables

• PEGASUS_METRICS

A boolean value (true | false) indicating whether metrics reporting is turned ON/OFF

• PEGASUS_USER_METRICS_SERVER

A comma separated list of URLs of the servers to which to report the metrics in addition to the default server.

Metrics Collected
All metrics are sent in JSON format and the metrics sent by the various clients include the following data

418

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504817

Funding, citing, and anony-
mous usage statistics

Table 19.1. Common Data Sent By Pegasus WMS Clients

JSON KEY DESCRIPTION

client the name of the client (e.g "pegasus-plan")

version the version of the client

type type of data - "metrics" | "error"

start_time start time of the client (in epoch seconds with millisecond
precision)

end_time end time of the client (in epoch seconds with millisecond
precision)

duration the duration of the client

exitcode the exitcode with which the client exited

wf_uuid the uuid of the executable workflow. It is generated by
pegasus-plan at planning time.

Pegasus Planner Metrics

The metrics messages sent by the planner in addition include the following data

Table 19.2. Metrics Data Sent by pegasus-plan

JSON KEY DESCRIPTION

root_wf_uuid the root workflow uuid. For non hierarchal workflows the
root workflow uuid is the same as the workflow uuid.

data_config the data configuration mode of pegasus

compute_tasks the number of compute tasks in the workflow

dax_tasks the number of dax tasks in the abstract workflow (DAX)

dag_tasks the number of dag tasks in the abstract workflow (DAX)

total_tasks the number of the total tasks in the abstract workflow
(DAX)

dax_input_files the number of input files in the abstract workflow (DAX)

dax_inter_files the number of intermediate files in the abstract workflow
(DAX)

dax_output_files the number of output files in the abstract workflow (DAX)

dax_total_files the number of total files in the abstract workflow (DAX)

compute_jobs the number of compute jobs in the executable workflow

clustered_jobs the number of clustered jobs in the executable workflow.

si_tx_jobs the number of data stage-in jobs in the executable work-
flow.

so_tx_jobs the number of data stage-out jobs in the executable work-
flow.

inter_tx_jobs the number of inter site data transfer jobs in the executable
workflow.

reg_job the number of registration jobs in the executable work-
flow.

cleanup_jobs the number of cleanup jobs in the executable workflow.

create_dir_jobs the number of create directory jobs in the executable
workflow.

419

Funding, citing, and anony-
mous usage statistics

JSON KEY DESCRIPTION

dax_jobs the number of sub workflows corresponding to dax tasks
in the executable workflow.

dag_jobs the number of sub workflows corresponding to dag tasks
in the executable workflow.

chmod_jobs the number of jobs that set the xbit of the staged executa-
bles

total_jobs the total number of jobs in the workflow

In addition if pegasus-plan encounters an error during the planning process the metrics message has an additional field
in addition to the fields listed above.

Table 19.3. Error Message sent by pegasus-plan

JSON KEY DESCRIPTION

error the error payload is the stack trace of errors caught during
planning

Note

pegasus-plan leaves a copy of the metrics sent in the workflow submit directory in the file ending with
".metrics" extension. As a user you will always have access to the metrics sent.

420

Chapter 20. Glossary

Glossary
A

Abstract Workflow See DAX

C
Concrete Workflow See Executable Workflow

Condor-G A task broker that manages jobs to run at various distributed sites, using
Globus GRAM to launch jobs on the remote sites.http://cs.wisc.edu/condor

Clustering The process of clustering short running jobs together into a larger job. This is
done to minimize the scheduling overhead for the jobs. The scheduling over-
head is only incurred for the clustered job. For example if scheduling over-
head is x seconds and 10 jobs are clustered into a larger job, the scheduling
overhead for 10 jobs will be x instead of 10x.

D
DAGMan The workflow execution engine used by Pegasus.

Directed Acyclic Graph (DAG) A graph in which all the arcs (connections) are unidirectional, and which has
no loops (cycles).

DAX The workflow input in XML format given to Pegasus in which transforma-
tions and files are represented as logical names. It is an execution-independent
specification of computations

Deferred Planning Planning mode to set up Pegasus. In this mode, instead of mapping the job
at submit time, the decision of mapping a job to a site is deferred till a later
point, when the job is about to be run or near to run.

E
Executable Workflow A workflow automatically genetared by Pegasus in which files are represent-

ed by physical filenames, and in which sites or hosts have been selected for
running each task.

F
Full Ahead Planning Planning mode to set up Pegasus. In this mode, all the jobs are mapped before

submitting the workflow for execution to the grid.

G
Globus The Globus Alliance is a community of organizations and individuals devel-

oping fundamental technologies behind the "Grid," which lets people share
computing power, databases, instruments, and other on-line tools securely

421

Glossary

across corporate, institutional, and geographic boundaries without sacrificing
local autonomy.

See Globus Toolkit

Globus Toolkit Globus Toolkit is an open source software toolkit used for building Grid sys-
tems and applications.

GRAM A Globus service that enable users to locate, submit, monitor and cancel re-
mote jobs on Grid-based compute resources. It provides a single protocol for
communicating with different batch/cluster job schedulers.

Grid A collection of many compute resources , each under different administrative
domains connected via a network (usually the Internet).

GridFTP A high-performance, secure, reliable data transfer protocol optimized for
high-bandwidth wide-area networks. It is based upon the Internet FTP proto-
col, and uses basic Grid security on both control (command) and data chan-
nels.

Grid Service A service which uses standardized web service mechanisms to model and
access stateful resources, perform lifecycle management and query resource
state. The Globus Toolkit includes core grid services for execution manage-
ment, data management and information management.

L
Logical File Name The unique logical identifier for a data file. Each LFN is associated with a set

of PFN’s that are the physical instantiations of the file.

M
Metadata Any attributes of a dataset that are explicitly represented in the workflow sys-

tem. These may include provenance information (e.g., which component was
used to generate the dataset), execution information (e.g., time of creation of
the dataset), and properties of the dataset (e.g., density of a node type).

Monitoring and Discovery Service A Globus service that implements a site catalog.

P
Physical File Name The physical file name of the LFN.

Partitioner A tool in Pegasus that slices up the DAX into smaller DAX’s for deferred
planning.

Pegasus A system that maps a workflow instance into an executable workflow to run
on the grid.

R
Replica Catalog A catalog that maps logical file names on to physical file names.

Replica Location Service A Globus service that implements a replica catalog

S
Site A set of compute resources under a single administrative domain.

422

Glossary

Site Catalog A catalog indexed by logical site identifiers that maintains information about
the various grid sites. The site catalog can be populated from a static database
or maybe populated dynamically by monitoring tools.

T
Transformation Any executable or code that is run as a task in the workflow.

Transformation Catalog A catalog that maps transformation names onto the physical pathnames of the
transformation at a given grid site or local test machine.

W
Workflow Instance A workflow created in Wings and given to Pegasus in which workflow com-

ponents and files are represented as logical names. It is an execution-indepen-
dent specification of computations

423

Appendix A. Tutorial VM
Introduction

This appendix provides information on how to launch the Pegasus Tutorial VM. The VM is a quick way to get started
using Pegasus. It comes pre-configured with Pegasus, DAGMan and Condor so that you can begin running workflows
immediately.

In the following sections we will cover how to start, log into, and stop the tutorial VM locally, using the VirtualBox
virtualization software, and remotely on Amazon EC2.

VirtualBox
VirtualBox is a free desktop virtual machine manager. You can use it to run the Pegasus Tutorial VM on your desktop
or laptop.

Install VirtualBox

First, download and install the VirtualBox platform package from the VirtualBox website: https://www.virtualbox.org

Download VM Image

Next, download the Pegasus Tutorial VM from the Pegasus download page: http://pegasus.isi.edu/downloads

Move the downloaded file somewhere that you can find later.

Create Virtual Machine

Start VirtualBox. You should get a screen that looks like this:

424

https://www.virtualbox.org
http://pegasus.isi.edu/downloads

Tutorial VM

Figure A.1. VirtualBox Welcome Screen

Click on File > Import Appliance, and Appliance Import Wizard will appear:

425

Tutorial VM

Figure A.2. Create New Virtual Machine Wizard

Click the folder icon and locate the .ova file that you downloaded earlier.

Click "Continue" to get to the "Appliance Settings" Page:

Figure A.3. VM Name and OS Type

426

Tutorial VM

Click "Import". You will get back to the welcome screen showing the new virtual machine:

Figure A.4. Memory

Click on the name of the virual machine and then click "Start". After a few seconds you should get to the login screen:

427

Tutorial VM

Figure A.5. Login Screen

Log in as user "tutorial" with password "pegasus".

After you log in, Click the Terminal Icon, to open a Terminal. You can return to the tutorial chapter to complete the
tutorial.

Terminating the VM
When you are done with the tutorial you can shut down the VM by typing:

$ sudo /sbin/poweroff

at the prompt and then enter the tutorial user's password.

Alternatively, you can just close the window and choose "Power off the machine".

Amazon EC2
In order to launch the tutorial VM you need to sign up for an Amazon Web Services account here: http://aws.ama-
zon.com

Launching the VM
Once you have an account, sign into the AWS Management Console at this URL: http://console.aws.amazon.com.
You will get a page that looks like this:

428

http://aws.amazon.com
http://aws.amazon.com
http://console.aws.amazon.com

Tutorial VM

Figure A.6. AWS Management Console

Choose the "EC2" icon under "Amazon Web Services". You will get this page:

Figure A.7. EC2 Management Console

429

Tutorial VM

First, make sure the “Region:” drop-down in the upper left-hand corner is set to “US West (Oregon)”.

Click on the “AMIs” link on the left side and set “Viewing:” to “All Images”, “All Platforms”, and type “Pegasus
Tutorial VM” in the search box:

Figure A.8. Locating the Tutorial VM

You will see several versions of the VM. If you don’t see any AMIs named “Pegasus Tutorial VM” you may need to
click the Refresh button. We update the VM regularly, so your search results will not match the picture above.

Check the check box next to the latest Pegasus Tutorial VM and click the “Launch” button. The "Request Instances
Wizard" will pop up:

430

Tutorial VM

Figure A.9. Request Instances Wizard: Step 1

In the first step of the Request Instances Wizard choose the “Large” instance type and click “Continue”:

Figure A.10. Request Instances Wizard: Step 2

Don’t change anything on the “Advanced Instance Options” step and click “Continue”:

431

Tutorial VM

Figure A.11. Request Instances Wizard: Step 3

On the “Storage Device Configuration” step make sure “Delete on Termination” is set to "true", then click “Continue”:

Figure A.12. Request Instances Wizard: Step 4

On the next step type “Pegasus Tutorial” into the “Value” field and click “Continue”:

432

Tutorial VM

Figure A.13. Request Instances Wizard: Step 5

On the next page choose one of your existing key pairs and click “Continue”. If you don’t have an existing key pair
you can also choose “Proceed without a Key Pair” (you will log in with a username/password).

Figure A.14. Request Instances Wizard: Step 6

433

Tutorial VM

On the next page choose “Create a new Security Group”. Name the security group “Pegasus Tutorial” and give it a
description. Create an inbound TCP rule to allow connections on port 22 (SSH) from source 0.0.0.0/0 and click "Add
Rule". This rule allows you to SSH into your EC2 instance. Create another TCP rule to allow connections on port
5000 from source 0.0.0.0/0 and click "Add Rule" again. This rule is for the Pegasus Dashboard web interface. Then
click “Continue”.

Note that you will only need to create this security group once. If you launch the Pegasus Tutorial VM again the
security group should appear in the list of existing security groups.

Figure A.15. Request Instances Wizard: Step 7

On the last step of the wizard validate your selections and click “Launch”.

434

Tutorial VM

Figure A.16. Running Instances

Finally, navigate to the “Instances” section and check the checkbox next to the “Pegasus Tutorial” instance. Copy the
DNS name to the clipboard. In this example the name is: ec2-50-112-45-59.us-west-2.compute.amazonaws.com.
Yours will almost surely be different.

At this point your VM will take a few minutes to boot. Wait until the “Status Checks” column reads: “2/2 checks
passed” before continuing. You may need to click the Refresh button.

Logging into the VM
Log into the VM using SSH. The username is ‘tutorial’ and the password is ‘pegasus’.

On UNIX machines such as Linux or Mac OS X you can log in via SSH by opening a terminal and typing:

$ ssh tutorial@ec2-50-112-45-59.us-west-2.compute.amazonaws.com
The authenticity of host 'ec2-50-112-45-59.us-west-2.compute.amazonaws.com (50.112.45.59)' can't be
 established.
RSA key fingerprint is 56:b0:11:ba:8f:98:ba:dd:75:f6:3c:09:ef:b9:2a:ac.
Are you sure you want to continue connecting (yes/no)? yes
[tutorial@localhost ~]$

where “ec2-50-112-45-59.us-west-2.compute.amazonaws.com” is the DNS name of your VM that you copied from
the AWS Management Console.

If you are on Windows you will need to install an SSH client. You can download the PuTTY SSH client and find
documentation for how to configure it here: http://www.chiark.greenend.org.uk/~sgtatham/putty

Shutting down the VM
When you are finished with the tutorial, make sure you terminate the VM. If you forget to do this you will be charged
for all of the hours that the VM runs.

To terminate the VM click on “Instances” link on the left side of the AWS Management Console, check the box next
to the “Pegasus Tutorial” VM, and click “Instance Actions”-->“Terminate”:

435

http://www.chiark.greenend.org.uk/~sgtatham/putty

Tutorial VM

Figure A.17. Terminate Instance

Then click "Yes, terminate":

Figure A.18. Yes, Terminate Instance

436

