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Abstract
The sensitivity of a search algorithm is determined by the noise floor, hence
it is important to track drifts in the noise floor. For example, in the case of
externally triggered search, one needs to look at long stretches in time, so it is
imperative to check if the noise floor has drifted during that time. A method
(called the median-based noise floor tracker or MNFT) has been developed to
track the slow drifts in the noise floor. The method is robust against transients
and any artefact mimicking non-stationarity that a data conditioning procedure
may introduce (e.g., high-order notch filters may spread clustered transients).
MNFT, which uses running median as the test statistic, smoothes the data
to eliminate transients in contrast to methods such as running mean, where
transient interference cannot be removed. Thresholds are set from simulations
and any excursion of the test statistic beyond the threshold serves as an indicator
of non-stationarity. The method is illustrated with the use of E7 and S1 data
from an uncalibrated channel of the LIGO detector. MNFT can track even
small fluctuations in the variance.

PACS numbers: 07.05.K, 04.80.N, 95.75.W

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We are interested in tracking temporal variation in the statistical properties of the noise floor
in a time series. The term noise floor is very loosely defined as that component of the power
spectral density of a time series which would be left after removal of narrowband technical
noise features (also known as line noise). It is the component shown, for instance, in plots of
interferometer design sensitivity. Further, we are interested in slow variations (drifts) of the
noise floor. The drifts could be in both the shape as well as the level of the noise floor. We call
the method that we have developed for this purpose MNFT(median-based noise floor tracker).
The definition of the noise floor is, of course, fuzzy when there are technical line features that
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are not confined to narrow bands. However, we leave the matter of more rigorous definitions
in the background for the moment.

There are two major problems in tracking the temporal behaviour of the noise floor:

(1) Current interferometer data are dominated by high power line features in the time domain.
So any statistical descriptor (mean, variance, etc) estimated in the time domain actually
measures the properties of the dominant components of the data and not the noise floor.

(2) Besides line features, interferometer data also contain transients which can skew estimates
made in the time domain. For example, transients coming at a high rate can temporarily
masquerade as slow non-stationarity.

So as to get at the noise floor time series, we need to eliminate or suppress the line features.
After line removal, a measure of statistical property must be used that is sensitive to slow
variations but not significantly affected by the presence of transients.

MNFT consists of the following steps:

(1) Bandpass and resample the given time series x(k), where k is the sample index. This is
done in order to reduce the sampling rate and to restrict the analysis to the frequency band
of interest. The resulting time series is called the resampled time series r(k). (In this
report, x(k) is also used to denote the kth sample with the context clarifying the sense in
which x(k) is being used.)

(2) Construct an FIR filter that whitens the noise floor. See section 2.1 for details. Whitening
the data makes it convenient to compare with simulations. The output of the whitening
filter is called the whitened time series w(k).

(3) Remove lines using a notch filter. A notch filter implemented as an FIR filter is a
computationally inexpensive and a reasonably effective method to eliminate lines present
in the data. The resulting data are called the cleaned time series c(k).

(4) Track variation in the second moment of c(k) using a running median. The running
median output is a time dependent estimate of the second moment and we denote this
latter time series by �(k).

(5) Obtain significance levels for the sampling distribution of the second moment via Monte
Carlo simulations and set thresholds for detection of non-stationarity.

Details of each of the steps above are provided in the subsequent sections. The method is
illustrated using the LIGO E7 and S1 data.

2. Data: lowpass and resample

We used LIGO S1 data from the Hanford 2k (H2) and the Livingston 4k (L1) interferometers
to illustrate our method. The particular segments chosen here were also relevant to the
externally triggered [5] search and indeed much of the motivation for this work derives from
the particular needs of that analysis. The channel looked at for both the interferometers was
L1 or H2:LSC-AS Q (uncalibrated).

The sampling frequency for this channel was 16 384 Hz. Figure 1 shows the time series
envelope and the power spectrum of the data recorded between GPS times 715 082 714 and
715 083 088 s.

The data were then lowpassed with a cut-off frequency of 4096 Hz and resampled down.

2.1. Whitening the data

A quiet stretch (without large transients) is identified visually and the PSD is computed. A
running median is used on the PSD to obtain an estimate of the noise floor (in a sense this can
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Figure 1. The time series of the raw data from the uncalibrated LSC-AS Q channel of the L1 and
H2 detectors.
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Figure 2. PSD of the lowpassed and resampled data from H2 and L1. The red curve shows the
estimated spectral floor by the method of running median [1].

(This figure is in colour only in the electronic version)

be taken as a definition of the noise floor). Since line features are outliers in the frequency
domain series, a running median with a sufficiently large block size is a robust estimate of the
noise floor PSD [1, 8, 10, 19]. Figure 2 illustrates this process. This method of noise floor
estimation has found many applications, for example, automated line detection [9].

From the noise floor estimate S(f ), an FIR filter is constructed (using the least squares
design technique) with a frequency domain transfer function that is 1/

√
S(f ). This time

domain filter is then used to filter the entire data stretch. If the data noise floor was stationary,
the filtered noise floor should be a flat PSD for not only the segment that was used to construct
the filter but also for all other segments. Figure 3 shows the PSD of data after application
of the whitening filter.

Whitening of interferometric data using adaptive filters has been discussed extensively in
[2, 4]. The adaptive whitening filters in [3] were based on time series modelling of the data
using AR and ARMA models but the model fits were of an extremely high order (∼1000)
since line features were not removed. (It is also incorrect to include line features such as
power lines into an AR or ARMA time series model since they may not meet the assumptions
behind an AR/ARMA model.) In our case, we first directly get an estimate of the noise floor
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Figure 3. This figure shows the whitened and cleaned data from H2 and L1. The whitening is
performed by constructing an FIR filter using the frequency domain transfer function based on the
running median estimate of the spectral noise floor.

using the running median and then construct a time series model (the FIR filter design phase)
that fits the noise floor. This yields a much simpler whitening filter. This way of obtaining the
whitening filter can be easily made adaptive but we do not address it further here.

2.2. Line removal

Strong and steady line features in the PSD are tabulated in terms of their central frequencies
and bandwidth at the noise floor level. A high-order FIR notch filter is constructed using
Matlab [6] with notches positioned at the central frequencies.

Sometimes lines are very closely spaced and it would require an extremely large filter
order to eliminate each one individually. Instead we eliminate the entire band containing
such sets of closely spaced lines. Figure 5 shows the resulting PSD after notch filtering the
whitened time series.

Why do we not use an arbitrarily high-order filter in order to make very narrow notches
and thus avoid taking out wide bands? The constraint comes from the fact that the notch filter
also broadens transients in its input. So, if the rate of transients is high and/or if they have
large amplitudes, the filtered output may show non-stationarity simply due to a high rate of
broadened transients (see section 2.6) overlapping with each other. Thus, there is a trade off
between the order of the notch filter used and the prevention of false slow non-stationarity due
to strong and/or high rate transients.

2.3. Tracking non-stationarity

The time series c(k) is an estimate of the whitened noise floor. For a stationary noise floor, the
variance of c(k) would be a constant. For a non-stationary noise floor, however, the variance
of c(k) would change in time. This variation could be caused by either a change in the shape
of the noise floor or a change in its overall level or both. Thus, the simplest possible test
for non-stationarity of the noise floor is then to estimate the variance of c(k) using a suitably
defined estimator over a moving window in time. The resulting time dependent variance
estimate can then be scrutinized for the presence of change points [7].

The standard estimator of variance is the MLE estimator [18]. However, the use of this
estimator is not appropriate for the S1 data. This is because the cleaned time series still has
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Figure 4. This figure illustrates the difference in the performance of running median as a smoothing
technique as opposed to running mean. The specific example is drawn from a stretch of LIGO E7
data from the channel H2:LSC-AS Q. The time series and the spectrogram on the left shows the
presence of three very strong transients. The figure on the right shows that while the running mean
retains much of the transient signature, the running median has smoothed it out. The offset seen in
the figure is because the quantities are not normalized.

transients present in it. Since a running variance estimate using fixed length block averages
is essentially an FIR filter acting on the square of the data it can be affected significantly by
transients especially if they are grouped closely.

In order to mitigate this problem we estimate the second moment of the cleaned time series
by again using a running median on c2(k). Figure 4 illustrates the difference between running
mean and running median estimation in the presence of transients. The running median is a
more effective smoothing technique in this case because it eliminates the transients.

2.4. Simulation

We have used the running median estimate of the second moment in order to suppress the effect
of transients. However, the price paid for this is that the probability density for the resulting
estimate cannot be computed in a simple way. This prevents us from easily computing the
threshold for non-stationarity detection that corresponds to a given false alarm probability.
We must, therefore, take recourse to Monte Carlo simulations in order to calculate detection
thresholds.

The running median of c2(k) is an estimate of the second moment of the noise floor. If
the original noise floor had zero mean then the second moment coincides with the variance
of the noise floor. A ‘quiet’ part (i.e. visually free of transients) of c(k) is used to obtain an
estimate of the standard deviation σ . A pseudo-random stationary white noise is generated
with marginal density N(0, σ ) (Gaussian with zero mean and variance σ 2). The simulated
noise is then processed using the same steps as the real data.

Figure 5 shows the running median plots for the S1 data and for 50 realizations of the
simulated noise.

2.5. ‘Block length’ as a parameter

The block length over which the running median is computed can be kept as a flexible
parameter. This allows the investigator to chose the time scale over which (s)he wishes to
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Figure 5. Running median discriminator with S1 data and simulated stationary white noise. The
red curves give an approximate estimate of the spread expected from stationary white noise with the
same variance. Points where the interferometric data exceed this bound are indicative of departure
from stationarity.
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Figure 6. Left top: Spectrogram of the H2 data used in this example. The ‘breathing noise floor’
is zoomed in. Left bottom: the running median estimate of the second moment reflects the same
variation. Right top and bottom: same as the corresponding left figures on a longer time scale.
The non-stationarity is very evident here.

study the presence of drifts. Figure 6 illustrates this point. The running median is shown
against the spectrogram for H2. This particular data stretch is known to have non-stationarity
(known as ‘breathing of the noise floor’ [5]) over a timescale of typically 0.5 s. By suitably
adjusting the block length, the running median picked up this behaviour.

2.6. Effect of transient spreading

Since the S1 data are infested with a very high rate of transients, it is important to test the
impulse response of the high-order filters used in the data pre-processing to ensure that the
impulses do not spread beyond the block length used for the running median computation.

A time series was generated with an impulse of the same amplitude as the highest transient
in the S1 data. The impulse response of the same series of filters is shown in figure 7. The
percentage spread (computed by taking the ratio of the number of samples of the post-processed
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Figure 7. Impulse response of the set of filters used in the pre-processing of the data.
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Figure 8. This figure shows Gaussian pulses added to the S1 data from H2. The figures on the
left show the time series, while the ones on the right show how these added transients appear in
the spectrogram.

impulse to the block length of the running median) of the impulse for the highest transients is
about 4.8.

In the next set of simulations, equally spaced transients of the same magnitude were
imposed on S1 data to see if the running median differed from the one when there was no
transient. The result is illustrated in figures 8 and 9. The graphs show no apparent difference
between the two cases mentioned above. The implication is that the transients do not introduce
any artificial non-stationarity in the data and hence do not affect the running median estimator
as a discriminator of non-stationarity.
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Figure 9. The top shows the running median for H2 data with transients added, while the bottom
shows the same before the addition of transients.
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Figure 10. The dark (blue) curve shows the stationary test data imposed on 50 realizations of
simulated stationary white noise. As should be expected, the test data do not exceed the stationary
white noise spread.

2.7. Validation I: MNFT on simulated stationary white noise

In order to validate the performance of MNFT, we have simulated stationary white noise
and processed it exactly the same way as has been done with the real data. The frequencies
corresponding to the line frequencies in the real data were subtracted from the simulated data
as well so that the simulation is also subjected to same filters as we have used in the real data.
Figure 10 illustrates the results. It is clear from the figure that the test data do not venture out
of the bound set by the stationary white noise spread, thus validating the method.

2.8. Validation II: MNFT on simulated non-stationary data

Simulated non-stationary data were produced by a time varying IIR filter operating on a
white Gaussian random process with unit variance. The filter coefficients are independent
stochastic processes with specified means. Figure 11 shows a section of the non-stationary
noise generated by the above method. Figure 12 shows the running median curve obtained
by MNFT on these data. Contrary to what is seen in figure 10, here one can see the expected
departure from the level of stationarity (depicted by the lighter (red) curves). This confirms
the efficiency of MNFT as a detector of non-stationary behaviour in the data stream.

2.9. Open issues

2.9.1. Use of other line removal methods to suppress line features before notch filtering.
Using a suitable line removal method [11–14] as a pre-filter will be useful to reduce the order
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Figure 11. A section of the simulated non-stationary time series (top) and the corresponding
spectrogram (bottom). The spectrogram is zoomed in to show the presence of non-stationarity
clearly.

of the notch filter. Most of these methods are geared towards removal of technical noise of a
particular kind, e.g., violin modes, power lines etc, and work with assumed models. Median-
based line tracker (MBLT) [1] is a useful tool which removes all lines without having to
assume any specific model and has the advantage of being immune to transients. The methods
mentioned above typically suppress the high dB lines by more than 30 dB. Some work has been
done along these lines, but is subjected to further testing. MBLT is computationally expensive
on a single machine. Work is underway to include MNFT under the detector characterization
robot (DCR) [7, 8] in a cluster environment. This is expected to speed up the process greatly
and is estimated to be able to track the slow drift online.

2.9.2. Setting thresholds using a single simulated stationary time series. Since the simulation
process consists of generating stationary white noise with a given variance, it would be more
natural to simulate a single time series typically ∼50 times the length of the given data
(equivalent to 50 different realizations), histogram it and get an estimate of its variance that
can serve as a measure of threshold. The exact threshold to be determined is of course based
on the requirements of the specific analysis one is looking at. Work is in progress.

3. Comments and future direction

The study yields interesting results and can find many applications wherever a suitable
indicator of non-stationarity in the data is required in detector characterization [15] and data
characterization [16] for setting upper limits for different astrophysical sources. For example,
this method could lead to construction of an epoch veto, a monitor [17] or a warning system
that clicks whenever the data exceed the threshold.
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Figure 12. The running median of the simulated non-stationarity data. As expected, the departure
from stationary noise level is clear. This validates the method as an efficient one to detect non-
stationarity present in a time series.

One of the important questions relates to obtaining the tolerance of astrophysical searches
to non-stationarity. This clearly depends on the search that is being performed. The degree of
tolerance can be calculated by assuming an appropriate model for the type of non-stationarity
noted in the data and plugging in the modelled noise to a search algorithm to obtain the
necessary sensitivity and tolerance to the level of departure from an ideal stationary noise.
Work along these lines is in progress.
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