
1

VIR-MAN-LAL-5600-106Document No.

0.1Version

1999/12/15Date

C. ArnaultAuthor

VIRGO - European Gravitational Observatory
Traversa H di Via Macerata - Santo Stefano a Macerata, -56021 Cascina, Italia.

Secretariat: Telephone (+39) 050 752 521 FAX (+39) 050 752 550

2

Cm design documentation

• General architecture for one Cm domain
• The internal Cm protocol
• The internal Cm protocol (continued)
• The NameServer database
• Operations during the CmMessageOpen(Multiple)Server
• Setting up the connection to the NameServer
• The NS port handler
• Operations during the CmMessageSend
• Operations during the CmMessagePost
• Operations during the CmConnectNew
• Operations during the CmConnectNewWithAddress
• Operations during the CmMessageWait
• Operations during the CmMessageCheck
• Internal structure of a CmMessage object

3

General architecture for one Cm domain

NameServer

Appli.
“A”

Appli.
“B”

CmServerInfos
NSGetNewPort
NSGetAddress

NSPort
NSNewPort
NSAddress

CmServerInfos

CmConnects:

“NameServer“
“A”
“B”

CmConnects:

“NameServer”
“B”
“A”

Database

Eg: /virgoData/Cm/Cascina/*.dat

DB area defined in the
CmDomains file

The
domain

One file per
active

application

Each Cm domain provides the following constituents:
• One NameServer application
• One database for persistent management of application’s states.
• A set of user applications communicating with each other.

4

The internal Cm protocol
This section describes the Cm messages internally used by the Cm package, listed by their types,
either between applications and the NameServer or between applications

CmServerInfos
Any application willing to establish a connection towards another
application first sends this message to it. No answer is expected

from it except for the NameServer which returns a NSPort
message.

string protocol_version
string name
string host_name
int port_number
int is_multiple
string owner

NSPort

The NameServer just accepted a connection from a new
application (using CmMessageOpenServer or

CmMessageOpenMultipleServer). It allocates a new port number
and sends it back to the application. In addition, and only for
multiple servers, the effective application name (including the

suffix _<n> will be sent).

string original_name
int allocated_port
string new_name
int transaction_id

NSGetNewPort
An application just tried to bind to a port number (previously
proposed by the NameServer). But this port number is not
available. The application sends back this message to the

NameServer so as to obtain another port number.

string connection_name
int transaction_id

NSNewPort The NameServer sends back to the application another port
number after a bind failure.

string connection_name
int new_port
int transaction_id

5

The internal Cm protocol (continued)

NSGetAddress
An application wishes to open a new connection towards another
application. It first sends this message to the NameServer, which

in turn will answer using the NSAddress message.

string name
int reserved
int transaction_id

NSAddress The NameServer sends this message as an answer to the
NSGetAddress message.

string name
string host_name
int port_number
int is_multiple
string owner
int transaction_id

6

The NameServer database

• The database files are named with the application’s name and suffixed with .dat. They hold
– The internet address and the port number allocated to the application
– The name of the user who launched the application

• Each database file is renamed with the suffix .bck when the application dies.

NameServer Database

Eg: /virgoData/Cm/Cascina/*.dat

DB area defined in the
CmDomains file

The
domain

One file per
active

application

port 24001
host virgo.lal.in2p3.fr
owner mansoux

7

Operations during the CmMessageOpen(Multiple)Server

Global Cm initialisations

Syntax checking on the application’s proposed name

Computing the current host name

Create a CmConnect object and its associated socket for the handing of accepts.

Opening a transaction for the connection to the NameServer

Setting up the connection to the NameServer

Waiting for a port number from the NameServer

Perform the TCP bind

Call the ConnectionHandler when registered

Once per run

On OS9 the env. variable
MYHOST is used

Illegal name

See diagram 3
below

See diagram below
on NSPort handler

And diagram on Wait
operation.Retry using a

NSGetNewPort message

proposed name

8

Setting up the connection to the NameServer

Read the NameServer infos from the CmDomains file

Create a connection using the NameServer address

See diagram 7
CmConnectNewWithAddress

9

The NS port handler

Get allocated port number and new name from the message

Terminate the transaction

string original_name
int allocated_port
string new_name

Assign port number and new name to the CmConnect object

10

Operations during the CmMessageSend

Looking for the connection

Create a new connection
If not found

Close the message Put tail if needed

Create a message Iterator

Wait on iterator

Delete the message Iterator

select

Fill write mask

Write block

Wait

See diagram on
Wait operations

See Message
structure

See CmConnectNew
diagram

finished

CmMessage object
destination name

Not found

Found

11

Operations during the CmMessagePost

Looking for the connection

Create a new connection
If not found

Close the message Put tail if needed

Create a message Iterator

See Message
structure

See CmConnectNew
diagram

CmMessage object
destination name

Not found

Found

The iteration on sending partial message blocks will be
performed at each subsequent call to either CmMessageWait or

CmMessageCheck.

Eventually, when the send is completed, an optional handler will
be called.

12

Operations during the CmConnectNew

Get a reference for that name

Open a “GetAddress” transaction

Send a NSGetAddress message to the NameServer

Wait with timeout (10 seconds)

Timeout

Get a reference for that name

Exist already

Transaction terminated

See internal Cm protocol

Controlled by the
CmNameServerTimeout internal variable

NSAddressHandler

Read infos

Create a new CmConnect
object, initialized with the infos.

Terminate the transaction

Not found

Connection name

13

Operations during the CmConnectNewWithAddress

Create a CmConnect object

Create a socket

Install a reception handler for decoding Cm messages

Send local infos to the newly connected remote server

Send a CmServerInfos
message

Connection name
port number
host name

Perform the TCPIP connect

14

Operations during the CmMessageWait

Create or restart the “Cm” transaction

(Timeout)

Loop :

Call handlers

Purge all dead connects

Fill masks

Select (read-masks, write-masks, timeout)

Check masks

∀ connect :

no data ⇒ set read mask
iterator ⇒ set write mask

∀ read bit ⇒ set CmConnectStatusData
∀ write bit ⇒ Iterator forth

Break in handler
Transaction terminated

Message iterator finished

Timeout

Call all possible handlers declared on connections:

• connection handler
• CmMessage handlers
• MessagePost handlers

15

Operations during the CmMessageCheck

Create or restart the “Cm” transaction

Call handlers

Purge all dead connects

Fill masks

Select (read-masks, write-masks, non-blocking)

Check masks

∀ connect :

no data ⇒ set read mask
iterator ⇒ set write mask

∀ read bit ⇒ set CmConnectStatusData
∀ write bit ⇒ Iterator forth

Break in handler
Transaction terminated

Message iterator finished

Call all possible handlers declared on connections:

• connection handler
• CmMessage handlers
• MessagePost handlers

16

Internal structure of a CmMessage object

Header

Trailer

Byte swapper 14

Magic 4

Bytes 4

Offset to tail 4

Message type 16

Item type

Value

Alignment

1

1..7

Magic 4

charchar

shortshort

intint

String (value)long

floatfloat

doubledouble

element type
elements
(alignment)

elements * element-size
(alignment)

array

Item type
(alignment)
length + 1

string

text

bytes
byte arraybytes

