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1 License

NICSLU, Copyright c⃝2011-2013 Tsinghua University. All Rights Reserved.

This library is free software; you can redistribute it and/or modify it under the terms

of the GNU Lesser General Public License as published by the Free Software Foundation;

either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more

details.

You should have received a copy of the GNU Lesser General Public License along with

this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite

330, Boston, MA 02111-1307 USA.

2 Introduction

NICSLU is a high-performance and robust software package for solving large-scale

sparse linear systems of equations (Ax = b) on shared-memory machines. It is written by

C, and can be easily used in C/C++ programs.

NICSLU solves Ax = b by Gaussian elimination method (LU factorization). It factor-

izes matrix A into product of a lower triangular matrix L and an upper triangular matrix

U (i.e. A = LU , numerical factorization step), and then the solution of Ax = b is obtained

by solving two triangular equations Ly = b and Ux = y (right-hand-solving step). Matrix

A doesn’t need to be symmetric or definite, but it must be square and full-rank, otherwise

NICSLU cannot solve it.

Generally speaking, a simple description of sparse Gaussian elimination is as follows.

Matrix A is factorized to:

LMn−1Rn−1 · · ·M1R1 = PDrADcQ

where n is the dimension of A; Dr and Dc are two diagonal matrices to scale A to enhance

numerical stability; P and Q are row and column permutation matrices, which are used

to maintain sparsity (i.e. reduce fill-ins); Rk is the column permutation matrix generated

by partial pivoting that occurs at step k during numerical factorization; Mk is an upper

triangular matrix whose kth row contains the multipliers. So Ax = b can be solved by:

x = A−1b

=
(
D−1

r P−1LMn−1Rn−1 · · ·M1R1Q
−1D−1

c

)−1
b

= DcQR−1
1 M−1

1 · · ·R−1
n−1M

−1
n−1L

−1PDrb

NICSLU is based on the sparse left-looking algorithm proposed by Gilbert and Peierl-

s [1], and KLU algorithm proposed by Davis [2]. We use a more efficient static pivoting

algorithm (HSL MC64 algorithm) [3,4], which is combined with partial pivoting to achieve
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higher numerical stability. We have developed a novel parallel algorithm, which obtains

effective acceleration on shared-memory multi-core processors [5–7].

There are also some other similar software packages, such as SuperLU [8–10], PAR-

DISO [11], etc. NICSLU is different from these software packages because NICSLU does

not utilize the BLAS. NICSLU is well suited for extremely sparse matrices, such as matri-

ces in circuit simulation problems. In addition, NICSLU specially supports the case that

requires many factorizations with the same nonzero pattern but different values.

NICSLU can be obtained from http://nicslu.weebly.com.

If you are using NICSLU in your research, please cite the following three

papers:

[1] Xiaoming Chen, Wei Wu, YuWang, Hao Yu, Huazhong Yang, “An EScheduler-based

Data Dependence Analysis and Task Scheduling for Parallel Circuit Simulation”,

Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 58, no. 10, pp.

702-706, oct. 2011.

[2] Xiaoming Chen, Yu Wang, Huazhong Yang, “NICSLU: An Adaptive Sparse Ma-

trix Solver for Parallel Circuit Simulation”, Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 32, no. 2, pp. 261-274, feb. 2013.

[3] Xiaoming Chen, Yu Wang, Huazhong Yang, “An Adaptive LU Factorization Algo-

rithm for Parallel Circuit Simulation”, Design Automation Conference (ASP-DAC),

2012 17th Asia and South Pacific, pp.359-364, Jan. 30, 2012-Feb. 2, 2012.

3 Matrix Format

1.1 0 0 7.7 13.13 0

0 2.2 0 0 9.9 0

0 8.8 3.3 0 0 0

0 0 0 4.4 0 0

0 0 11.11 0 5.5 0

10.1 0 0 12.12 0 6.6

1.1 7.7 13.13 2.2 9.9 8.8 3.3 4.4 11.11 5.5 10.1 12.12 6.6

0 3 4 1 4 1 2 3 2 4 0 3 5

0 3 5 7 8 10 13

Ax

Ai

Ap

Figure 1: Example to illustrate the CSR format.
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NICSLU uses the compressed sparse row (CSR) format to store a sparse matrix, as

illustrated in Fig. 1 illustrates. CSR uses five parameters to describe a sparse matrix, as

listed in the below.

• n: (unsigned) integer, matrix dimension, i.e. the matrix is n×n. NICSLU only

supports square matrices.

• nnz: (unsigned) integer, the number of nonzeros in the matrix.

• Ai: (unsigned) integer array of length nnz, storing the column indices of all nonzeros.

• Ax: floating-point array of length nnz, storing the values of all nonzeros.

• Ap: (unsigned) integer array of length n+1, storing the location of the first nonzeros of

each row in Ai and Ax. The first and last elements must be Ap[0]=0 and Ap[n]=nnz.

Values of the ith row of the matrix are stored in Ax[Ap[i]], Ax[Ap[i]+1], · · · ,
Ax[Ap[i+1]-1], and the corresponding column indices of the nonzeros are stored

in Ai[Ap[i]], Ai[Ap[i]+1], · · · , Ai[Ap[i+1]-1], number of nonzeros of the ith

row is Ap[i+1]-Ap[i]. The matrix is zero-based stored, which means the row and

column indices are in the range from 0 to n-1.

The transposed format of CSR is compressed sparse column (CSC), which is stored in

column-major.

4 Using NICSLU in a C/C++ Program

4.1 Data Types Used in NICSLU

NICSLU uses several self-defined data types, as listed in Table 1, in which the first

column lists the data types used in NICSLU, and the second column lists the corresponding

data types in standard C. The detailed definitions of the data types can be found in

nics config.h.

Table 1: Data types used in NICSLU.

data type C type meaning

int t int or long long 32-bit or 64-bita integer

uint t unsigned int or unsigned long long 32-bit or 64-bita unsigned integer

real t double double-precision floating-point

bool t unsigned char boolean value: TRUE or FALSE

size t/size t size t 32-bit or 64-bitb unsigned long integer

byte t unsigned char byte, 8-bit

a According to whether the macro NICS INT64 is defined.
b According to the hardware platform and the compiling configurations.

5



4.2 The SNicsLU Structure

The sole SNicsLU structure in NICSLU contains all configurations, matrix data, LU

factors, and statistical information for LU factorization. This object appears in most

NICSLU functions as the first parameter. Details of SNicsLU are given in nicslu.h.

Only a few member parameters of SNicsLU can be read or written by users, which are

listed below, users should not change the other parameters.

4.2.1 Readable Members

All the members in floating-point array stat are readable, and the meanings of each

indexed member is as follows.

• real t stat[0]: analysis time, runtime (in seconds) of NicsLU Analyze.

• real t stat[1]: factorization time, runtime (in seconds) of NicsLU Factorize or

NicsLU Factorize MT (according to your last calling).

• real t stat[2]: re-factorization time, runtime (in seconds) of NicsLU ReFactorize

or NicsLU ReFactorize MT (according to your last calling).

• real t stat[3]: right-hand-solving time, runtime (in seconds) of NicsLU Solve

or NicsLU SolveFast (according to your last calling).

• real t stat[4]: initialization time of the scheduler, runtime (in seconds) of

NicsLU CreateScheduler.

• real t stat[5]: total number of floating-point operations (FLOPs) to factorize

the matrix, which is generated by NicsLU Flops.

• real t stat[6]: condition number of the matrix, which is estimated by

NicsLU ConditionNumber. If MC64 scaling is used, the condition number is esti-

mated after MC64 scaling to the matrix.

• real t stat[7]: estimated speedup if all the cores of the CPU are used, which is

calculated by NicsLU CreateScheduler.

• real t stat[8]: estimated upper bound of speedup attainable by NICSLU, re-

gardless of the number of cores, which is calculated by NicsLU CreateScheduler.

• real t stat[9]: number of cores on the computer. If super-threading is supported

and enabled, stat[9] is twice of the number of physical cores.

• real t stat[10]: estimated number of FLOPs to factorize the matrix, which is

calculated by NicsLU CreateScheduler.

• real t stat[11]: estimated number of nonzeros in L+U − I, which is calculated

by NicsLU CreateScheduler.
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• real t stat[12]: estimated memory throughput (in bytes), which is calculated

by NicsLU Throughput.

• real t stat[13]: a suggestion. Non-zero suggests using NicsLU Factorize func-

tion and zero suggests using NicsLU Factorize MT. The suggestion is generated by

NicsLU CreateScheduler.

• real t stat[14]: number of off-diagonal pivots.

• real t stat[15]: refinement time, runtime (in seconds) of NicsLU Refine.

• real t stat[16]: number of iterations in the refine process NicsLU Refine.

• real t stat[21]: memory usage (in bytes), which is calculated by NicsLU MemoryUsage.

Besides the above members in stat array, the following members are also readable.

• size t l nnz, u nnz: the two members indicate the number of nonzeros in L and

U after factorization, including the diagonals of L and U respectively.

• size t lu nnz: number of nonzeros in L+U − I after factorization, which is equal

to l nnz + u nnz - n.

4.2.2 Writable Members

All the writable members are in unsigned integer array cfgi and floating-point array

cfgf.

• uint t cfgi[0]: default value is 0. A flag to indicate the CSR or CSC mode. Zero

indicates CSR and non-zero indicates CSC. If your matrix is stored in CSC format,

NICSLU can also directly deal with it. In this case, NICSLU solves ATx = b.

• uint t cfgi[1]: default value is 1. A flag to indicate whether using the MC64

algorithm to scale the matrix before factorization. MC64 scaling is strongly recom-

mended.

• uint t cfgi[2]: default value is 0. A flag to indicate the scaling method when

factorizing the matrix. 1 indicates max-scaling, 2 indicates sum-scaling and other

values indicate no scaling. Based on our experiments, the scaling methods may have

effect in frequency-domain simulation, but they generally have no effect in time-

domain transient simulation.

• uint t cfgi[3]: default value is 16. It is a scheduling threshold for parallel LU

factorization. It should be larger than or equal to the number of threads.

• uint t cfgi[4]: default value is 2. It is used to pre-allocate memory for parallel

LU factorization. If it is larger, NICSLU will use more memory, but during parallel

LU factorization, less memory re-allocation will happen.
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• uint t cfgi[7]: default value is the number of created threads. This number

indicates the actual number of threads used for parallel computation. For example,

you can create 8 threads and only use 6 of them to perform parallel factorization. You

can set this parameter before NicsLU Factorize MT or NicsLU ReFactorize MT. It

cannot exceed the number of created threads.

• real t cfgf[0]: default value is 0.001. It is the partial pivoting tolerance which

should be less than 1.0. If the diagonal entry has a magnitude greater than or equal

to cfgf[0] times the largest magnitude of entries in the pivot row, then the diagonal

entry is selected as the pivot, otherwise an off-diagonal pivot will be chosen. If this

parameter is larger, more off-diagonal pivots will be generated.

• real t cfgf[1]: default value is 3.0. It is also used to pre-allocate memory for

parallel LU factorization. If it is larger, NICSLU will use more memory, but during

parallel LU factorization, less memory re-allocation will happen.

• real t cfgf[4]: default value is 0.95. It is used to control the load balance for

NicsLU Factorize MT and NicsLU ReFactorize MT. It should be around 1.0.

• real t cfgf[5]: default value is 1.5. It is used to control the memory re-allocation

growth. It should be larger than 1.0.

If not necessary, it is recommended that these configurations (writable members) keep

the default values.

4.3 Function Return Values

Each NICSLU function returns an integer (int) to indicate whether the function is

executed successfully or not. The return values and their meanings are listed in the below.

You should check the return value of each function to avoid failures of NICSLU. Negative

values indicate fatal failures and positive values indicate warnings generated.

• NICS OK: value 0. The function is executed successfully.

• NICSLU GENERAL FAIL: value -1. A simple failure has occurred.

• NICSLU ARGUMENT ERROR: value -2. There are some errors with the function argu-

ments; for example, you specify NULL to a pointer that is not allowed to be NULL.

• NICSLU MEMORY OVERFLOW: value -3. No enough memory.

• NICSLU FILE CANNOT OPEN: value -4. The specified file cannot be opened.

• NICSLU MATRIX STRUCTURAL SINGULAR: value -5. The matrix is structural singular,

i.e. the matrix is not structural full-rank.
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• NICSLU MATRIX NUMERIC SINGULAR: value -6. The matrix is numerical singular, i.e.

there is one row/column that does not contain any nonzero elements.

• NICSLU MATRIX INVALID: value -7. The matrix is invalid because there are some

errors in the CSR/CSC storage. For example, an index is out of range.

• NICSLU MATRIX ENTRY DUPLICATED: value -8. The matrix has duplicated entries in

the CSR/CSC storage.

• NICSLU THREADS NOT INITIALIZED: value -9. The threads are not created yet.

• NICSLU MATRIX NOT INITIALIZED: value -10. The matrix is not created yet.

• NICSLU SCHEDULER NOT INITIALIZED: value -11. The scheduler is not created yet.

• NICSLU SINGLE THREAD: value -12. When creating only 1 thread, this error occurs,

since the main thread does not require to be explicitly created.

• NICSLU THREADS INIT FAIL: value -13. The specified threads cannot be created.

• NICSLU MATRIX NOT ANALYZED: value -14. The matrix is not analyzed yet.

• NICSLU MATRIX NOT FACTORIZED: value -15. The matrix is not factorized yet.

• NICSLU NUMERIC OVERFLOW: value -16. Numerical overflow has occurred during fac-

torization.

• NICSLU USE SEQUENTIAL FACTORIZATION: value +1. It is returned by

NicsLU CreateScheduler, indicating sequential NicsLU Factorize should be used

rather than parallel NicsLU Factorize MT.

• NICSLU BIND THREADS FAIL: value +2. The threads cannot be pined to cores.

4.4 NICSLU Routines

4.4.1 NicsLU Initialize

int NicsLU Initialize(SNicsLU *nicslu);

This function initializes the SNicsLU structure and sets the default configurations. It

must be called first, before any other NICSLU function called. It should be called only

once, otherwise memory leak will occur.

4.4.2 NicsLU Destroy

int NicsLU Destroy(SNicsLU *nicslu);

This function destroys the SNicsLU structure and frees all the memory allocated by

NICSLU. It must be called at last, otherwise memory leak will occur. Repeatedly calling

this function has no effect.
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4.4.3 NicsLU CreateMatrix

int NicsLU CreateMatrix(SNicsLU *nicslu, uint t n, uint t nnz, real t *ax,

uint t *ai, uint t *ap);

This function initializes the matrix which will be used by NICSLU. The matrix is

described by the CSR/CSC format (i.e. n, nnz, ax, ai, ap), which is described in

Section 3. If your matrix is stored in CSC format, you can also directly use it, and after

calling this function, nicslu->cfgi[0] should be set to a non-zero value.

This function resets all configurations to their default values. If you need to change

the configurations, you should set them after calling this function.

If this function is repeatedly called, it first destroys the existing matrix and then creates

the new matrix.

4.4.4 NicsLU CreateThreads

int NicsLU CreateThreads(SNicsLU *nicslu, unsigned int thread, bool t check);

This function creates threads for parallel computation. The second argument (thread)

specifies the number of threads, including the main thread. The last argument (check)

specifies whether to check the number of threads or not. If it is TRUE, then this function will

check your specified thread number, and if the thread number is larger than the number

of cores on your computer, the thread number will be set to the core number.

We strongly recommend check = TRUE.

If you only want to run single-threaded LU factorization (i.e. sequential factorization),

this function is not required, you should directly call the sequential version of factorization

and re-factorization functions.

If this function is repeatedly called, it first destroys the existing threads and then

creates the new threads.

The created threads will not exit until NicsLU DestroyThreads or NicsLU Destroy is

called.

4.4.5 NicsLU DestroyThreads

int NicsLU DestroyThreads(SNicsLU *nicslu);

This function destroys the threads and frees memory used by the threads. It is con-

tained in NicsLU Destroy, so it can be skipped when you finish your computation.

Repeatedly calling this function has no effect.

4.4.6 NicsLU BindThreads

int NicsLU BindThreads(SNicsLU *nicslu, bool t unbind);

This function binds threads to cores (unbind = FALSE) or unbinds threads from cores

(unbind = TRUE). Binding threads to cores may increase the performance when the num-

ber of threads is much less than the number of cores because it avoids context switches.
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However, when the number of threads is near or equal to the number of cores, binding

threads to cores may lead to performance degradation.

It should be called after NicsLU CreateThreads.

4.4.7 NicsLU CreateScheduler

int NicsLU CreateScheduler(SNicsLU *nicslu);

This function creates the task scheduler for parallel LU factorization. If you want to run

parallel factorization or parallel re-factorization, it should be called after NicsLU Analyze.

If this function returns NICSLU USE SEQUENTIAL FACTORIZATION (value +1), it

indicates that the matrix is not suitable for parallel factorization (i.e. the

parallel performance may be even worse then the sequential performance, for

the specified matrix). It returns NICS OK (value 0) if the matrix is suitable

for parallel factorization. So we suggest you choose the proper factorization

function according to the return value of this function. Note: the suggestion

is only for factorization but not re-factorization. NicsLU ReFactorize MT can

always achieve speedups than NicsLU ReFactorize.

The suggestion can also be obtained by nicslu->stat[13].

If this function is repeatedly called, it first destroys the existing scheduler and then

creates the new scheduler.

4.4.8 NicsLU Analyze

int NicsLU Analyze(SNicsLU *nicslu);

This function analyzes the matrix, including row/column ordering and MC64 scal-

ing. It must be called after NicsLU CreateMatrix and before any factorization or re-

factorization.

Repeatedly calling this function has no effect.

4.4.9 NicsLU Factorize

int NicsLU Factorize(SNicsLU *nicslu);

This function performs the numerical LU factorization (i.e. A = LU) with partial

pivoting. It must be called after NicsLU Analyze.

4.4.10 NicsLU ReFactorize

int NicsLU ReFactorize(SNicsLU *nicslu, real t *ax);

If you want to factorize another matrix with different entry values but with the same

nonzero structure, this function can be used. This function is without partial pivoting, so

it uses the same pivoting order as the last NicsLU Factorize or NicsLU Factorize MT

called. It must be called after NicsLU Factorize or NicsLU Factorize MT is called at

11



least once. This function executes faster than NicsLU Factorize; however, it may cause

numerical stability problem. Array ax specifies the new matrix values in CSR/CSC format.

4.4.11 NicsLU Factorize MT

int NicsLU Factorize MT(SNicsLU *nicslu);

It is the parallel version of NicsLU Factorize. NicsLU CreateScheduler and

NicsLU CreateThreads should be called before this function.

4.4.12 NicsLU ReFactorize MT

int NicsLU ReFactorize MT(SNicsLU *nicslu, real t *ax);

It is the parallel version of NicsLU ReFactorize. NicsLU CreateScheduler and

NicsLU CreateThreads should be called before this function.

4.4.13 NicsLU Solve

int NicsLU Solve(SNicsLU *nicslu, real t *rhs);

This function performs right-hand-solving (i.e. Ly = b and Ux = y) to obtain the

solution of Ax = b. It can be called after any factorization or re-factorization functions.

Array rhs is used for both input and output. On input, it should store the right-hand-

vector (b); on output, it is overwritten by the solution vector (x).

4.4.14 NicsLU SolveFast

int NicsLU SolveFast(SNicsLU *nicslu, real t *rhs);

It is a faster version of NicsLU Solve. When there are many zeros in the right-hand-

vector (b), this function may be faster than NicsLU Solve.

4.4.15 NicsLU ResetMatrixValues

int NicsLU ResetMatrixValues(SNicsLU *nicslu, real t *ax);

Since NicsLU ReFactorize and NicsLU ReFactorize MT are performed without par-

tial pivoting, they may cause numerical stability problem. If you want to factorize a new

matrix with the same nonzero pattern, and with partial pivoting to avoid the potential nu-

merical stability problem, then this function should be used to reset the matrix data. And

then NicsLU Factorize or NicsLU Factorize MT can be used to factorize the new matrix

with partial pivoting. Array ax specifies the new matrix values in CSR/CSC format.

4.4.16 NicsLU Residual

int NicsLU Residual(uint t n, real t *ax, uint t *ai, uint t *ap,

real t *x, real t *b, real t *error, int norm, int mode);

This function calculates the residual error of ||Ax− b||.
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ax, ai and ap are the CSR/CSC storage of matrix A. Array x is the solution vector

and b is the right-hand-vector, both are inputs. norm indicates the norm of the residual: 1

indicates the 1-norm, 2 indicates the 2-norm and other values indicate the infinite-norm.

mode indicates the CSR/CSC mode: zero indicates CSR and non-zero indicates CSC. On

output, *error returns the residual error. error cannot be a NULL pointer.

4.4.17 NicsLU Refine

int NicsLU Refine(SNicsLU *nicslu, real t *x, real t *b, real t eps,

uint t maxiter);

When necessary, this function can be used to refine the solution. However, it is not

always successful. The refinement is implemented as follows:

compute residual r = Ax− b;

while ||r|| > eps

solve Ad = r;

update solution x = x− d;

update residual r = Ax− b;

end while

The residual is based on the 1-norm. Array x should be the solution vector on input;

on output, it will be updated by the refinement. Array b is the right-hand-vector (input).

eps is the precision, when the residual is smaller than eps, the refinement ends. maxiter

is used to control the refinement iterations. If maxiter is nonzero, the refinement will end

when the number of iterations reaches maxiter; otherwise the number of iterations has

no limit, but it will also end when the residual reaches a minimum value.

4.4.18 NicsLU Throughput

int NicsLU Throughput(SNicsLU *nicslu, real t *thr);

This function estimates the memory throughput (in bytes), i.e. total amount of memo-

ry accesses that are required to factorize the matrix. Parameter *thr returns the through-

put if thr is not NULL. It is an estimation of the throughput, the actual memory through-

put may not be equal to the estimated value. The throughput can also be obtained by

nicslu->stat[12].

4.4.19 NicsLU Flops

int NicsLU Flops(SNicsLU *nicslu, real t *flops);

This function calculates the number of FLOPs that are required to factorize the matrix.

Argument *flops returns the number of FLOPs if flops is not NULL. The number of

FLOPs can also be obtained by nicslu->stat[5].
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4.4.20 NicsLU ThreadLoad

int t NicsLU ThreadLoad(SNicsLU *nicslu, unsigned int threads,

real t **thread flops);

This function calculates the number of FLOPs of each thread such that one can evaluate

load-balance of the parallel algorithm. Parameter threads specifies the number of threads,

and the pointer *thread flops must be NULL. On output, this function will allocate

memory for *thread flops, which is a floating-point array, with the length of the thread

number. The number of FLOPs of thread No. i is stored in (*thread flops)[i]. The

thread number specified here may not equal to the actual thread number used or created

in parallel factorization.

Example:

real__t *thread_flops;

thread_flops = NULL;

/*factorizing the matrix here ...*/

NicsLU_ThreadLoad(&nicslu, 8, &thread_load);

/*to obtain flops of thread i, visit thread_load[i]*/

free(thread_flops);

4.4.21 NicsLU Transpose

int NicsLU Transpose(uint t n, uint t nnz, real t *ax, uint t *ai,

uint t *ap);

This function transposes a matrix stored in CSR/CSC format. On input, you should

specify n, nnz, ax, ai, ap to be the original matrix; on output, ax, ai, ap will be

overwritten by the transposed matrix.

4.4.22 NicsLU DumpA

int NicsLU DumpA(SNicsLU *nicslu, real t **ax, uint t **ai, uint t **ap);

This function stores matrix A into CSR format after factorization. The exported

matrix is different from the original matrix since row/column ordering and MC64 scaling

may be performed after analysis and factorization. Pointers *ax, *ai, *apmust be NULL,

otherwise a memory exception or memory leak will occur. This function will allocate

memory for these pointers.

Example:

real__t *ax;

uint__t *ai, *ap;

ax = NULL;

ai = NULL;

ap = NULL;
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/*factorizing the matrix here ...*/

NicsLU_DumpA(nicslu, &ax, &ai, &ap);

/*do some processing ...*/

free(ax);

free(ai);

free(ap);

4.4.23 NicsLU DumpLU

int NicsLU DumpLU(SNicsLU *nicslu, real t **lx, uint t **li, size t

**lp, real t **ux, uint t **ui, size t **up);

This function stores the factorized LU factors into CSR format. Pointers *lx, *li,

*lp, *ux, *ui, *up must be NULL, otherwise a memory exception or memory leak will

occur. This function will allocate memory for these pointers. The exported CSR arrays

contain the diagonals of L and U . The number of nonzeros of L and U can be obtained

from nicslu->l nnz and nicslu->u nnz.

Example:

real__t *lx, *ux;

uint__t *li, *ui;

size_t *lp, *up;

lx = ux = NULL;

li = ui = NULL;

lp = up = NULL;

/*factorizing the matrix here ...*/

NicsLU_DumpLU(nicslu, &lx, &li, &lp, &ux, &ui, &up);

/*do some processing ...*/

free(lx);

free(li);

free(lp);

free(ux);

free(ui);

free(up);

4.4.24 NicsLU ConditionNumber

int NicsLU ConditionNumber(SNicsLU *nicslu, real t *cond);

This function estimates the condition number of the matrix, using the 1-norm. If MC64

scaling is used, the condition number is reported based on the scaled matrix, otherwise it’s

calculated based on the original matrix. Argument *cond returns the condition number

if cond is not NULL. The condition number can also be obtained by nicslu->stat[6].
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4.4.25 NicsLU MemoryUsage

int NicsLU MemoryUsage(SNicsLU *nicslu, real t *memuse);

This function estimates the memory used by NICSLU. *memuse will return the memory

usage if memuse is not NULL. The memory usage can also be obtained by nicslu->stat[21].

4.4.26 NicsLU Sort

int NicsLU Sort(uint t n, uint t nnz, real t *ax, uint t *ai, uint t *ap);

This function sorts each row/column of a matrix stored in CSR/CSC format. On

input, you should specify n, nnz, ax, ai, ap to be the original matrix; on output, ax,

ai, ap will be overwritten by the sorted matrix.

4.4.27 NicsLU MergeDuplicateEntries

int NicsLU MergeDuplicateEntries(uint t n, uint t *nnz, real t **ax,

uint t **ai, uint t **ap);

This function merges duplicate entries of a matrix stored in CSR/CSC format. On

input, you should specify n, *nnz, *ax, *ai, *ap to be the original matrix; on output,

*nnz will be changed, and *ax, *ai, *ap will be re-allocated and overwritten by the new

matrix.

5 Complex Number Package NICSLUc

NICSLUc is quite similar to the real number package NICSLU. Complex number is

defined as complex t in NICSLUc:

typedef struct __tag_complex

{

real__t real;

real__t image;

} complex__t;

The main data structure is SNicsLUc. All the routines in NICSLUc are with the prefix

NicsLUc instead of NicsLU . Except for NicsLU ConditionNumber, other routines have

corresponding complex number routines.

The MC64 package in NICSLUc is different from that in NICSLU. It calculates the

permutation arrays and the scaling factors based on the following matrix:

C =


|c0,0| |c0,1| · · · |c0,n−1|
|c1,0| |c1,1| · · · |c1,n−1|
...

...
. . .

...

|cn−1,0| |cn−1,1| · · · |cn−1,n−1|


where | · | is the modulus of complex number.
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6 Compilation and Test

6.1 System Requirements

NICSLU can be executed on Intel x86 or AMD64 (x86-64) hardware platforms, both

Windows and GNU Linux are supported. To compile NICSLU,Microsoft Visual Studio

2005 or higher version (for Windows)/gcc (for Linux) is required.

NICSLU uses the Windows API (for Windows)/pthread library (for Linux) to manage

threads. NICSLU does NOT require BLAS, OpenMP, or some other libraries.

Unlike some other parallel packages, the number of threads used in NICSLU can be

conveniently controlled by NicsLU CreateThreads and nicslu->cfgi[7], NO environ-

ment variable is required.

6.2 Folders and Files

The NICSLU package contains folders and files shown in Table 2.

Table 2: Folders and files

name description

demo\ two samples to show how to use NICSLU

doc\ user guide (it’s me!)

include\ header files of NICSLU

lib\ object files and nicslu.a will be generated here

source\ source files of NICSLU

util\ some useful code

win vs2012\ Windows project for Visual Studio 2012

lesser.txt the GNU LGPL license

Makefile makefile

make.inc configurations of makefile

readme.txt a simple description of compilation and test

6.3 Compilation

6.3.1 Compilation on Windows

We have provided a VS2012 project in “<top>\win vs2012\” directory (“<top>\” is

the top directory of NICSLU). The project includes four sub-projects which will generate

“nicslu.lib”, “nicslu util.lib”, “demos.exe”, and “demop.exe”. Open “nicslu.sln” and

simply compile this project (press F7) can complete the whole compilation

process. “nicslu.lib” and “nicslu util.lib” are generated in “<top>\win vs2012\Release\”
(x86 compilation) or “<top>\win vs2012\x64\Release\” (x64 compilation) directory, and

“demos.exe” and “demop.exe” are generated in “<top>\demo\” directory.
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If you are not using Visual Studio 2012, please follow the three steps.

• Create an empty static library project, add all files in “<top>\source\” into the

project, change optimization flags, and then compile it. A static library named

“<project name>.lib” will be generated.

• If you want to test demo programs, you should also compile the codes in “<top>\util\”.
Just create another static library project and do the similar things. Please also add

“<top>\include\” (change it to a proper relative path according to the location of

your project) to “Additional Include Directories”.

• To compile demo programs, create an empty console project, add “<top>\demo\demos.c”

or “<top>\demo\demop.p” (only one file) into the project. Also add “<top>\include\”
and “<top>\util\” to “Additional Include Directories”, and add the two libraries

(.lib files) generated by the above two steps to “Additional Dependencies”. Compile

it.

6.3.2 Compilation on Linux

Just type “make” at the top directory. It will generate “nicslu.a” in “<top>/lib/”,

“nicslu util.a” in “<top>/util/”, and “demos” and “demop” in “<top>/demo/”.

Please note the optimization flag can be only -O2 when using gcc, using -O3 will

generate segmentation fault.

6.4 Test Demo Programs

If all the above steps are successful, just run “demos” (no arguments) or “demop”

(command: demop <#threads>) in “<top>\demo” to test the sequential or parallel

demo programs. For example, on Linux, the commands can be “./demos” or “./demop 4”

when “<top>/demo/” is the current work directory.

6.5 Link NICSLU to Your Programs

On Windows, add “nicslu.lib” to “Additional Dependencies” of your program, or add

the code

#pragma comment(lib, "nicslu.lib")

to any position of your codes.

On Linux, link with “nicslu.a” (-L. nicslu.a), the POSIX real-time extension library

(-lrt), the pthread library (-lpthread), and the math library (-lm).

6.6 Remarks

Three macros can be used to control the features of NICSLU: SSE2, NICS INT64, and

NO EXTENSION.
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SSE2 indicates whether SSE2 instructions are enabled. If SSE2 is disabled, the code is

optimized by the compiler; otherwise the hand-optimized SSE2-enabled code is used.

When NICSLU is compiled into 64-bit library, the bitwidth of int t and uint t are

determined by the macro NICS INT64. If NICS INT64 is defined, they are 64-bit integers,

otherwise they are 32-bit integers. Note that NICS INT64 can be only used on 64-bit

architectures. This option does NOT affect the maximum number of nonzeros in LU

factors that NICSLU can store, but affects the maximum number of nonzeros matrix in

A. If the number of nonzeros in A exceeds 4294967295 (0xFFFFFFFF), please define

NICS INT64 in “make.inc”.

NO EXTENSION is used to control the feature of thread binding, since this feature is a

non-standard GNU extension for Linux (for Windows, this feature is always supported).

If you cannot compile NICSLU successfully, please define NO EXTENSION in “make.inc”.

7 History

2013, Aug 27. Version 3.0.1

* fix a small bug.

2013, Aug 17.

The complex number version is released.

2013, Jun 13. Version 3.0

This is a major update. Many new features are added.

* bug fixes.

* SSE2 is supported.

* NicsLU BindThreads is added, which is used to bind threads to cores to improve

the performance.

* util code is added.

* NicsLU Sort and NicsLU MergeDuplicateEntries are added.

* 64-bit integer is supported.

2013, Apr 16. Version 2.0

* NICSLU is distributed under the GNU LGPL license.
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2012, Dec 16. Version 1.2

* the framework of NICSLU has a few changes, current framework is the final one

and will not be changed in future versions.

* add function: NicsLU MemoryUsage.

* add function: NicsLU DumpA.

* add function: NicsLU SolveFast.

* NicsLU ResetMatrixData is changed to NicsLU ResetMatrixValues.

* NicsLU ResidualError is changed to NicsLU Residual, the arguments are also

changed.

* memory usage optimization.

* demo programs are changed.

* bug fixes.

2011, Oct 19. Version 1.1

* add function: NicsLU Throughput.

* add function: NicsLU ThreadLoad.

* NicsLU CreateScheduler doesn’t need to be called after NicsLU CreateThreads

anymore.

* correct an error in NicsLU ResidualError.

* some small improvements.

* some small bug fixes.

2011, Jul 20. Version 1.0

* the first version is released.
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