
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type:
Specification

LIGO-T990030-06 E- 07.16. 1999

LIGO Data Analysis System -
Numerical Algorithms Library
Specification and Style Guide

LIGO Laboratory & LIGO Scientific Collaboration

Distribution of this draft:

LIGO and LSC

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working note of the
LIGO Laboratory and the

LIGO Scientific Collaboration.

DRAFT

Table of Contents

Index

file /home/lazz/Specifications/DataAnalysisDocs/SoftwareSpecs/T990030.fm - printed July 16, 1999

LIGO-T990030-06
CHANGE RECORD

Revision Date Authority Pages Affected Item(s) Affected

Initial draft All All

Organization/Group Name Signature Date

LIGO Laboratory LDAS Group Leader

LDAS Software
Task Leader

Directorate

LSC Chairs ASIS

DCSA

Detector
Characterization

Spokesman
page 2 of 36

LIGO-T990030-06

.....

....
......
..
...
........
.........8
......
.......9
......10
......11
......11
.......12
......13
......13
.......13
.......15
......17
......17
.... 18
.......18
.....22
.......22
.....23
.....23
.... 24
......24
......24
......2
..... 24
......24
....25
.......26
.......2
.......27
..... 27
......28
TABLE OF CONTENTS

]1 Introduction .. 5
1.1. Purpose...5
1.2. Scope...5
1.3. Applicability ...6

2 Overview .. 6
3 Conventions... 8

3.1 Coding style ..8
3.2 Physical and numerical constants ..

4 LLAL Data types.. 8
4.1 Primitive or “atomic” data types..
4.2 Aggregate constructs of primitive data types..

4.2.1 Vectors ...
4.2.2 Arrays...
4.2.3 Sequences..

4.3 LIGO structured data types...
4.3.1 Time ...
4.3.2 Sequences in time ...
4.3.3 Sequences in frequency...
4.3.4 Series of n-tuples..
4.3.5 Transfer functions ..

5 Filter Algorithm Design ...
5.1 Procedural function style and usage ..
5.2 LLAL specific data structures..

5.2.1 Status...
5.2.2 ligoFunctionIOStruct ..
5.2.3 ligoFunctionParamStruct ..

6 LLAL Development tools...
6.1 Development tools: ...
6.2 Documentation tools: ..
6.3 Testing tools:...4

7 Directory Organization..
7.1 Root directory ...
7.2 LLAL Component Documentation...
7.3 Header Files ...
7.4 Source Files..6
7.5 Component level tests ..

8 Configuration Control ...
8.1 Version control..
page 3 of 36

LIGO-T990030-06

... 29
.....29
......29
......30
...
........31
.......31
......32
......34
......36

.......7
......10
.......10
.....29
......30

TABLE OF CONTENTS -- continued
9 LIGO SOFTWARE ARCHIVES ..
9.1 LDAS directory structure...
9.2 CDS/GDS directory structure ...
9.3 CVS repository structure...

10 Rules for revision... 31
10.1. Requests for changes...
10.2. Change control ...

Appendix A Example/Template Header File...
Appendix B Example/Template Source File ...
Appendix C Example/Template Makefiles ...

LIST OF TABLES

Table 1 List of Applicable Documents ...
Table 2 LIGO data types for algorithm software...
Table 3 LIGO data objects [relevant section numbers are shown in table headings].....
Table 4: LDAS distribution directory structure ...
Table 5: CVS repository directory structure ...
page 4 of 36

LIGO-T990030-06

ic
L]
d
-

(inter-
d that
nt

the

n

ed
d it

cal fil-
also

unc-
l, but
ece of
his
envi-
mpo-

yze

hich

con-
1 INTRODUCTION
The LIGO/LSC Algorithm Library [LLAL] for the analysis of data generated by interferometr
gravitational wave detectors (IGWD) is a collaborative effort involving the LIGO Laboratory [L
and contributors from the LIGO Scientific Collaboration [LSC]. This specification has evolve
out of the recognition for the need of a standard definition of how the code which will be pro
duced looks and behaves.

It is the intent of LL and LSC to share and encourage the use of these algorithms by other
national) projects wishing to adhere to a common set of software coding standards. It is hope
by using a standard design for procedural algorithms, consistent analyses of data by differe
groups of individuals can be promoted more easily.

In order to be more inclusive of future collaborators, the LL Data Group undertook to promote
use of ANSI standard C programming style.

LL and LSC will promote a continued evolution of this standard through formal configuratio
control, scheduled updates and releases, and code maintenance. Anad hoc working group with
representatives from LL and LSC has formed to develop this specification and the first cod
algorithms. Eventually, it is expected that this will become a formal working group of LSC an
will be have formal control over the contents of this specification as it evolves.

1.1. Purpose

This specification formally defines the LIGO/LSC Algorithm Library [LLAL].

1.2. Scope

This document specifies the interface between the LDAS software environment and numeri
ter libraries (and other code modules) contributed by users for LIGO data analysis. It is
intended to show a user of LDAS how to add new analysis functionality by creating new f
tions. This is not a comprehensive document explaining how to write functions in genera
rather is a specification for I/O, exception handling and other interfaces needed to allow a pi
code to function correctly within LDAS. Contributed software may only be written in C. T
specification anticipates the eventual incorporation of the contributed software into a C++
ronment. However, in the absence of a fully defined design specification for future C++ co
nents, developers are requested to limit their present contributions to ANSI standard C.

LLAL will be written assuming IEEE/ASCII compliant hardware and software is used to anal
interferometer data.

This standard specifies the organization of LLAL components, including the C structures w
are used to define I/O behavior.

This specification also defines rules to which new extensions and revisions are required to
form.
page 5 of 36

LIGO-T990030-06

 sys-
re.
con-

and
led to
arallel
rchi-
hese
those
esir-

idual

and

. The

on

e
i-
nd do

ot be
1.3. Applicability

LIGO Laboratory and the LSC will work to ensure that all developed hardware and software
tems support LLAL. All participating groups will analyze data using LLAL-compatible softwa
The LLAL software shall be available in the public domain, subject only to the standards and
trols defined herein.

2 OVERVIEW
LDAS is the analysis environment being developed for LL and LSC. It consists of a layered
highly modular architecture employing a steering language or scripting commands, coup
C++ as the compiled language. The paradigm being employed is that of using MPI based p
computing to complete the computationally intensive numerical analysis of data. The MPI a
tecture will involve use of procedural algorithms and functions to manipulate the data. T
algorithms, or filters, are expected to be contributed by a larger group of individuals than
responsible for the LDAS overall architecture and implementation. Because of this it is both d
able and necessary to define explicitly a set of interfaces to which a number of indiv
researcher can write code having a common “look and feel”.

It is the intent to develop and to maintain a dynamically loaded LLAL. In working to design
build such a library, there are the following advantages:

• C can be used
• one algorithm can be used by all users
• one can utilize capability written by other people very easily into his or her own work

This document focuses on the programming aspects of creating a new procedural algorithm
document,Getting Started with LDAS, LIGO-T99XTBD,is a manual on LDAS, and it contains
other references for in depth information.Table 1presents a list of relevant design documentati
for LDAS.

For now, the supported development environment is the latest version ofegcsandGNU’s gcc.
Together, these contain all flavors of C. However, theGNU gcccompiler is more robust and stabl
than the equivalent compiler fromegcsat the time of this writing. If you prefer to use other env
ronment for the module development, use it until you complete the testing of your code, a
the final build usingGNU gcc. In generalgcc is recommended for C andegcsis recommended for
C++. If your code conforms to the standards described anthill document, the final build will n
a problem.
page 6 of 36

LIGO-T990030-06

.

c

Table 1 List of Applicable Documents

Description Document ID

LIGO Documentation

LDAS White Paper LIGO-M970065

LDAS Design Requirements Document LIGO-T970159.

LDAS Conceptual Design Document LIGO-T970160.

LDAS Preliminary Design Document LIGO-T990001

LDAS System Software Specification for C, C++ and Java LIGO-T970211

Data Format Specifications

Specification of a Common Data Frame Format for Interferometric Gravita-
tional Wave Detectors (IGWD)

LIGO-T971030

LIGO Lightweight Data Format Specification LIGO-T980091.

LIGO Metadata, Event and Reduced Data Requirements LIGO-T980070

LDAS Software Specificationsa:

LDAS Users Manual LIGO- T99xTBD

FrameAPI Baseline Requirements LIGO-T980011.

FrameAPI.tcl source code map -- frameAPI.tcl on-line TclDoc

FrameAPI.tcl emergency procedures source code map --
frameEmProc.tcl

on-line TclDoc

FrameAPI.tcl operator procedures source code map -- frameOpProcs.tcl on-line TclDo

MetadataAPI Baseline Requirements LIGO-T980119

DataConditioningAPI Baseline Requirements LIGO-T990002

Non LIGO Documentation

Enough Rope to Shoot Yourself in the Foot:
Rules for C and C++ Programming,

Allen I.Holub

McGraw-Hill
1995

a. link accessible via http://docuserv.ligo.caltech.edu/~prince/LDCG_lsc/LDCG.html. Note that some of
these documents are still evolving.
page 7 of 36

LIGO-T990030-06

must
all
es:

ed

tem of

object
3 CONVENTIONS

3.1 Coding style

The design of code presented here reflects the style from Allen I.Holub’s book [seeTable 1].
Header and source code examples are provided inAppendix A andAppendix B.

Variables must begin with alowercasename; types must begin withUppercaseletters. Names
should be between 7 and 14 letters for ease of writing. Names combining multiple words
have subsequent wordscapitalized: theNewVariable, TheNewType. Macros (#define) must be
UPPERCASE. Compound macro names will use underscores if clarity requir
THE_NEXT_MACRO.

3.2 Physical and numerical constants

There will be an effective LIGOnamespacefor defining the set of physical constants to be us
within LDAS. Physical constants will be stored in the header filellalConstants.h.All constants
are declared according to the following style:

#define LLAL_CONSTANTNAME_STANDARD value /* units or description */

Examples:

#define LLAL_PI 3.141592654 /* dimensionless */
#define LLAL_SOLRADIUS_SI 6.960e08 /* solar radius, m */
#define LLAL_SOLMASS_SI 1.989e30 /* solar mass, kg */

All constants have the reserved prefix LLAL_. The constants have a suffix to denote the sys
units in which they are defined.

A method will be provided to extract the physical constants database as a lightweight data
(XML) to allow this dataset to be easily transported.

4 LLAL DATA TYPES
Data types may be considered in a hierarchical grouping:

1. Atomic or primitive data types -- language-specific types:
• int
• float, etc.

2. Higher level (aggregate) constructs:
• vectors
• arrays or matrices
• lists, etc.
• sequences or series (time-shares, frequency spectra, etc.)
page 8 of 36

LIGO-T990030-06

ay be
le to
elow.

ith all

and

8 bit
. To
3. Custom C structures:
• structures of parameters
• input or output structures for function I/O, etc.
• exception handling structures

Items #1 are language [and also platform] dependent. Language specific implementations m
found for items #2 and we will define the LLAL versions to correspond as closely as possib
existing constructs. Items #3 are specific to LLAL usage. Each of these will be discussed b

Structures shall be defined according to the following template:

typedef struct tag<name> {
...

}<name>;

Where <name> is replaced by the struct’s name. Note the tag name that must be used w
structs.

One ONE variable definition will be allowed per type declaration. This allows ease of reading
maintenance. It allows each line to have:

TYPE variableName; /* helpful or useful comment */

INT4 length; /* number of elements */
INT4 vectorLength; /* length of each vector in sequence */

 ...

4.1 Primitive or “atomic” data types

To permit LLAL code to be transported to various hardware platform (e.g., 32, 64 or 12
machines), we will adopt the convention described in the LIGO-VIRGO frame specification
each C/C++ data type there will be assigned aCAPITALIZEDLLAL data type name. These will
be defined inllalDatatypes.h:

...
typedef char CHAR
typedef short INT2
typedef unsigned char BOOLEAN
...
typedef struct {

REAL4 re;
REAL4 im;
} COMPLEX8;

typedef struct {
REAL8 re;
REAL8 im;
} COMPLEX16;

...

The C data types listed inTable 2 are recognized. This table is asubset (except for the introduc-
tion of the type BOOLEAN) of the data type table fromSection 4.2 of LIGO-T970130. The
COMPLEX4 and COMPLEX8 data types are necessarily structures.
page 9 of 36

LIGO-T990030-06

will
4.2 Aggregate constructs of primitive data types

This list is extensible and it is expected that it will be augmented over time. These definitions
also be included inllalDatatypes.h. Indexing convention for multi-dimensional arrays will follow
the C convention of row-major ordering. Table 3 lists the objects defined below.

Table 2 LIGO data types for algorithm software

Data Class C/C++ Data Type Length (Bytes)
Comments

CHAR char 1 Character
BOOLEAN unsigned char 1 Unsigned character

INT2 short 2 Signed integer,

Range: (-215, 215-1)
INT4 int 4 Signed integer,

Range: (-231, 231-1)
INT8 long 8 Signed integer,

Range: (-263, 263-1)
REAL4 float 4 IEEE-defined single precision floating point number
REAL8 double 8 IEEE-defined double precision floating point number

Composite Data Types (structures)
COMPLEX8 Pair of REAL4 8 Complex real number, two single precision floats,

stored as a pair: (real, imaginary)
COMPLEX16 Pair of REAL8 16 Complex real number, two double precision floats,

stored as a pair: (real, imaginary)

Table 3 LIGO data objects [relevant section numbers are shown in table headings]

Data Class LIGO Names Comments Comments

4.1 Atomic --See Table 2

4.2 Aggregates

Vectors <datatype>Vector Footnotea

Aggregates capture
only numerical
data useful for
computation
(e.g.,bytes)

no units or physical
information is

provided at this level

Array <datatype>Array Footnotea

Sequences

<datatype>Sequence Footnotea

<datatype>VectorSequence Footnotea

<datatype>ArraySequence Footnotea

4.3 Structures

Time LIGOTime
A struct

identifying GPS time.
Physical units
or dimensions

are encapsulated
in the structures.
page 10 of 36

LIGO-T990030-06

e
ctor;
like

exten-
t code.
4.2.1 Vectors

Vector is a one-dimensional object that corresponds to a collection oflength = N data ele-
ments of the same data type, taken fromTable 2 above.

typedef struct tag<datatype>Vector{
INT4 length; /* number of elements */
<datatype>* data;

/* pointer to data of type <datatype> from Table 3, foot-
note a */

}<datatype>Vector;

Here and elsewhere below <datatype> can be any of the types inTable 3, footnote a.Structs
defined with a <...> prefix will be enumerated inllalDatatypes.hfor each corresponding data typ
that is needed. So, for example, the following vector data types will appear: CHARVe
INT2Vector; ... ; COMPLEX8Vector;...etc. The need for explicit typing follows because C, un
C++, does not support template data type definitions. Alternative methods usingenumstatements
are possible; however, these, unlike the “hard-wired” type casting described above provide
sibility at the cost of case checking (if statements) that need to be embedded in the resultan

4.2.2 Arrays

Array is adim = ndim (>1) object that corresponds to a collection oflength = ldim1*
ldim2*...*ldimNdim data elements of the same data type, taken fromTable 3, footnote a,
above.

Series

<datatype>TimeSeries
<datatype>FrequencySeries

Examples: time series,
spectra, etc.

<datatype>TimeVectorSeries
<datatype>FrequencyVectorSeries

Example: time series
of a vector quantity.

<datatype>TimeArraySeries
<datatype>FrequencyArraySeries

Example: time series
of a matrix quantity.

<datatype>TableSeries Example: time series for a group
of objects which are best

represented by a table

Transfer
Functions

<datatype>FTransferFunction List of {f,y,z} triplets for H[f];
{y,z} correspond to

{M, } or {Re,Im} of H[f]

<datatype>ZPGFilter Pole-zero-gain representation for
H[z]

a. Initially <datatype> will be taken by default to be ONLY from the following list:
{REAL4, REAL8, COMPLEX8, INT2, INT4}. Additional types may be added when it is shown that they are needed.

Table 3 LIGO data objects [relevant section numbers are shown in table headings]

Data Class LIGO Names Comments Comments

ϕ

page 11 of 36

LIGO-T990030-06

ne
ed to

he vec-
tical

by
mension
struct <datatype>Array{
 INT4Vector dimLength;

/* vector of <dim> INT4 scalars for the lengths for each of dimen-
sions */

 <datatype>* arrayData;
/* pointer to data of type <datatype> from Table 3, footnote a */

};

The discussion at the end ofSection 4.2.1applies. A vector may also be represented by o
dimensional array; however when represented as a vector, the dimension is implicitly assum
be 1.

4.2.3 Sequences

A sequence (or a series) is a list ofsequenceLength = N compound objects. Thecompound
objectsmay be either vectors or arrays. Note that a sequence of scalars is represented by t
tor object in sectionTable 4.2.1above. All elements of the sequence must have the same iden
structure. All data elements are of the same data type, taken fromTable 3, footnote a, above.

typedef <datatype>Sequence <datatype>Vector
/* a sequence of scalars is the same as vector */

typedef struct tag<datatype>VectorSequence{
INT4 length; /* number of elements */
INT4 vectorLength;

/* length of each vector in sequence */
 <datatype>* data;

/* pointer to data of type <datatype> from Table 3, footnote a */
}<datatype>VectorSequence;

typedef struct tag<datatype>ArraySequence{
INT4 length; /* number of elements */
INT4 arrayDim; /* dimension of each array in sequence */
INT4 * dimLengths; /* length of each dimension of array */

 <datatype>* data;
/* pointer to data of type <datatype> from Table 3, footnote a */

}<datatype>ArraySequence;

The discussion at the end ofSection 4.2.1applies. A vector sequence may also be represented
one dimensional array sequence; however when represented as a vector sequence, the di
is implicitly assumed to be 1 for the elements of the sequence.

The indexing for a sequence ofcompound objectswill run through the internal indices of the
objects before going to the next object in the sequence:

h1 t1[]

. . .

hN t1[]

h1 t2[]

. . .

hN t2[]

h1 t3[]

. . .

hN t3[]

...

h1 tM[]

. . .

hN tM[]

, , , ,

 
 
 
 
 

⇒

h1 t1[] ... h, N t1[] h1 t2[] ... hN t2[] h1 t3[] ... hN t3[] h1 tM[] ... hN tM[], , , , , , , , ,{ , }
page 12 of 36

LIGO-T990030-06

will

s com-
time

nt

aced
4.3 LIGO structured data types

This list is extensible and it is expected that it will be augmented over time. These definitions
be included inllalDatatypes.h.

4.3.1 Time

4.3.1.1 Time stamps

GPS time will be supported within data structures. Other time standards may be captured a
ments. To indicate this, the time structure will have “GPS” in its name. There will be a set of
inter-conversion utilities that can be used to go between various standards.

typedef struct tagligoTimeGPS{
INT4 gps_secs;
INT4 gps_nanosec;

}ligoTimeGPS;

4.3.1.2 Multiple time stamps

Multiple time stamps (e.g., for avectorof strains, each coming from an instrument in a differe
geographical location) can be accommodated as a C array of typeLIGOtime :

ligoTimeGPS gpsTimeList[10]; /* a list of 10 LIGOtime structures */

4.3.2 Sequences in time

4.3.2.1 TimeSeries

The structuretimeSeriesis used to represent a sequence of samples taken at uniformly sp
intervals of time. AtimeSeries object has the following attributes:

• name of series
• time of epoch - time at which theearliest sample in the series was acquired;
• number of samples in series
• delta-t offset between samples (reciprocal of sample rate)
• time offset units will be in seconds
• units of values recorded in samples

typedef struct tag<datatype>TimeSeries{
CHAR* name; /* user assigned name */
ligoTimeGPS epoch; /* epoch of first series sample */
REAL8 deltaT; /* sample spacing in time */
REAL8 f0 /* base frequency, !=0 if heterodyned series */
CHAR* sampleUnits /* units for sampled quantity */
<datatype>Vector* data; /* the data */

}<datatype>TimeSeries;
page 13 of 36

LIGO-T990030-06

mly

mly
4.3.2.2 TimeVectorSeries

The structuretimeVectorSeries is used to represent a sequence of vectors taken at unifor
spaced intervals of time. AtimeVectorSeries object has the following attributes:

• name of series
• time of epoch - time at which theearliest sample in the series was acquired;
• number of samples in series
• delta-t offset between samples (reciprocal of sample rate)
• time offset units will be in seconds
• units of values recorded in samples
• length of each vector in series

typedef struct tag<datatype>timeVectorSeries{
CHAR* name; /* user assigned name */
ligoTimeGPS * epoch;

/* times of first elements in vector series */
REAL8 deltaT;

/* sample spacing in time -- same for all elements */
REAL8 f0 /* base frequency,!=0 if heterodyned series */

CHARVector* sampleUnits /* units for sampled quantities */
<datatype>VectorSequence* data; /* the data */

}<datatype>timeVectorSeries;

4.3.2.3 TimeArraySeries

The structuretimeArraySeries is used to represent a sequence of vectors taken at unifor
spaced intervals of time. AtimeArraySeries object has the following attributes:

• name of series
• time of epoch - time at which theearliest sample in the series was acquired;
• number of samples in series
• delta-t offset between samples (reciprocal of sample rate)
• time offset units will be in seconds
• units of values recorded in samples
• length of each vector in series
• array_dim - dimensions of array
• dim_lengths - lengths of each dimension in array

typedef struct tag<datatype>timeArraySeries{
CHAR* name; /* user assigned name */
ligoTimeGPS * epoch;

/* times of first elements in array series */
REAL8 deltaT;

/* sample spacing in time - same for all elements */
REAL8 f0 /* base frequency,!=0 if heterodyned series */
CHARVector* sampleUnits

/* units for sampled quantities */
<datatype>ArraySequence*data; /* the data */

}<datatype>timeArraySeries;
page 14 of 36

LIGO-T990030-06

s a

a
ng on

n a
end-
The discussion at the end ofSection 4.2.1 applies with regard to typecasting
<datatype>time*Series [generic name for all three types] for each of the LIGO data types. A
minimum, the followingTime*Series types are needed initially:INT2time*Series (for 16 bit
ADC data);REAL4time*Series; REAL8time*Series.

4.3.3 Sequences in frequency

4.3.3.1 FrequencySeries

The structurefrequencySeries is used to represent result of a Fourier transformation on
timeSeriesobject. It may have both negative and positive frequency components, dependi
the value of the starting frequency parameter. AfrequencySeriesobject has the following
attributes:

• name of series
• time of epoch - time at which theearliest sample in the [pre-transformed] data was

acquired;
• number of samples in series, N
• delta_f offset between samples
• frequency units will be in Hertz
• first frequency in series.

The series spans the interval {f0,f0+delta_f,....,f0+(N-1)*delta_f}
• units of values recorded in samples

typedef struct tag<datatype>frequencySeries{
CHAR* name; /* user assigned name */
ligoTimeGPS epoch; /* time value of first array element */
REAL8 f0 /* first frequency in sample */
REAL8 deltaF; /* sample spacing in

time */
CHAR* sampleUnits /* units for sampled quantity */
<datatype>Vector* data; /* the data */

}<datatype>frequencySeries;

frequencySeries can contain any of the following types of spectra:

two-sided frequency series, real or complex (according to vector data type declaration)

one-sided frequency series

power-spectrum (one-sided real frequency series)

4.3.3.2 FrequencyVectorSeries

The structurefrequencyVectorSeriesis used to represent result of a Fourier transformation o
timeVectorSeriesobject. It may have both negative and positive frequency components, dep
ing on the value of the starting frequency parameter. AfrequencyVectorSeriesobject has the fol-
lowing attributes:

• name of series
• time of epoch - time at which theearliest sample in the [pre-transformed] data was

acquired;
page 15 of 36

LIGO-T990030-06

n a
end-

ing
• number of samples in series, N
• delta_f offset between samples
• frequency units will be in Hertz
• first frequency in series.

The series spans the interval {f0,f0+delta_f,....,f0+(N-1)*delta_f}
• units of values recorded in samples
• vector_length - length of each vector in series

typedef struct tag<datatype>frequencyVectorSeries{
CHAR* name; /* user assigned name */
ligoTimeGPS * epoch; /* time values of first vector element */
REAL8 f0 /* first frequency in sample */
REAL8 deltaF; /* sample spacing in

time */
CHARVector* sampleUnits /* units for sampled quantities */
<datatype>VectorSequence* data; /* the data */

}<datatype>frequencyVectorSeries;

4.3.3.3 FrequencyArraySeries

The structurefrequencyArraySeries is used to represent result of a Fourier transformation o
timeArraySeries object. It may have both negative and positive frequency components, dep
ing on the value of the starting frequency parameter. AfrequencyArraySeriesobject has the fol-
lowing attributes:

• name of series
• time of epoch - time at which theearliest sample in the [pre-transformed] data was

acquired;
• number of samples in series, N
• delta_f offset between samples
• frequency units will be in Hertz
• first frequency in series.

The series spans the interval {f0,f0+delta_f,....,f0+(N-1)*delta_f}
• units of values recorded in samples
• array_dim - dimensions of array
• dim_lengths - lengths of each dimension in array

typedef struct tag<datatype>frequencyArraySeries{
CHAR* name; /* user assigned name */
ligoTimeGPS * t0; /* time values of first vector element */
REAL8 f0 /* first frequency in sample */
REAL8 deltaF; /* sample spacing in

time */
CHARVector* sampleUnits;

/* units for sampled quantities */
<datatype>ArraySequence* data; /* the data */

}<datatype>frequencyArraySeries;

The discussion at the end ofSection 4.2.1applies with regard to typecastingfrequency*Series
[generic name for all three types] for each of the LIGO data types. As a minimum, the follow
frequency*Series types are needed initially:
page 16 of 36

LIGO-T990030-06

am-
og-

d;
REAL4frequency*Series; REAL8frequency*Series; COMPLEX8frequency*Series;
COMPLEX16frequency*Series.

4.3.4 Series of n-tuples

The structuretableSeriesis used to represent ordered n-tuple data for which, for example, s
pling rate is not a fixed value.tableSerieswould be used to represent calibration data taken at l
arithmically spaced frequency intervals. AtableSeries object has the following attributes:

• name of series
• time of epoch - time at which the original data which were transformed were acquire
• length - number of samples in object, N
• number of elements per sample - length of each element
• units of values recorded in samples

typedef struct tag<datatype>tableSeries{
CHAR* name; /* user assigned name */
ligoTimeGPS t0; /* time value of first array element */
CHARVector* sampleUnits;

/* vector with units for sampled quantities */
<datatype>VectorSequence* data; /* the n-tuple data */

}<datatype>tableSeries;

The discussion at the end ofSection 4.2.1applies with regard to typecastingtableSeriesdata
types for each of the LIGO data types. As a minimum, the followingtableSeriestypes are needed
initially: REAL4tableSeries; REAL8tableSeries; COMPLEX8tableSeries;
COMPLEX16tableSeries.

4.3.5 Transfer functions

4.3.5.1 Frequency domain

The structurefTransferFunction is used to represent H[s]:

• name of transform
• list of frequencies
• list of magnitude, phase,or
• list of real, imaginary

enum {xferMag, xferXY} xferType;
/* R*exp[i*phi] vs. x+iy representation for xfer */

typedef struct tag<datatype>fTransferFunction{
xferType xferRepresentation;/* Bode representation for real-imaginary */
CHAR* name; /* user assigned name */
CHARVector* hNames; /* e.g., “f_Hz, H_mag, H_phi_radian\n” */
<datatype>VectorSeries* hData;

/* the H[s] as 3-tuples */
}<datatype>fTransferFunction;
page 17 of 36

LIGO-T990030-06

nd a

tyle
are

tp://
, the

cor-
these
The discussion at the end ofSection 4.2.1applies with regard to typecastingfTransferFunction
for each of the LIGO data types. As a minimum, the followingfTransferFunction types are
needed initially:REAL4fTransferFunction ; REAL8fTransferFunction .

4.3.5.2 Zeros, poles and gain representation

The structurezpgFilter is used to represent a transfer functions as a list of zeroes, poles, a
gain. This is a factored version ofzTransferFunction.

• name of transform
• gain, G
• poles, pk
• zeroes, zk

typedef struct tag<datatype>ZPGFilter{
CHAR* name; /* user assigned name */
<datatype> gain; /* filter gain */
<datatype>Vector* zeros; /* the zeros */
<datatype>Vector* poles; /* poles */

}<datatype>ZPGFilter;

The discussion at the end ofSection 4.2.1applies with regard to typecastingZPGFilter for each
of the LIGO data types. As a minimum, the followingZPGFilter types are needed initially:
REAL4ZPGFilter ; REAL8ZPGFilter .

5 FILTER ALGORITHM DESIGN

5.1 Procedural function style and usage

The following are guidelines for writing analysis functions for LIGO data. The general s
should be consistent with the style specification LIGO-T970211. Function definitions
designed to follow the DSL/Globus Coding Standard from ANL (the MPICH group, see ht
www-fp.mcs.anl.gov/dsl/). In cases where what is described below differs from T970211
present document takes precedence.

Functions written according to these guidelines will be simpler to verify, to maintain and to in
porate into general analysis systems. The prototypical analysis function is referred to in
guidelines asligoFunction().

1. All functions should be specified using the following format:

[static] <return type> <function name> (
<param type 1> <param name 1>,
<param type 2> <param name 2>,
...
<param type N> <param name N>)

{
<code block(s)>
} /* <function name>() */

2. ligoFunction() is of type void and containsonly four arguments:
page 18 of 36

LIGO-T990030-06

.

n func-

ta,
to use

mem-
ted on
These
needed

hen
uctures

. Its

m-
d

. A
infor-

s of
,...).
void ligoFunction(Status *stat, ligoFunctionOutStruct *output, const ligoFunc-
tionInStruct *input, ligoFunctionParamStruct *params);

The first argument is a pointer to astatus structure (described below, identical for all functions)
The second and third arguments are pointers to anoutput structure and a read-onlyinput struc-
ture respectively. Theinput andoutput structures will specified for classes of functions having
common behaviors. The intent is to providedefined and controlledstructures for all LLAL func-
tions to permit to the greatest extent possible ease-of-use and simple data passing betwee
tions which are called sequentially.

The fourth argument is aparameter structure which can be used to pass other types of da
including re-entrant behavior information, to the function. Code developers are encouraged
LIGO standard data types (described above) where possible within these structures.

Comment: The constant attribute does not exclude passing a pointer to a writable array as a
ber of the input structure. The input and output structures are defined to include data opera
or produced by the function: parameters are contained in the corresponding structure.
parameters may be used to provide re-entrant behavior to functions or to define parameters
to govern the input-output behavior of the function.

Explanation: This makes it easier to extend or to add extra functionality to procedures. W
additional arguments are needed they can be added as members of the input or output str
without modifying any existing code that callsligoFunction().

3. ligoFunction() shall return control to the scope from which it was called.

The status structure is used to report the completion status of the function when it returns
format is:

typedef struct tagStatus {

INT2 statuscode;
const CHAR* statusDescription;
static const CHAR rcsid[] =”$Header:$”;
struct tagStatus* statusPtr;

}Status;

If ligoFunction() completes successfully,statuscode should be set to zero and
status_descriptionto a null pointer . Upon abnormaltermination ofligoFunction, statuscode
must be assigned anon-zerovalue. Values forstatuscodemust be documented and assigned sy
bolic names inligoFunction.h. Status_descriptionis a pointer to a static character string define
in ligoFunction() that provides a brief summary of the problem.rcsid[] is a static character string
defined in ligoFunction() that contains could version, code author and date last modified
method should be provided as part of the debugging process (see #5 below) to provide this
mation to stdout or some other designated output.

Thestatus structure definition is recursive to permit status to be returned from various level
nested function calls (i.e., functions called within functions, which are called within functions
page 19 of 36

LIGO-T990030-06

hest
prob-
racter

everal
ated/

gth

output

tion
y not

sual

f
.

bing all
d by
atible

omatic
Explanation: If functions always return, the flow of control is always controllable at the hig
level. The status code and description allows the top level to identify and resolve possible
lems. Version, author and date information are easily available by ensuring that the static cha
string with this information is part ofStatus.

4. Direct calls tomalloc(), free(), calloc() andrealloc() are not allowed.

Customized replacements for these shall be provided. These custom handlers will take s
additional arguments, including a short text description of the use of the memory being alloc
freed.

Explanation: This simplifies tracking memory usage and memory leak identification.

5. ligoFunction() should free all memory that it allocates, except for storage for variable len
output parameters.

Explanation: This avoids memory leaks. Persistent intermediate storage and fixed length
parameters should be allocated by the calling function.

6. Functions and procedures must refer to:

extern INT_4U debuglevel;

when deciding whether to print debugging information. Legal values fordebuglevelare 0,1, or 2.
If it is 0, then no debugging information will be printed. If 1, then some debugging informa
should be printed. If 2, then verbose information should be provided. Analysis functions ma
modify debuglevel.

Explanation: allows calling program to provide diagnostic info if needed to understand unu
behavior.

Warning: do not test the value ofdebuglevelwithin critical floating point loops. The presence o
an integer compare/branch instruction often interferes with efficient floating-point execution

7. Each function should be in a fileligoFunction.c and come with a header fileligoFunction.h.

The header file should define function prototypes and structures and have comments descri
inputs and outputs of the function (including any file I/O) as well as the processing performe
the function. The header file should protect against multiple includes, and have a C++-comp
structure.Small sets ofrelated functions may be grouped together into a single (file.c, file.h) pair.

Explanation: this will make it easier to exchange useful functions.

Comment: in the future we may ask that comments be structured in a way that supports aut
documentation generation (doc++, for example).

8. File input/output usingfopen(), fclose(), fread() and fwrite() is not allowed.
page 20 of 36

LIGO-T990030-06

ept
ture.

given

the

r con-

8 to 64
other

erent
ht be

 These

f reus-

nc-
argu-
Custom file I/O functions will be provided. A function should close all files that it opens, exc
for files that are explicitly passed to the calling function by a FILE pointer in the output struc

Explanation: file access may not be available (permissions, space) or appropriate on
machines. The custom file I/O routines will deal with this.

9. Each function must come with a stand-alone programmain_ligoFunction.c which can be
linked toligoFunction() and tests it.

main_ligoFunction returnsSUCCESSif the function works andFAILURE if it does not. In the
event of an error,main_ligoFunction should print out the expected and actual result values of
particular test it performs. It should also print the contents ofstatuscode, status_descriptionand
rcsid[] which are returned byligoFunction().

Explanation: this is a simple way to provide validation. Any necessary data should be eithe
tained inmain_myfunction.c or computed by it.SUCCESSandFAILURE are system-depen-
dent return codes defined in the analysis procedure header file.

10. Allocation of significant amounts of memory, should use thecustom malloc() rather than
automatic stack variables.

Explanation: many machines and shells do not support large stacks. Typical stack sizes are
Mbytes. It is easy to blow the stack and this can be hard to identify with debuggers and
tools.

11. Debugging/information/warning messages should be printed with acustom replacement for
printf() andfprintf(stderr,...) .

This function will be provided and will take the same arguments asprintf() and possibly other
arguments.

Explanation: this allows debugging/information/warning messages to be handled in diff
ways, depending on the operating environment and conditions. For example, they mig
logged, sent immediately to the user, ignored, etc.

12. Developers should endeavor to use LIGO standard data structures whenever possible.
will be described below

Explanation: General use of standard data structures will allow the development of a suite o
able manipulation functions and ease the interfacing between functions.

13. ligoFunction() should be re-entrant.

In other words, itshouldnot contain variables that save internal state information between fu
tion invocations. If such state variables are needed, then they must be included in one of the
ment structures.
page 21 of 36

LIGO-T990030-06

t

essly
is

nse-
inte-
Explanation: Functions that arenot re-entrantcannotbe invoked by different routines withou
special precautions. They are alsomore difficult to maintain.

14. Aliasing (i.e., allowing two structures point to or share the same memory address) is expr
prohibited. An exception to this is the case where (mutually exclusive) memory sharing
effectively supported by ANSI C (e.g.,unions).

Explanation: It becomes difficult to keep track of whether memory is being pointed to and, co
quently, difficult to avoid memory leaks or “amnesia (freeing memory being used). Code ma
nance becomes more difficult when aliasing is permitted.

5.2 LLAL specific data structures

5.2.1 Status

The status structure design was described in #2 above. Once again it is:

typedef struct tagStatus {

INT2 statuscode;
const CHAR *statusDescription;
static const CHAR rcsid[] = $Header$;
struct tagStatus*statusPtr;

}Status;

5.2.1.1 statuscode

statuscode= 0 for successful completion;statuscode!= 0 otherwise. A table of symbolic values
must be provided in the function header file. Examples are:

...
#define OK 0 /* successful execution */
#define DIVIDE_BY_ZERO 1 /* flag for dividing by zero */
#define OUT_OF_RANGE_POSITIVE 2 /* value is unexpectedly large */
...

5.2.1.2 statusDescription

statusDescriptionis a pointer to a static character string defined inligoFunction(). It provides a
brief summary of the problem. Examples are:

...
constant CHAR *statusDescription;
...
statusDescription = ““; /* statuscode = OK */

statusDescription = “attempted divide by zero in ligoFunction”;
/* statuscode = DIVIDE_BY_ZERO */

...
statusDescription = “value too large in ligoFunction”;

/* statuscode = OUT_OF_RANGE_POSITIVE */
page 22 of 36

LIGO-T990030-06

edded
hor,
user
t ver-
ll

frag-

func-
5.2.1.3 rcsid[]

rcsid[] is a static character string defined at checkout by the version control system and emb
in ligoFunction(). It contains the full path name of the RCS file, revision number, date, aut
state identifier [release, alpha, etc.] and locker (if locked). Locker contains the loginID of the
(if any) who had locked the code for the purpose of making revisions at the time the presen
sion was exported. This construct corresponds to the CVS standard and shall be used for aligo-
Functions. For example, checking into CVS a code fragment containing the following line:

...
static const CHAR rcsid[] = “$Header$”;

would be converted by CVS to the following upon exporting or checking out the same code
ment:

static const CHAR rcsid[] = “$Header: /ldas/api/genericAPI/so/ligoFunction.c,v
1.5.1 1999/11/28 23:20:28 Beta kent$”

5.2.2 ligoFunctionIOStruct

LigoFunctionIOStruct is designed to handle input and output of data forligoFunction(). The
detailed definition ofligoFunctionIOStruct depends onligoFunction(). It will be documented
along with the documentation of the specificligoFunction(). The input and output structure
designs will use a common data structure which is specific to the function or class of similar
tions. An example might be:

typedef struct tagligoFunctionInStruct{

<datatype>Vector* inputData;
...

}ligoFunctionInStruct;

typedef struct tagligoFunctionOutStruct{

<datatype>timeSeries* outputData;
...

}ligoFunctionOutStruct;

5.2.3 ligoFunctionParamStruct

LigoFunctionParamStruct is designed to accommodate the parameter data forligoFunction().
The detailed definition ofligoFunctionParamStruct depends onligoFunction(). It will be docu-
mented along with the documentation of the specificligoFunction(). An example might be:
page 23 of 36

LIGO-T990030-06

nta-

ibu-

ose

tory

es)
typedef struct tagParamStruct{

INT2 callsToLigoFunctionCounter;
/* counter used to determine possible re-entrant behavior */

REAL8 filterSeed; ;
/* seed for re-entrant random number generator */

REAL8 filterCoefficients[10];
/* array of 10 filter coefficients */

<datatype>Vector* data;
/* vector of LIGO data types needed for filter */

...
}ParamStruct;

6 LLAL DEVELOPMENT TOOLS
To develop code for LLAL requires the use of the following software development, docume
tion and testing tools:

6.1 Development tools:

• GNU CVS: version 1.10 or greater.
• GNU egcs: version 1.2.0 or greater.
• GNU make: version 3.72 or greater.
• GNU m4: version 1.4 or greater.

6.2 Documentation tools:

• PERCEPS
• PDF (generated by any means).

6.3 Testing tools:

• Each LLAL code element will have its own main() test program provided by the contr
tor.

7 DIRECTORY ORGANIZATION
All files associated with a specific LLAL software module will reside in a single directory, wh
organization is described below.

7.1 Root directory

Every LLAL software component will have a named, designated root directory.. That direc
contains:

• all files necessary to configure the build of the task (i.e., autoconfig files and Makefil
• abbreviated documentation on the software library member and how to build it (i.e.,

INSTALL and README files)
page 24 of 36

LIGO-T990030-06

ompo-

st

n-

with
d

CVS
cto-
tories

urpose

ill be
-line
ts.

ent.

ts
king,

ent
ribed

rmed
• subdirectories that contain the documentation, header, source and test files for that c
nent. The subdirectories will be named as follows and in turn contain:

- /doc: all the documentation associated with the component.
- /include: all the header files associated with this component. Header files mu

conform to the format and style described in this document.
- /src: all the source files associated with the component. Source files must co

form to the format and style described in this document.
- /test: test scripts and all supporting files (but not documentation) associated

component-level tests. Component level tests must conform to the format an
style described in this document.

In addition to these directories, there will be CVS subdirectories at all levels. Files in the
directories will be configured and maintained by CVS. The only files permitted in these dire
ries are those created by CVS and the only modifications permitted on files in these direc
can made through CVS.

There may be additional subdirectories needed for some software components, whose p
and function will be assigned by a Software Coordinator.

7.2 LLAL Component Documentation

Each completed LLAL module must be accompanied by documentation. Documentation w
written in PDF format. This choice permits a single documentation base to support on
(through, e.g., a web-browser) and off-line (through a printed manual) documentation forma

All documentation will have a uniform format:

1. Purpose: an overview describing the component's purpose or function.
2. Algorithms : describes the algorithms used to provide the desired functionality.
3. Arguments: describes the input and output arguments and data formats for the compon

For each input/output argument, the domain/range should be described.
4. Operating instructions: describes how this component is called. Example code fragmen

should be provided, showing the construction of the input arguments, the call, error chec
and de-construction of the output arguments.

5. Options: describes all options which affect the input, output or function.
6. Accuracy: describes the guaranteed (expected?) accuracy of the results.
7. Error conditions : describes the returned error codes, what triggers them, and the argum

state when an error exit is taken. All error conditions which are tested for should be desc
here.

8. Tests: describes the test suite that accompanies the component. All tests which are perfo
should be documented individually. Required tests are described in Section 7.5.

9. Uses: cross-references to other LLAL routines that are used directly by this component.
10.References: Bibliographic references and cross-references to other documentation.
page 25 of 36

LIGO-T990030-06

le is to
mpo-
in the

e);

-loop

s been

 been

r file is
mpo-

ode
7.3 Header Files

Each component source file has a corresponding header file. The purpose of a header fi
encapsulate logically related information required for the use of the corresponding sub-co
nent. Information not required by other routines using this component should not appear
header.

Header files will conform to the format inAppendix A and contain the following information, in
the order presented (Comment field with file name, author, revision, etc., as specified abov

1. Include-loop protection.
2. Includes. This header may include other headers; if so, they go immediately after include

protection. Includes should appear in the following order:
- Standard library includes;
- LDAS includes;
- LLAL includes;

Includes should be double-guarded (seeAppendix B).
Header file version string (from CVS; seeAppendix B).

3. Macros. But, note that macros are deprecated.
4. Extern Constant Declarations. These should not be present unless a specific waiver ha

granted.
5. Extern Global Variables. These should also not be present unless a specific waiver has

granted.
6. Structure, enum, union, etc., typedef.
7. Functions Declarations (i.e., prototypes).

Note: no executable code appears in a header file.

7.4 Source Files

Each component source file will have a corresponding header file. The purpose of a heade
to encapsulate logically related information required for the use of the corresponding sub-co
nent. Header files will conform to the format inAppendix A and contain the following informa-
tion, in the order presented:

1. Prolog: an extended comment field containing summary information about the source c
module (seeAppendix B for format and contents); Source file version string (from CVS).

2. Include directives. These should be guarded and appear in the following order:
• Standard library includes;
• LDAS includes;
• LLAL includes.

3. Each source file must include at least its own header. Includes should be guarded (seeAppen-
dix B).

4. Constants and enumerated types used only internally;
5. Type declarations (i.e., typedefs) used only internally;
6. Function macros for which a waiver has been granted.
page 26 of 36

LIGO-T990030-06

ant to
onent
nt is
e these

un-

at are

at are

ppro-

mpo-
e func-

e the
more

tor.
ondi-
atted

pi-
7. Extern global variable declarations for which a waiver has been granted;
8. Static global variables for which a waiver has been granted;
9. Static function declarations for which a waiver has been granted;
10. Function definition(s).

7.5 Component level tests

Each completed task is accompanied by a suite of verification tests. A verification test is me
evaluate a component to determine if it satisfies the requirements imposed on it. Every comp
will have several requirements it must satisfy, which will be specified when the compone
assigned to a developer. The developer is responsible for providing tests that demonstrat
requirements are met by the delivered component.

As a general rule, a test suite should involve tests from at least three categories:

• Mainline tests, which demonstrate that the routine correctly acts on commonly enco
tered input data;

• Inside-edge tests, which demonstrate that the routine correctly acts on input data th
barely legitimate;

• Outside-edge tests, which demonstrate that the routine correctly acts on input data th
barely illegitimate.

Note that, in the case of illegitimate data, correct action involves raising and returning the a
priate error conditions.

The test suite provided with each component is meant to test just the functioning of that co
nent. The test suite delivered with each component should not attempt to test or diagnose th
tioning of other components.

In addition to tests that verify that the component meets the requirements specified at the tim
component is assigned, the developer is encouraged to provide other tests that verify
detailed aspects of the component's behavior.

Each LLAL code element will have its own main() test program provided by the contribu
Included must be a script (in a unix shell language) which executes main() under various c
tions with data sets provided along with the code element. Results will be returned in a form
report [format definition to be provided later]. Tests must execute and exit CLEANLY.

.

8 CONFIGURATION CONTROL
LLAL software will be delivered with makefiles which, as a minimum, enable installation, com
lation and execution of code elements within the following environments:

• linux [Redhat 6.0 or later] on Intel hardware;
• Solaris 7 on SUN hardware.
page 27 of 36

LIGO-T990030-06

ould

GNU

n a
osi-

sitory.

t, and
Each subdirectory in a distribution that contains something to be compiled or installed sh
come with a fileMakefile.in, from which configure will create a Makefile in that directory.

Makefiles should conform to the GNU standards and conventions, which are found in the
documentstandards.info.

Appendix C provides examples of aMakefile.in file.

8.1 Version control

Version control of all LLAL files will be coordinated by the LSC Software Coordinator. Whe
LLAL module is assigned for development, its directory tree will be created in the CVS rep
tory. The assigned developer(s) will be provided read/write access to that part of the repo
Additional access to other parts of the repository will be provided as needed.

The LSC software coordinator will assign a major version number to the developed produc
may assign minor numbers and branches as well. Releases will be managed by CVS tags.

See also Section 10.
page 28 of 36

LIGO-T990030-06

n-
9 LIGO SOFTWARE ARCHIVES

9.1 LDAS directory structure

Table 4 presents the LDAS distribution tree structure as of this writing. This structure will co
tinue to evolve.

9.2 CDS/GDS directory structure

To be provided by CDS

Table 4: LDAS distribution directory structure

root include ilwd

framecpp

general

genericAPI

ospace
..

lib genericAPI

frameAPI

metadataAPI
...

bin

macros frame

metadata

metascripts...
page 29 of 36

LIGO-T990030-06

inue
9.3 CVS repository structure

Table 5 presents the CVS repository tree structure as of this writing. This structure will cont
to evolve.

Table 5: CVS repository directory structure

repository cvsroot

e2e

ldas api

genericAPI so

tcl

doc

frameAPI so

tcl

doc

metadata so

tcl

doc

lib ilwd

framecpp

general

ospace so-linux

so-solaris
..

ospace

CDS/GDS
..

LSC
..
page 30 of 36

LIGO-T990030-06

ed

dig-

ver-

cre-

re
r

on to

cted
10 RULES FOR REVISION
LL and LSC will jointly maintain both the specification for LLAL software and also all associat
software libraries.

The numbering scheme for future releases of LLAL shall be a two digit number with the two
its separated by a decimal point (.): e.g., LLAL Release “X.Y”.

Individual software components in the library shall also be identified by version number. The
sion specification for the software libraries shall also be in the form “X.Y”.

X = version number. This is incremented whenever major changes are introduced. If X is in
mented, Y is reset to 0.

Y = revision number. This is incremented whenever one or more of the following changes a
made: (i) software error fixes; (ii) enhancements in existing functionality; (iii) modification o
addition of structures not addressed by X above.

10.1. Requests for changes

LL and LSC will maintain a web page (address To Be Announced) for submitting requests for
changes and for providing for releases of code.

10.2. Change control

LLAL software will be placed under joint configuration control by LL and LSC using UNIX/
CVS.

Updates will be provided by the following basis.

a. Change requests will be reviewed jointly by LL and LSC on a regular basis.

b. Those changes which are selected for incorporation shall be assigned for implementati
respective groups.

c. All changes will be validated and verified using a prescribed test procedure.

d. Once available, the new release will be distributed via the LL and LSC web site. All affe
documentation will be revised to show changes.

e. A history of revisions shall be maintained and made available to users.
page 31 of 36

LIGO-T990030-06
APPENDIX A EXAMPLE/TEMPLATE HEADER FILE
/*---
 *
 * File Name: example.h
 *
 * Author: A. Hacker
 *
 * Revision: Id
 *
 *---
 *
 * NAME
 * example.h
 *
 * SYNOPSIS
 * #include "example.h"
 *
 * DESCRIPTION
 * Example header file prolog.
 *
 * DIAGNOSTICS
 *
 *---
 *
 * REVISION HISTORY
 *
 * Log
 *
 *---
 */

/*
 * Header contents go here, in order specified:
 *
 * 1. Prolog (Comment field with file name, author, revision, etc., as
 * specified above)
 * 2. include-loop protection (see below). Note the naming convention!
 */

#ifndef _EXAMPLE_H
#define _EXAMPLE_H

/*
 * 3. Includes. This header may include others; if so, they go immediately
 * after include-loop protection. Includes should appear in the following
 * order:
 * a. Standard library includes
 * b. LDAS includes
 * c. LLAL includes
 * Includes should be double-guarded!
 */

#ifndef _STDLIB_H_
#include <stdlib.h>
#define _STDLIB_H_
#endif

#ifndef _LLAL_CONSTANTS_H
#include "LLAL_CONSTANTS.h"
#define _LLAL_CONSTANTS_H
#endif
page 32 of 36

LIGO-T990030-06
#ifndef _LLAL_GPS_H
#include "LLAL_GPS.h"
#define _LLAL_GPS_H
#endif

/*
 * 4. Header file version string (from CVS; see below). Note the string name.
 */

static char *EXAMPLEH = "Id";

/*
 * 5. Macros. But, note that macros are deprecated.
 *
 * 6. Extern Constant Declarations. These should not be present unless a
 * specific waiver has been granted.
 *
 * 7. Extern Global Variables. These should also not be present unless a
 * specific waiver has been granted.
 *
 * 8. Structure, enum, union, etc., typdefs.
 *
 * 9. Functions Declarations (i.e., prototypes).
 */

#endif
page 33 of 36

LIGO-T990030-06
APPENDIX B EXAMPLE/TEMPLATE SOURCE FILE
/*---
 *
 * File Name: example.c
 *
 * Author: J. Random Hacker
 *
 * Revision: Id
 *
 *---
 *
 * NAME
 * example
 *
 * SYNOPSIS
 * (void) example()
 *
 * DESCRIPTION
 * Example source file prolog.
 *
 * DIAGNOSTICS
 * (Abnormal termination conditions, error and warning codes summarized
 * here. More complete descriptions are found in documentation.)
 *
 * CALLS
 * (list of LLAL, LDAS, other non-system functions/procedures called.
 *
 * NOTES
 * (Other notes)
 *
 *---
 *
 * REVISION HISTORY
 *
 * Log
 *
 *---
 */

/* 1. Prolog: an extended comment field containing summary information
 * about the source code module (see above);
 * 2. Source file version string (from CVS). Note the string name.
 */
static char *EXAMPLEC = "Id";
/*
 * 3. Include directives. These should be guarded and appear in the
 * following order:
 * a. Standard library includes;
 * b. LDAS includes;
 * c. LLAL includes.
 * Each source file must include at least its own header. Includes should
 * be guarded, as in
 */

#ifndef _STDLIB_H_
#include <stdlib.h>
#define _STDLIB_H_
#endif

#ifndef _MATH_H_
#include <math.h>
#define _MATH_H_
page 34 of 36

LIGO-T990030-06
#endif

#ifndef LDASDCAPI_H
#include "LDASDCAPI.h"
#define LDASDCAPI_H
#endif

#ifndef EXAMPLE_H
#include "example.h"
#define EXAMPLE_H
#endif

/*
 * 4. Constants, enumerated types, structures, etc., used only internally;
 * 5. Type declarations ({\em i.e.,} {\tt typedefs\/}) used only
 * internally;
 * 6. Function macros for which a waiver has been granted;
 * 7. Extern global variable declarations for which a waiver has been
 * granted;
 * 8. Static global variables for which a waiver has been granted;
 * 9. Static function declarations for which a waiver has been granted;
 * 9. Function definition(s).
 */
page 35 of 36

LIGO-T990030-06
APPENDIX C EXAMPLE/TEMPLATE MAKEFILES
page 36 of 36

	1 Introduction
	1.1. Purpose
	1.2. Scope
	1.3. Applicability

	2 Overview
	Table 1 List of Applicable Documents

	3 Conventions
	3.1 Coding style
	3.2 Physical and numerical constants

	4 LLAL Data types
	4.1 Primitive or “atomic” data types
	Table 2 LIGO data types for algorithm software

	4.2 Aggregate constructs of primitive data types
	Table 3 LIGO data objects [relevant section numbers are shown in table headings]
	4.2.1 Vectors
	4.2.2 Arrays
	4.2.3 Sequences

	4.3 LIGO structured data types
	4.3.1 Time
	4.3.1.1 Time stamps
	4.3.1.2 Multiple time stamps

	4.3.2 Sequences in time
	4.3.2.1 TimeSeries
	4.3.2.2 TimeVectorSeries
	4.3.2.3 TimeArraySeries

	4.3.3 Sequences in frequency
	4.3.3.1 FrequencySeries
	4.3.3.2 FrequencyVectorSeries
	4.3.3.3 FrequencyArraySeries

	4.3.4 Series of n-tuples
	4.3.5 Transfer functions
	4.3.5.1 Frequency domain
	4.3.5.2 Zeros, poles and gain representation

	5 Filter Algorithm Design
	5.1 Procedural function style and usage
	5.2 LLAL specific data structures
	5.2.1 Status
	5.2.1.1 statuscode
	5.2.1.2 statusDescription
	5.2.1.3 rcsid[]

	5.2.2 ligoFunctionIOStruct
	5.2.3 ligoFunctionParamStruct

	6 LLAL Development tools
	6.1 Development tools:
	6.2 Documentation tools:
	6.3 Testing tools:

	7 Directory Organization
	7.1 Root directory
	7.2 LLAL Component Documentation
	7.3 Header Files
	7.4 Source Files
	7.5 Component level tests

	8 Configuration Control
	8.1 Version control

	9 LIGO SOFTWARE ARCHIVES
	9.1 LDAS directory structure
	Table 4: LDAS distribution directory structure

	9.2 CDS/GDS directory structure
	9.3 CVS repository structure
	Table 5: CVS repository directory structure

	10 Rules for revision
	10.1. Requests for changes
	10.2. Change control

	Appendix A Example/Template Header File
	Appendix B Example/Template Source File
	Appendix C Example/Template Makefiles

